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“Learning can be defined as the process of estimating the 
associations between input, outcomes, and system 
parameters using a limited number of observations.” – 
Vladimir Cherkassky et al.
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"Machine Learning is the field of study that gives 
computers the ability to learn without being explicitly 
programmed." – Arthur Samuel

“Learning can be defined as the process of estimating the 
associations between input, outcomes, and system 
parameters using a limited number of observations.” – 
Vladimir Cherkassky et al.
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Input → Model → Output

Model based on data
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● Architecture selection
● Hardware platform
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Guided process
● Data
● Questions
● Architecture selection
● Hardware platform

What should the model be like?
● General
● Fast
● Precise
● Useful

Input → Model → Output

Model based on data



Machine learning
Generalization 

 Image from 
Togootogtokh, E., & Amartuvshin, A. (2018). Deep Learning Approach for Very Similar Objects Recognition Application on Chihuahua and Muffin Problem. ArXiv, abs/1801.09573.
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Input ML model Prediction

Machine learning for classification
A classifier as example

Romina Soledad Molina | Mar del Plata - Argentina | 2025



Input ML model Prediction

Machine learning for classification
A classifier as example

Romina Soledad Molina | Mar del Plata - Argentina | 2025



ML model

Input ML model Prediction

Machine learning for classification
A classifier as example

Romina Soledad Molina | Mar del Plata - Argentina | 2025



ML model Cat

Input ML model Prediction

Machine learning for classification
A classifier as example

Romina Soledad Molina | Mar del Plata - Argentina | 2025



Machine learning: 
ANN, MLP, and CNN



Artificial neural networks

- Inspired by biological neurons [7].

- Each neuron processes electrochemical signals received from other neurons through its dendrites. If 
these signals are strong enough, the neuron becomes activated and transmits the signal through its 
axon, relaying it to the dendrites of other neurons, which may also be triggered. This is how message 
transmission takes place.
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An artificial neural network (ANN) is composed of the interconnection of neurons (or nodes), 
distributed across different layers.
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Weights are numerical values that represent the 
importance of each feature or input in a model. 

They are adjustable coefficients that are fine-tuned 
during training to optimize performance and minimize 
prediction errors.
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Non-linearity
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● Question:  Why activation functions are important? 

Which allows the model to represent 
more complex decision boundaries.
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● Mathematical functions applied to the output of a neuron in a neural network. They determine 
whether a neuron should be activated, introducing non-linearity to the model, which helps it learn 
complex patterns.
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● Mathematical functions applied to the output of a neuron in a neural network. They determine 
whether a neuron should be activated, introducing non-linearity to the model, which helps it learn 
complex patterns.

● Types of activation functions
○ Linear
○ Non-Linear: Sigmoid, ReLu, Leaky ReLu, Softmax. 
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● Mathematical functions applied to the output of a neuron in a neural network. They determine 
whether a neuron should be activated, introducing non-linearity to the model, which helps it learn 
complex patterns.

● Types of activation functions
○ Linear
○ Non-Linear: Sigmoid, ReLu, Leaky ReLu, Softmax. 

● Tasks:
○ Classification: Sigmoid (binary), Softmax (multi-class).
○ Hidden layers: ReLU, Leaky ReLU.
○ Regression: Linear activation or ReLU.

Softmax



Activation functions

Machine learning
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● Simple
● Useful for regression
● Cannot model non-linearity

Linear



Activation functions
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● Binary classification
● Slow training
● Good for probabilities

Sigmoid



Activation functions
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● Deep networks
● Neurons can stuck at zero
● Fast

ReLu



Activation functions

Machine learning
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● Multi-class classification
● Computationally expensive
● Converts outputs into 

probabilities

Softmax

2.0
1.0
0.1

p = 0.7
p = 0.2
p = 0.1



Deep Neural Networks

Machine learning
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Image from https://www.ibm.com/think/topics/neural-networks



Artificial neural networks

a(l) = f(z(l))

z(l) = W(l)a(l-1) + b(l)

Considering a given layer l, the output a(l) can be defined as:

W(l): weights matrix of the layer l.
a(l-1) : output of the previous layer (l-1)
b(l): bias vector of layer l.
f(.): activation function
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Convolutional Neural Network (CNN)

Machine learning
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 Image from Zeiler, Matthew D. and Rob Fergus. “Visualizing and Understanding Convolutional Networks.” ECCV (2014) [6]

Basic layers that make up the CNN architecture

● The first layer: captures basic features.
○ For example, horizontal and vertical edges.

● The output moves to the next layer, which identifies more 
complex features.

○ For instance, corners or combinations of edges.

● As the network deepens, it becomes capable of 
recognizing even more intricate features, such as faces, 
objects, and more.

Machine learning
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Machine learning - CNN
Feature extraction
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Fundamental layers in CNN architecture

● Convolution (1D - 2D)
● Pooling
● Flatten
● Fully connected
● Dropout
● Batch Normalization
● Reshape

Machine learning
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Fundamental layers in CNN architecture

● Convolution (1D - 2D)
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Fundamental layers in CNN architecture

● Convolution (1D - 2D)
○ Padding none

Machine learning
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Fundamental layers in CNN architecture

● Convolution (1D - 2D)
○ Padding same
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Fundamental layers in CNN architecture

● Convolution (1D - 2D)
● Pooling
● Flatten
● Fully connected
● Dropout
● Batch Normalization
● Reshape

Machine learning
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Fundamental layers in CNN architecture

● Pooling (Average and Max)

Machine learning
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Fundamental layers in CNN architecture
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● Pooling
● Flatten
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Fundamental layers in CNN architecture

● Flatten

Machine learning
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Fundamental layers in CNN architecture

● Fully connected

Machine learning
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Machine learning: 
Training and inference



Training 

The training phase involves adjusting the weights and connections between nodes, allowing the neural 
network to learn.

One widely used method is the backpropagation algorithm.

Machine learning
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Training

The backpropagation algorithm consists of two phases:

● Forward pass: Inputs flow through the network to produce classification outputs.
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Training

The backpropagation algorithm consists of two phases:

● Forward pass: Inputs flow through the network to produce classification outputs.

● Backward pass: The gradient of the loss function is computed and iteratively applied to adjust the 
network’s weights.
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Machine learning



Visualization: neural network training
https://mlu-explain.github.io/neural-networks/

Machine learning
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https://mlu-explain.github.io/neural-networks/


Machine learning

K-fold cross validation

● A method for evaluating a machine learning model by dividing the dataset into multiple subsets, or 
folds. 

● This approach helps improve the model's ability to generalize to new data by minimizing the effects 
of data variability.
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Machine learning

K-fold cross validation

● How it works?

The dataset is divided into K equal-sized folds.
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● How it works?

The dataset is divided into K equal-sized folds.

The model is trained K times, each time using K-1 folds for training and 1-fold for validation.

Each fold serves as the validation set exactly once, while the remaining folds are used for training.
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Machine learning

K-fold cross validation

● How it works?

The dataset is divided into K equal-sized folds.

The model is trained K times, each time using K-1 folds for training and 1-fold for validation.

Each fold serves as the validation set exactly once, while the remaining folds are used for training.

The final performance of the model is computed by averaging the results across all K iterations.
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Machine learning

K-fold cross validation - Graphical representation

Dataset

Train data Test data

Test data

Iteration 1 Train Train Train Train Val

Iteration 2 Train Train Train Val Train

Train Train Val Train TrainIteration 3

Train Val Train Train TrainIteration 4

Val Train Train Train TrainIteration 5

Final Evaluation
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Underfitting, Overfitting, and Optimal

 

Machine learning

 Image from 
Togootogtokh, E., & Amartuvshin, A. (2018). Deep Learning Approach for Very Similar Objects Recognition Application on Chihuahua and Muffin Problem. ArXiv, abs/1801.09573.
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Underfitting, Overfitting, and Optimal
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Underfitting, Overfitting, and Optimal

Underfitting: This typically happens when the model is not complex enough or doesn't learn enough from 
the training data.
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The model performs poorly 
on both the training set and 
the test set.



Underfitting, Overfitting, and Optimal

Overfitting: The model essentially memorizes the training data, which reduces its ability to generalize to 
new, unseen data.
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Underfitting, Overfitting, and Optimal

Overfitting: The model essentially memorizes the training data, which reduces its ability to generalize to 
new, unseen data.
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The model performs well on 
the training set but poorly 
on the test set.



Underfitting, Overfitting, and Optimal

Optimal: The model finds the right balance between underfitting and overfitting. It captures the 
underlying patterns in the data without memorizing noise or irrelevant details.
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Underfitting, Overfitting, and Optimal

Optimal: The model finds the right balance between underfitting and overfitting. It captures the 
underlying patterns in the data without memorizing noise or irrelevant details.
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It performs well on both the 
training set and the test set.



Inference 

Once the learning phase is complete, the network can be used to perform the specific task it was trained 
for — a process known as inference.

Machine learning
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Basic ingredients



Four basic 
ingredients

Dataset Loss function Model Optimizer
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Dataset
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Loss-Function

● A loss function quantifies the difference between a model’s predictions and the actual target values. 

● In machine learning, it serves as a key metric to assess performance. 

● The goal of training is to minimize this loss, enhancing the model’s accuracy.
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Loss-Function

● A loss function quantifies the difference between a model’s predictions and the actual target values. 

● In machine learning, it serves as a key metric to assess performance. 

● The goal of training is to minimize this loss, enhancing the model’s accuracy.

For classification tasks:

● Number of classes >  2: categorical cross-entropy
● Number of classes =  2: binary cross-entropy
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Four basic 
ingredients

Dataset Loss function Model Optimizer
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Topology and Model

 

Machine learning

● Topology structure or architecture of the model, which determines how the components (e.g., 
neurons in a neural network) are connected.

● The model is the final output of the learning process after training. 
○ Algorithms or equations that map input data to output predictions.
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Topology

 

Machine learning

Fjodor van Veen from Asimov institute compiled a cheatsheet on Neural Networks  topologies. |  https://www.asimovinstitute.org/author/fjodorvanveen/ 
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Four basic 
ingredients

Dataset Loss function Model Optimizer
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Optimizers

● In machine learning, optimizers are algorithms designed to minimize the loss function.

Machine learning
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Analogy

Machine learning

Romina Soledad Molina | Mar del Plata - Argentina | 2025

Objective: Find the fastest and most efficient route to 
the lowest point.



Optimizers

● In machine learning, optimizers are algorithms designed to minimize the loss function.
○ Why? What do you think?

Machine learning
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Optimizers

● In machine learning, optimizers are algorithms designed to minimize the loss function.
○ Why? What do you think?

● They achieve this by adjusting the model's parameters (weights and biases) during training.

Machine learning
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Optimizers

● In machine learning, optimizers are algorithms designed to minimize the loss function.
○ Why? What do you think?

● They achieve this by adjusting the model's parameters (weights and biases) during training.

● The primary goal of an optimizer is to enhance the model's performance. This is done by reducing 
the error between the predicted output and the actual target values.

Machine learning
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Optimizers

● SGD
○ It uses a fixed learning rate for all parameters.
○ SGD does not estimate any moments of the gradient.

Machine learning
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Optimizers

● SGD
○ It uses a fixed learning rate for all parameters.
○ SGD does not estimate any moments of the gradient.

● Adam
○ It adapts the learning rate to each parameter individually.

○ Adam uses first- and second-order moments to dynamically adjust the learning rate at each 

iteration.
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Optimizers

● SGD
○ It uses a fixed learning rate for all parameters.
○ SGD does not estimate any moments of the gradient.

● Adam
○ It adapts the learning rate to each parameter individually.

○ Adam uses first- and second-order moments to dynamically adjust the learning rate at each 

iteration.

● The gradient is a vector that indicates the direction and magnitude of the fastest change of a function. 

● In Machine Learning and optimization, the gradient of a loss function L with respect to the model parameters tells us how to adjust 
those parameters to minimize the loss.

Machine learning
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Metrics



● Why metrics are important?

Metrics
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Metrics
Accuracy and loss during training

Romina Soledad Molina | Mar del Plata - Argentina | 2025



● True Positives (TP)
○ The number of instances where the model correctly predicted the positive class.

● True Negatives (TN)
○ The number of instances where the model correctly predicted the negative class.

● False Positives (FP)
○ The number of instances where the model incorrectly predicted the positive class.

● False Negatives (FN)
○ The number of instances where the model incorrectly predicted the negative class.

Metrics
Confusion matrix
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Metrics
Confusion matrix
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Metrics
Receiver operating characteristic (ROC) curve

● It illustrates the trade-off between the true positive rate (TPR) 
and the false positive rate (FPR) at various threshold settings. 

TPR = TP/(TP+FN)     |     FPR = FP/(FP+TN)

● The ROC curve helps evaluate how well a model distinguishes 
between classes.

● The ROC curve is always plotted between 0 and 1 on both axes 
because both TPR and FPR are proportions (ratios) 
and therefore can only range from 0 to 1. 

● Area Under the Curve (AUC) measures the overall ability of the 
model to distinguish between the classes. An AUC score of 1 
means perfect classification, while an AUC score of 0.5 means 
the model performs no better than random guessing.
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Metrics
Precision and Recall

Image from https://en.wikipedia.org/wiki/Precision_and_recall
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Metrics
Precision and Recall

Image from https://en.wikipedia.org/wiki/Precision_and_recall
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Precision: Of all the positive predictions the model 
made, how many were actually positive?

Recall: Of all the actual positive cases, how many 
were correctly detected by the model?
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General steps 
Keras+TensorFlow
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Machine learning
General steps Keras+TensorFlow

General overview

● The first two steps focus on defining the hyperparameters and configuring the machine learning 
architecture. Afterward, a model summary provides an overview of how the model was constructed.

● Once the model is created, parameters such as the optimizer, loss function, and metrics are 
configured using the model.compile() function.

● Finally, training is performed with the model.fit() function, where the dataset, batch size, number of 
epochs, and callbacks, among other settings, are specified.
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Machine learning
General steps Keras+TensorFlow

Model definition

Model summary
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Machine learning
General steps Keras+TensorFlow

Defining some of the 
hyperparameters
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Machine learning
General steps Keras+TensorFlow
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Loss: A metric that measures how far the model’s predictions are from the actual values.

Optimizer: An algorithm that adjusts the weights of the neural network to minimize the loss function.

Learning Rate: A hyperparameter that controls the size of the adjustments the optimizer makes to the model's 
weights during each iteration.

Metrics: Additional values monitored during training to evaluate the model's performance. For example, 
accuracy (used in classification).

Model compile



Machine learning
General steps Keras+TensorFlow
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Model fit

x_train_norm: normalized dataset obtained by applying a transformation to x_train.

y_train: labels (or expected values) corresponding to the training data.

batch: number of samples processed before updating the model's weights.

epochs: number of times the model will go through the entire training dataset.

validation_split: percentage of the training dataset (x_train, y_train) reserved for validation.



Machine learning
General steps Keras+TensorFlow
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Plot the Accuracy and Loss from the history variable during training



Demo: 
MLP training for 
MNIST dataset
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Bias

Machine learning
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● The bias allows the model to learn shifts and adjust its decision boundary, 
making it possible to represent more complex relationships.

● The bias shifts (or “moves”) the activation function to the left or right.
This allows the model to: 

- Not rely solely on the origin (0,0) to learn patterns.
- Adjust the position of the decision boundary.
- Learn more flexible relationships between inputs and outputs.



Weights + Bias

Machine learning

Romina Soledad Molina | Mar del Plata - Argentina | 2025


