Joint ICTP-IAEA School on Detector Signal Processing and Machine Learning for Scientific Instrumentation and Reconfigurable Computing

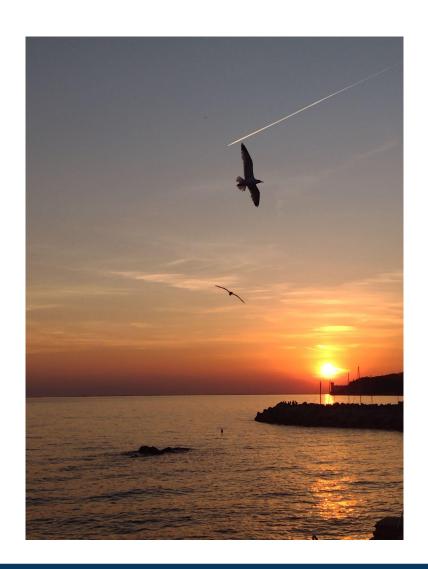
Fundamentals of Applied Machine Learning

smr4110 | Trieste, Italy - 2025

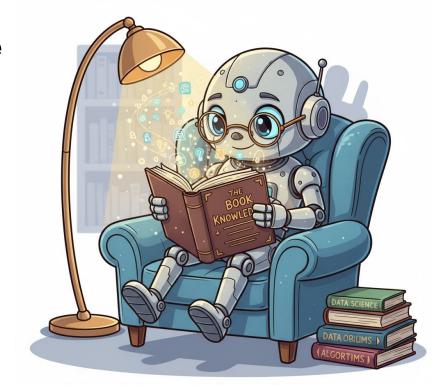
Romina Soledad Molina, Ph.D.

Outline

- Machine learning.
- Machine learning: ANN, MLP, and CNN.
- Machine learning: training and inference.
- Basic ingredients.
- Metrics.
- General steps, Keras+TensorFlow.
- Demo: MLP training for MNIST dataset.

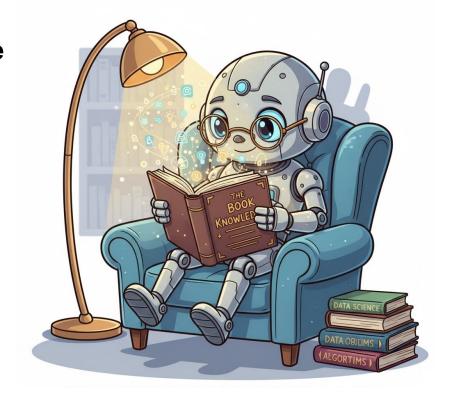


"Learning can be defined as the process of estimating the associations between input, outcomes, and system parameters using a limited number of observations." – Vladimir Cherkassky et al.



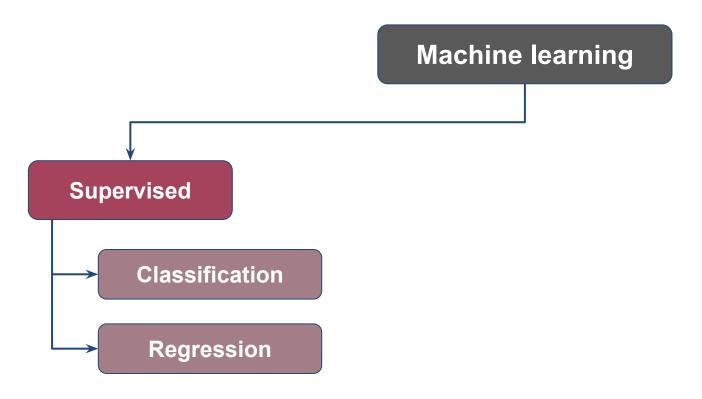
"Learning can be defined as the process of estimating the associations between input, outcomes, and system parameters using a limited number of observations." – Vladimir Cherkassky et al.

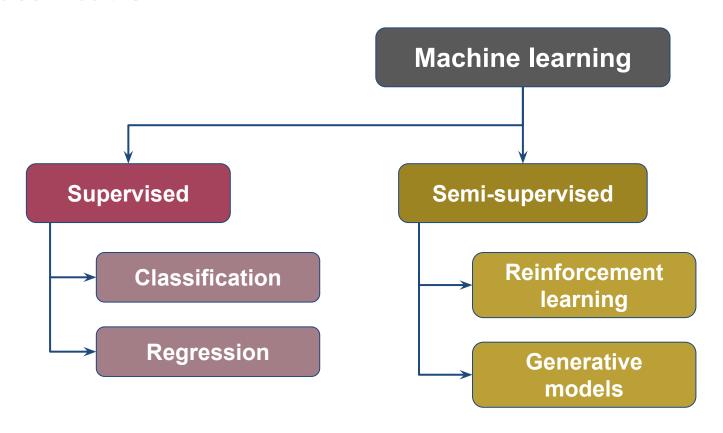
"Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed." – Arthur Samuel

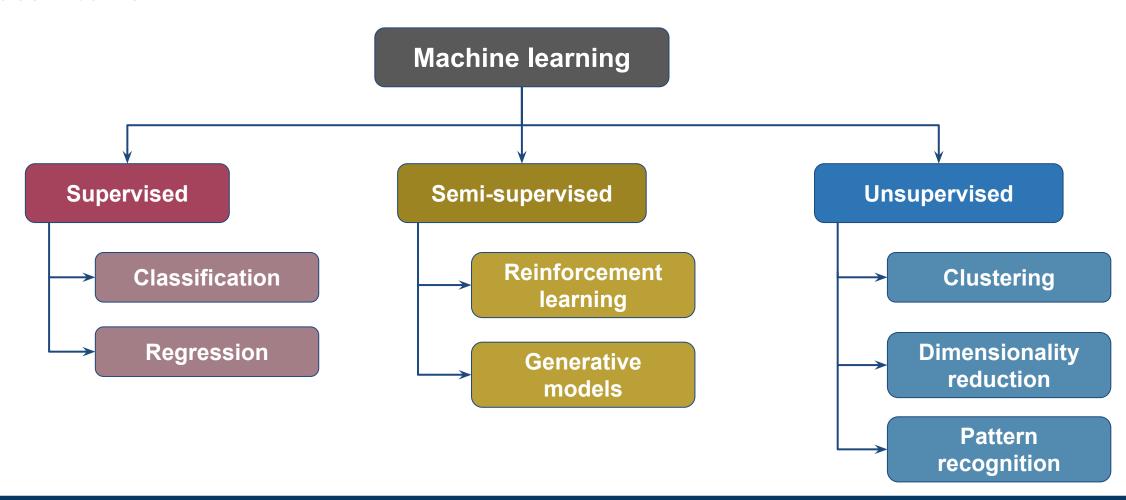


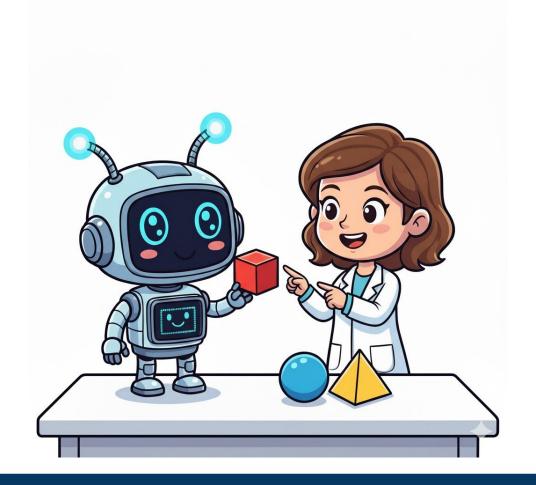
Machine learning Classification

Machine learning









Model based on data

Input → **Model** → **Output**

Model based on data

Input → **Model** → **Output**

Guided process

- Data
- Questions
- Architecture selection
- Hardware platform

Model based on data

Input → **Model** → **Output**

Guided process

- Data
- Questions
- Architecture selection
- Hardware platform

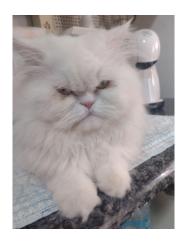
What should the model be like?

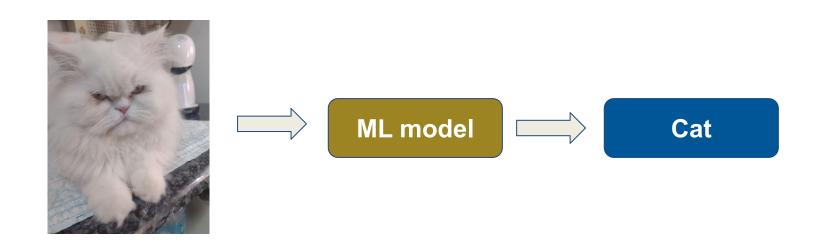
- General
- Fast
- Precise
- Useful

Generalization

Image from

Togootogtokh, E., & Amartuvshin, A. (2018). Deep Learning Approach for Very Similar Objects Recognition Application on Chihuahua and Muffin Problem. ArXiv, abs/1801.09573.



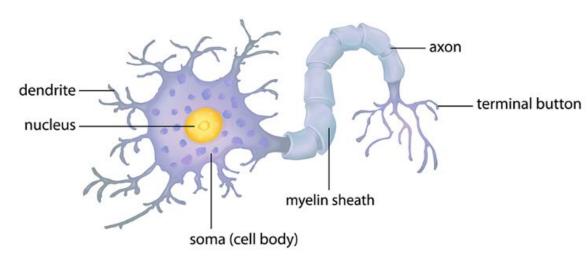


Machine learning: ANN, MLP, and CNN

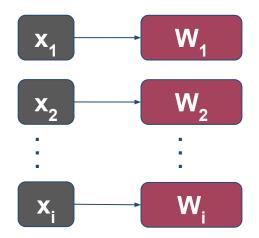
- **Inspired** by biological neurons [7].

- Each neuron processes electrochemical signals received from other neurons through its dendrites. If these signals are strong enough, the neuron becomes activated and transmits the signal through its axon, relaying it to the dendrites of other neurons, which may also be triggered. This is how message

transmission takes place.

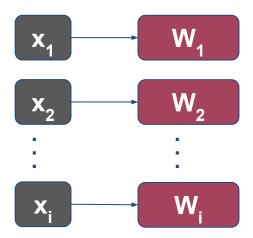


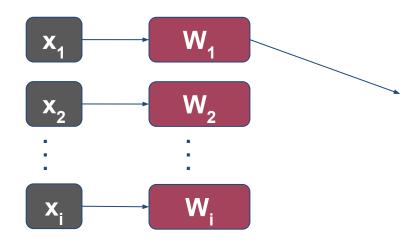
An artificial neural network (ANN) is composed of the interconnection of neurons (or nodes), distributed across different layers.

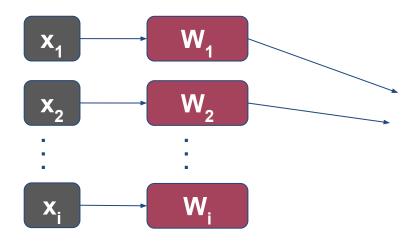


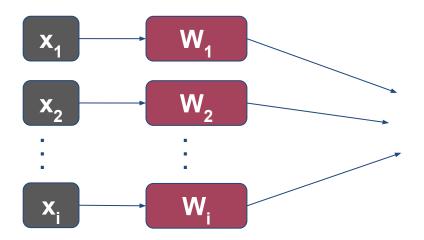
Weights are numerical values that represent the importance of each feature or input in a model.

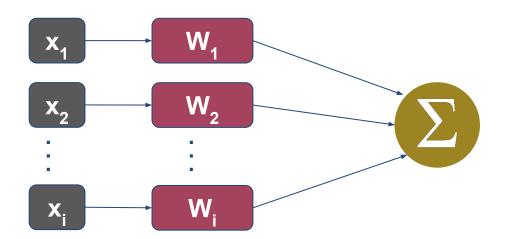
They are **adjustable coefficients** that are fine-tuned during **training** to optimize performance and minimize prediction errors.

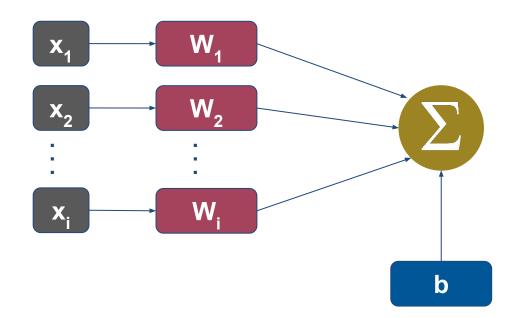


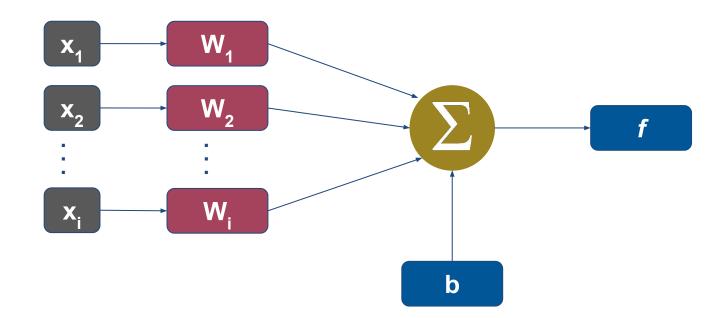


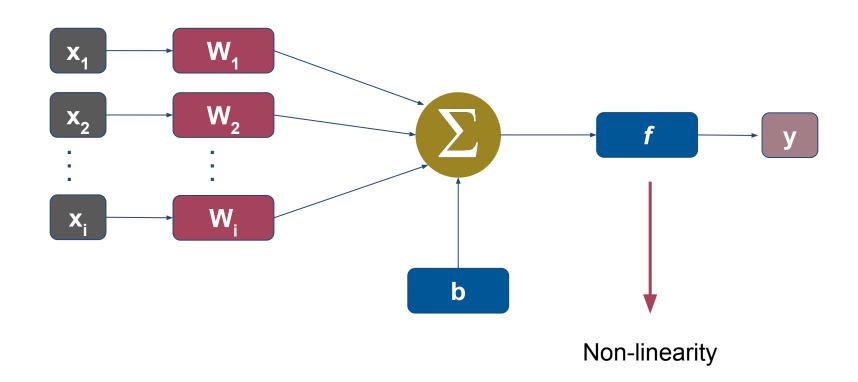


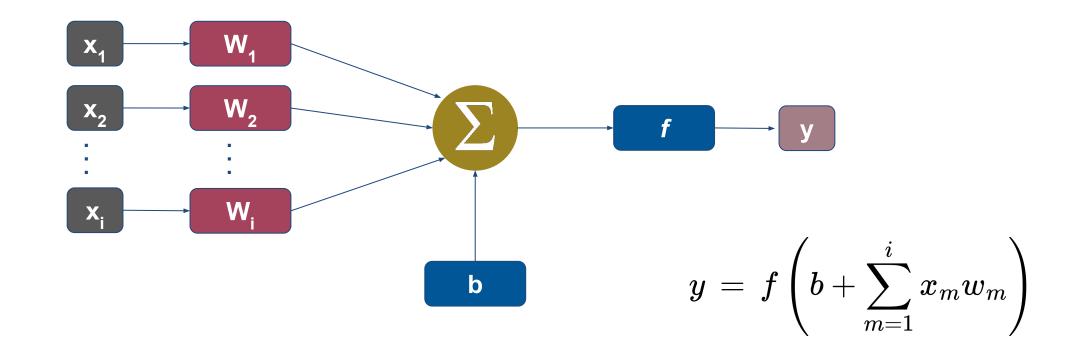












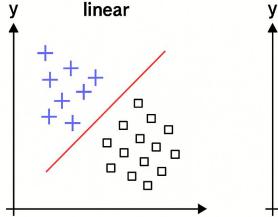
Activation functions

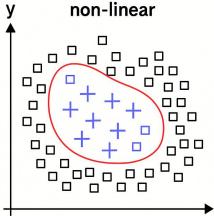
• Question: Why activation functions are important?

Activation functions

Question: Why activation functions are important?

Activation functions introduce non-linearities into the network





Which allows the model to represent more complex decision boundaries.

Activation functions

Mathematical functions applied to the output of a neuron in a neural network. They determine
whether a neuron should be activated, introducing non-linearity to the model, which helps it learn
complex patterns.

Activation functions

- Mathematical functions applied to the output of a neuron in a neural network. They determine
 whether a neuron should be activated, introducing non-linearity to the model, which helps it learn
 complex
- Types of activation functions
 - Linear
 - Non-Linear: Sigmoid, ReLu, Leaky ReLu, Softmax.

Activation functions

Mathematical functions applied to the output of a neuron in a neural network. They determine
whether a neuron should be activated, introducing non-linearity to the model, which helps it learn
complex

Types of activation functions

- Linear
- Non-Linear: Sigmoid, ReLu, Leaky ReLu, Softmax.

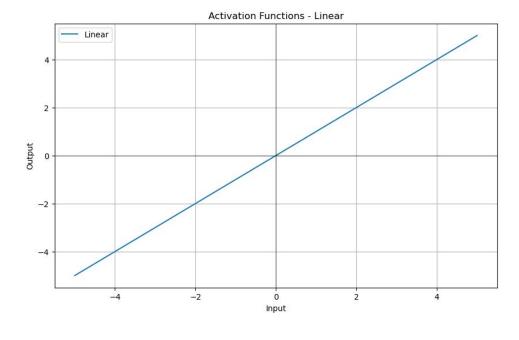
• Tasks:

- Classification: Sigmoid (binary), Softmax (multi-class).
- Hidden layers: ReLU, Leaky ReLU.
- Regression: Linear activation or ReLU.

Activation functions

Linear

$$f\left(x
ight) =ax$$
 define a

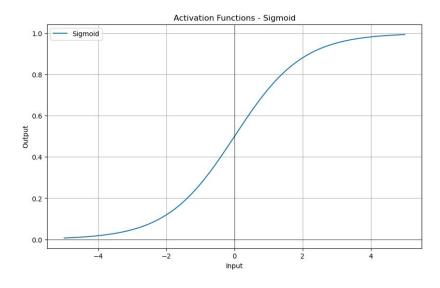


- Simple
- Useful for regression
- Cannot model non-linearity

Activation functions

Sigmoid

$$f\left(x
ight) =rac{1}{1+e^{-x}}$$

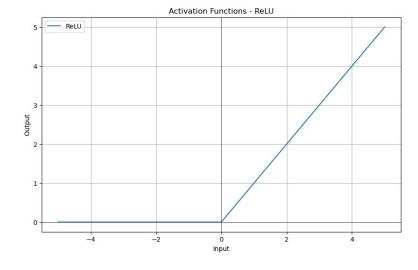


- Binary classification
- Slow training
- Good for probabilities

Activation functions

ReLu

$$f(x) = \max(0, x)$$

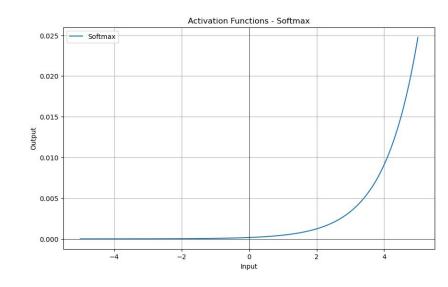


- Deep networks
- Neurons can stuck at zero
- Fast

Activation functions

Softmax

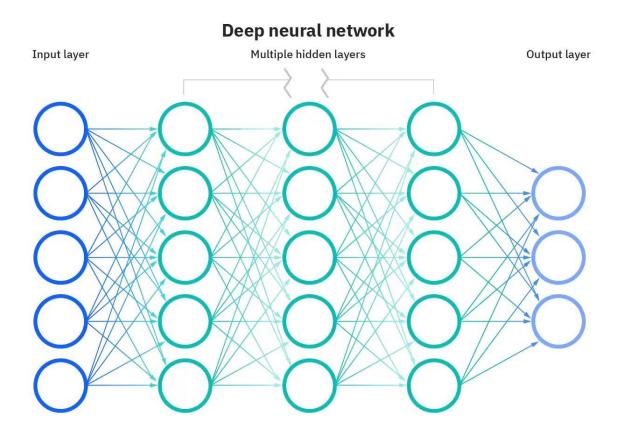
$$f(x) = rac{e^{x_i}}{\sum e^{x_j}}$$



- Multi-class classification
- Computationally expensive
- Converts outputs into probabilities

$$\begin{array}{ccc}
2.0 & \rightarrow \\
1.0 & \rightarrow \\
0.1 & \rightarrow
\end{array}
\qquad
\begin{array}{c}
f(x) = \frac{e^{x_i}}{\sum e^{x_j}} & \rightarrow p = 0.7 \\
\rightarrow p = 0.7 \\
\rightarrow p = 0.7
\end{array}$$

Deep Neural Networks



Artificial neural networks

Considering a given layer l, the output $\mathbf{a}^{(l)}$ can be defined as:

$$\mathbf{a}^{(l)} = \mathbf{f}(\mathbf{z}^{(l)})$$

$$z^{(l)} = W^{(l)}a^{(l-1)} + b^{(l)}$$

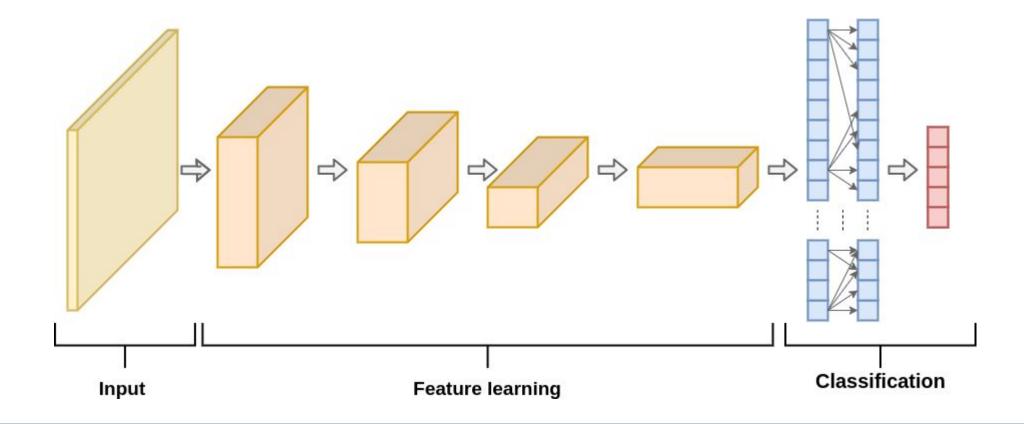
 $W^{(l)}$: weights matrix of the layer l.

 $a^{(l-1)}$: output of the previous layer (l-1)

 $\boldsymbol{b}^{(l)}$: bias vector of layer l.

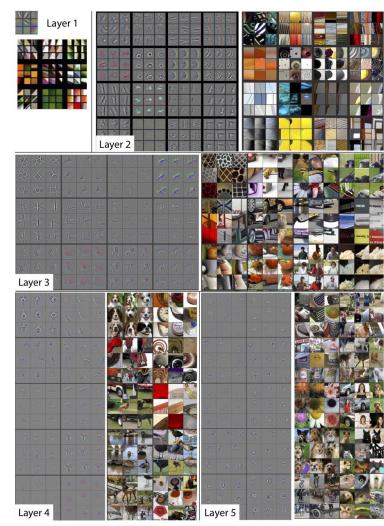
f(.): activation function

Convolutional Neural Network (CNN)



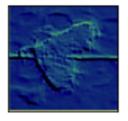
Basic layers that make up the CNN architecture

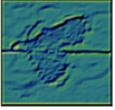
- The first layer: captures basic features.
 - For example, horizontal and vertical edges.
- The output moves to the next layer, which identifies more complex features.
 - For instance, corners or combinations of edges.
- As the network deepens, it becomes capable of recognizing even more intricate features, such as faces, objects, and more.

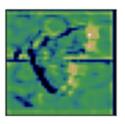


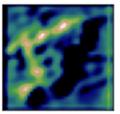
Machine learning - CNN

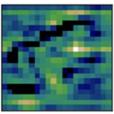
Feature extraction

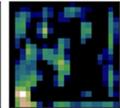


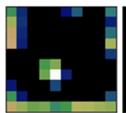


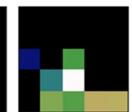




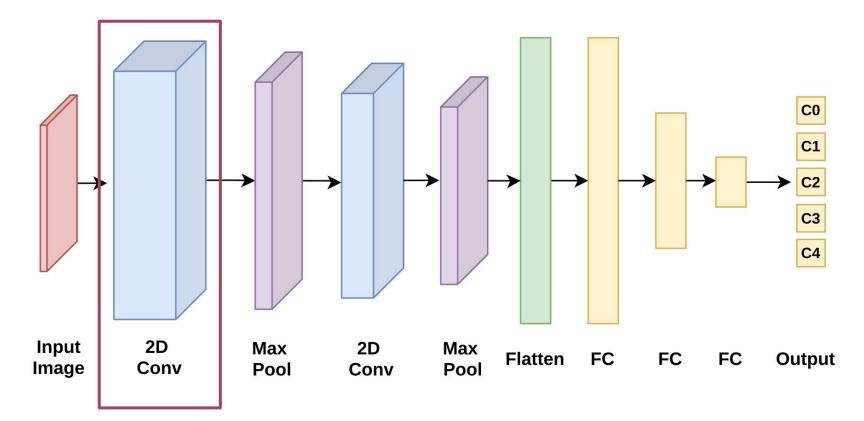






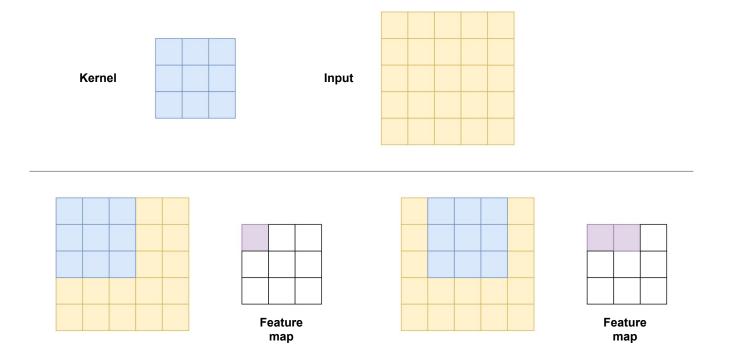


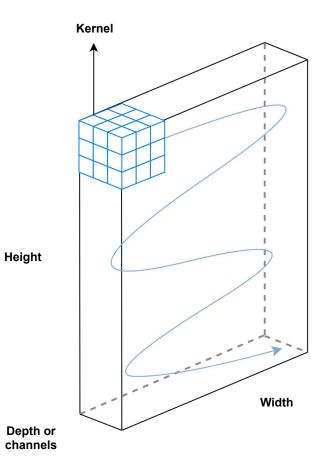
- Convolution (1D 2D)
- Pooling
- Flatten
- Fully connected
- Dropout
- Batch Normalization
- Reshape



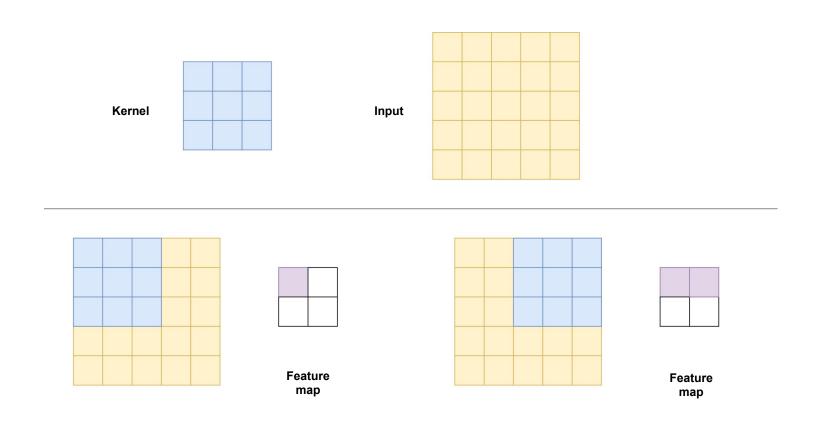
Fundamental layers in CNN architecture

• Convolution (1D - 2D)

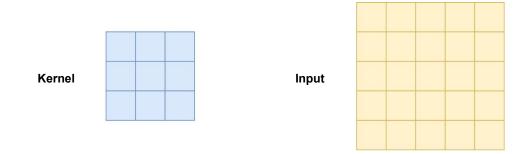


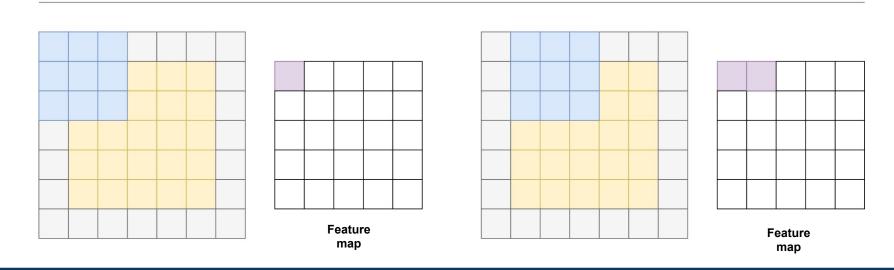


- Convolution (1D 2D)
 - Padding none

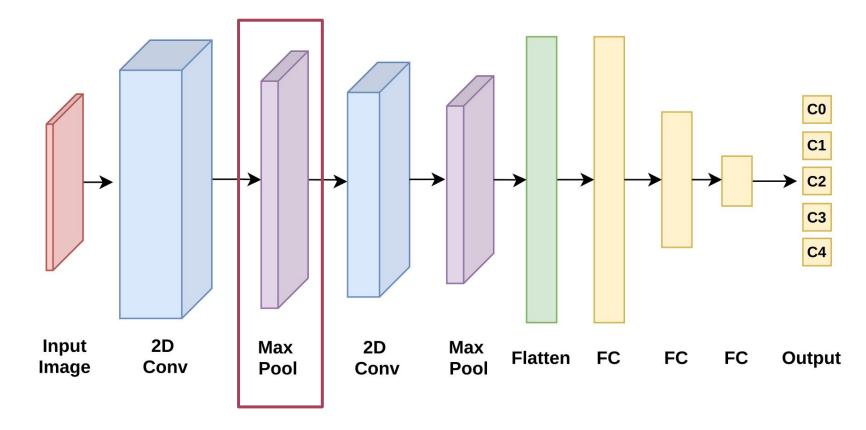


- Convolution (1D 2D)
 - Padding same





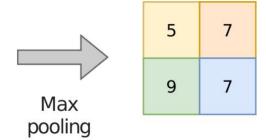
- Convolution (1D 2D)
- Pooling
- Flatten
- Fully connected
- Dropout
- Batch Normalization
- Reshape



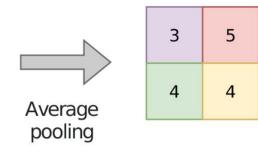
Fundamental layers in CNN architecture

Pooling (Average and Max)

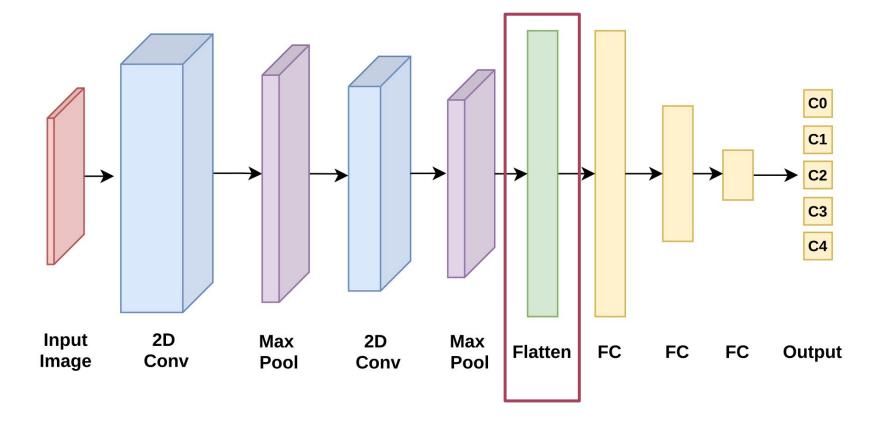
1	2	6	3
5	4	3	7
9	3	4	2
1	5	7	3



1	2	6	3
5	4	3	8
9	3	4	2
2	2	7	3

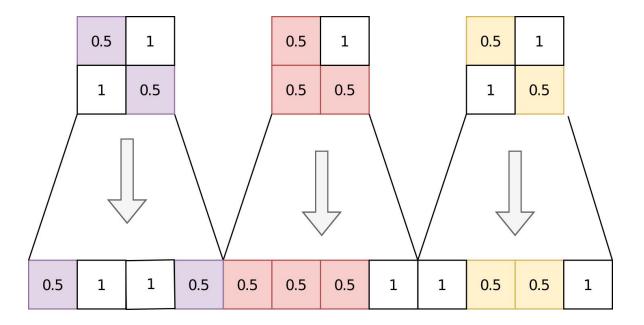


- Convolution (1D 2D)
- Pooling
- Flatten
- Fully connected
- Dropout
- Batch Normalization
- Reshape

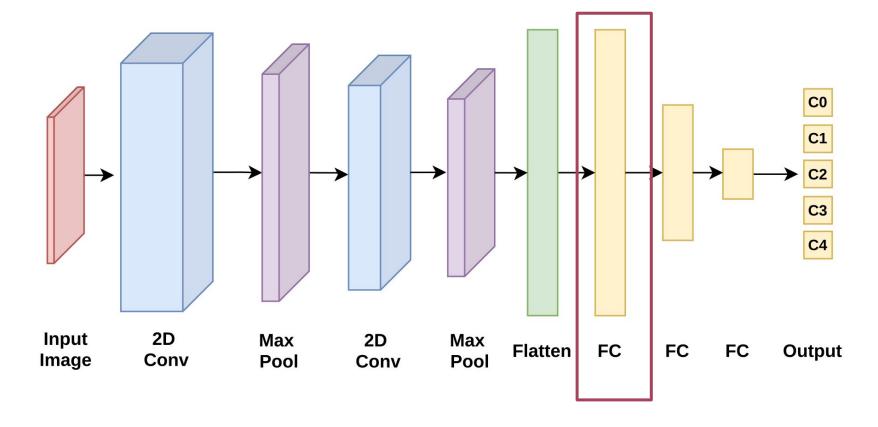


Fundamental layers in CNN architecture

Flatten

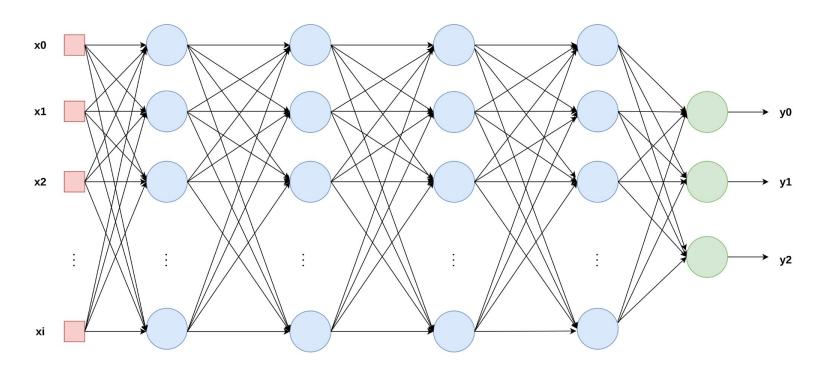


- Convolution (1D 2D)
- Pooling
- Flatten
- Fully connected
- Dropout
- Batch Normalization
- Reshape



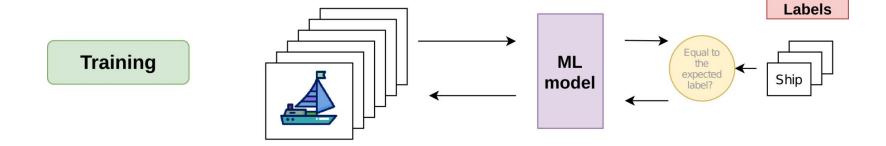
Fundamental layers in CNN architecture

• Fully connected



Machine learning: Training and inference

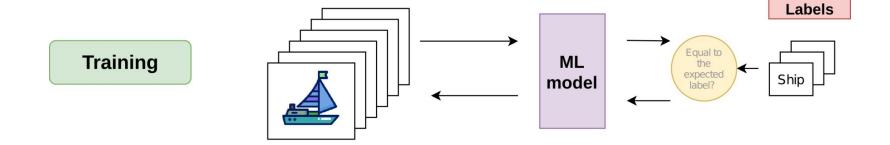
Training



The **training phase** involves adjusting the weights and connections between nodes, allowing the neural network to learn.

One widely used method is the backpropagation algorithm.

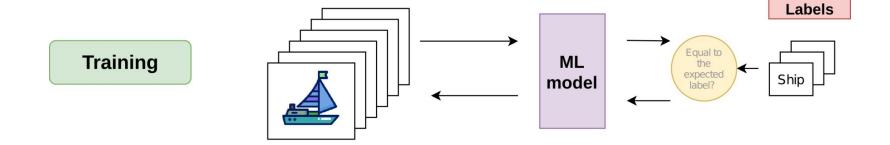
Training



The **backpropagation algorithm** consists of two phases:

Forward pass: Inputs flow through the network to produce classification outputs.

Training



The **backpropagation algorithm** consists of two phases:

- Forward pass: Inputs flow through the network to produce classification outputs.
- **Backward pass:** The gradient of the loss function is computed and iteratively applied to adjust the network's weights.

Visualization: neural network training

https://mlu-explain.github.io/neural-networks/

K-fold cross validation

- A method for evaluating a machine learning model by dividing the dataset into multiple subsets, or folds.
- This approach helps improve the model's ability to generalize to new data by minimizing the effects of data variability.

K-fold cross validation

• How it works?

The dataset is divided into K equal-sized folds.

K-fold cross validation

• How it works?

The dataset is divided into K equal-sized folds.

The model is trained K times, each time using K-1 folds for training and 1-fold for validation.

K-fold cross validation

• How it works?

The dataset is divided into K equal-sized folds.

The model is trained K times, each time using K-1 folds for training and 1-fold for validation.

Each fold serves as the validation set exactly once, while the remaining folds are used for training.

K-fold cross validation

• How it works?

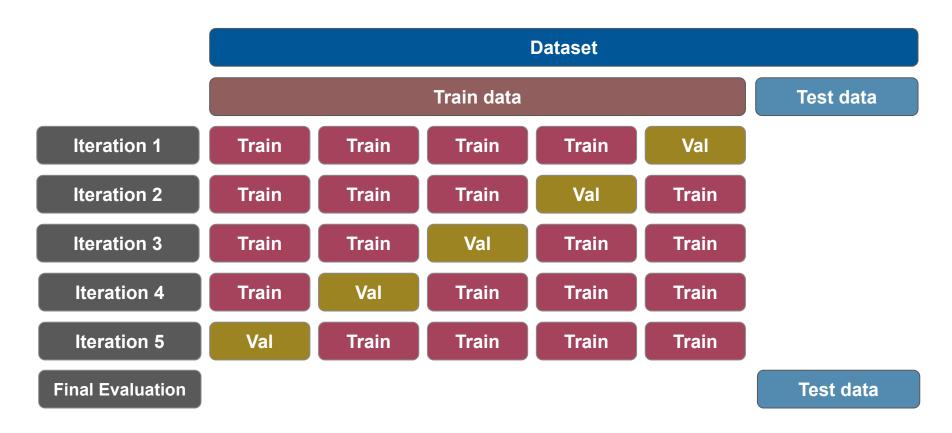
The dataset is divided into K equal-sized folds.

The model is trained K times, each time using K-1 folds for training and 1-fold for validation.

Each fold serves as the validation set exactly once, while the remaining folds are used for training.

The final performance of the model is computed by averaging the results across all K iterations.

K-fold cross validation - Graphical representation



Underfitting, Overfitting, and Optimal

Image from Togootogtokh, E., & Amartuvshin, A. (2018). Deep Learning Approach for Very Similar Objects Recognition Application on Chihuahua and Muffin Problem. *ArXiv, abs/1801.09573*.

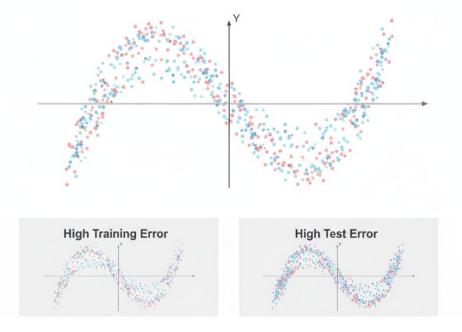
Underfitting, Overfitting, and Optimal

Underfitting, Overfitting, and Optimal

Underfitting: This typically happens when the model is not complex enough or doesn't learn enough from the training data.

Underfitting, Overfitting, and Optimal

Underfitting: This typically happens when the model is not complex enough or doesn't learn enough from the training data.



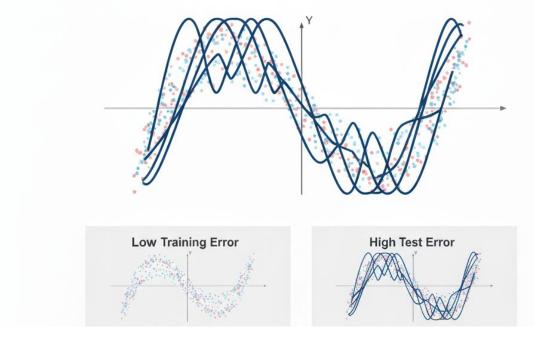
The model performs poorly on both the training set and the test set.

Underfitting, Overfitting, and Optimal

Overfitting: The model essentially memorizes the training data, which reduces its ability to generalize to new, unseen data.

Underfitting, Overfitting, and Optimal

Overfitting: The model essentially memorizes the training data, which reduces its ability to generalize to new, unseen data.



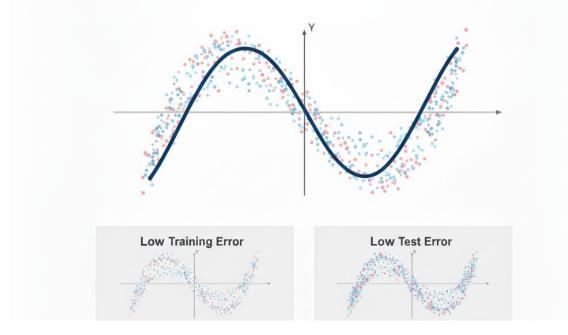
The model performs well on the training set but poorly on the test set.

Underfitting, Overfitting, and Optimal

Optimal: The model finds the right balance between underfitting and overfitting. It captures the underlying patterns in the data without memorizing noise or irrelevant details.

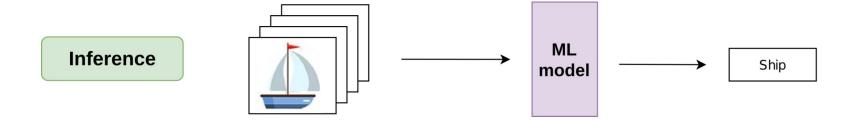
Underfitting, Overfitting, and Optimal

Optimal: The model finds the right balance between underfitting and overfitting. It captures the underlying patterns in the data without memorizing noise or irrelevant details.



It performs well on both the training set and the test set.

Inference



Once the learning phase is complete, the network can be used to perform the specific task it was trained for — a process known as **inference**.

Basic ingredients

Basic ingredients

Four basic ingredients

Dataset

Loss function

Model

Basic ingredients

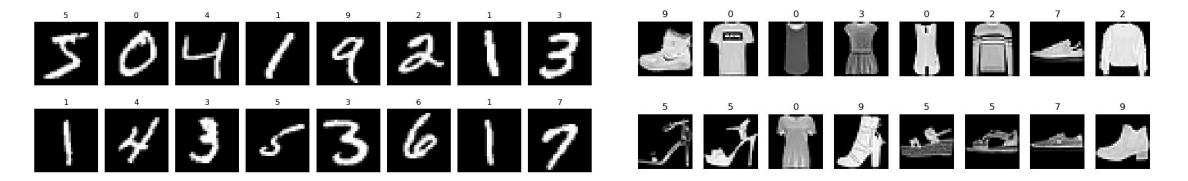
Four basic ingredients

Dataset

Loss function

Model

Dataset



Basic ingredients

Four basic ingredients

Dataset

Loss function

Model

Loss-Function

- A loss function quantifies the difference between a model's predictions and the actual target values.
- In machine learning, it serves as a key metric to assess performance.
- The goal of training is to minimize this loss, enhancing the model's accuracy.

Loss-Function

- A loss function quantifies the difference between a model's predictions and the actual target values.
- In machine learning, it serves as a key metric to assess performance.
- The goal of training is to minimize this loss, enhancing the model's accuracy.

For classification tasks:

- Number of classes > 2: categorical cross-entropy
- Number of classes = 2: binary cross-entropy

Basic ingredients

Four basic ingredients

Dataset

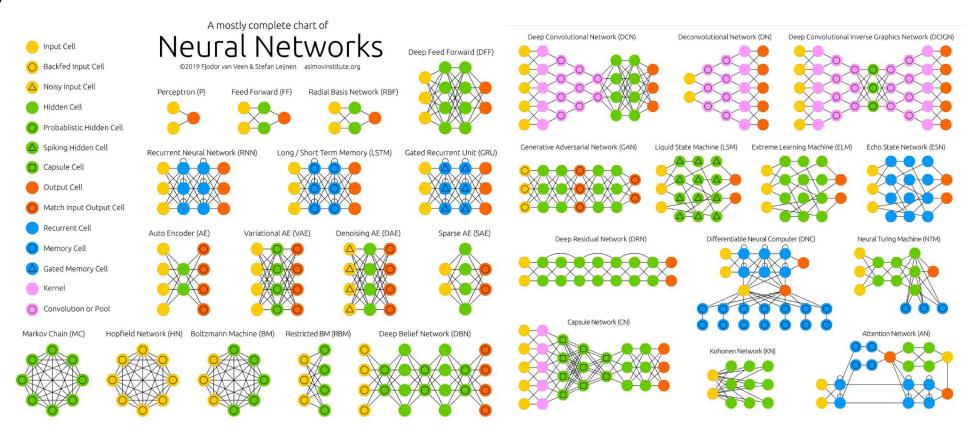
Loss function

Model

Topology and Model

- Topology structure or architecture of the model, which determines how the components (e.g., neurons in a neural network) are connected.
- The model is the final output of the learning process after training.
 - Algorithms or equations that map input data to output predictions.

Topology



Fjodor van Veen from Asimov institute compiled a cheatsheet on Neural Networks topologies. | https://www.asimovinstitute.org/author/fjodorvanveen/

Basic ingredients

Four basic ingredients

Dataset

Loss function

Model

Optimizers

• In machine learning, optimizers are algorithms designed to minimize the loss function.

Analogy

Objective: Find the fastest and most efficient route to the lowest point.

- In machine learning, optimizers are algorithms designed to minimize the loss function.
 - Owner with the work of the

- In machine learning, optimizers are algorithms designed to minimize the loss function.
 - O Why? What do you think?
- They achieve this by adjusting the model's parameters (weights and biases) during training.

- In machine learning, optimizers are algorithms designed to minimize the loss function.
 - Owder with the word of the
- They achieve this by adjusting the model's parameters (weights and biases) during training.
- The primary goal of an optimizer is to enhance the model's performance. This is done by reducing the error between the predicted output and the actual target values.

- SGD
 - It uses a fixed learning rate for all parameters.
 - SGD does not estimate any moments of the gradient.

Optimizers

• SGD

- It uses a fixed learning rate for all parameters.
- SGD does not estimate any moments of the gradient.

Adam

- It adapts the learning rate to each parameter individually.
- Adam uses first- and second-order moments to dynamically adjust the learning rate at each iteration.

Optimizers

SGD

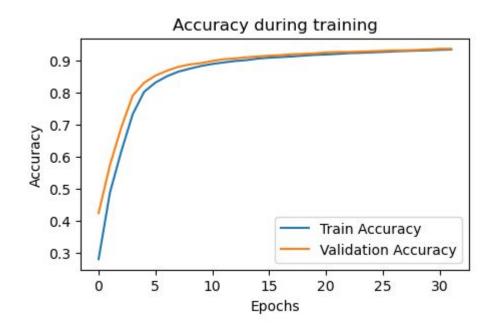
- It uses a fixed learning rate for all parameters.
- SGD does not estimate any moments of the gradient.

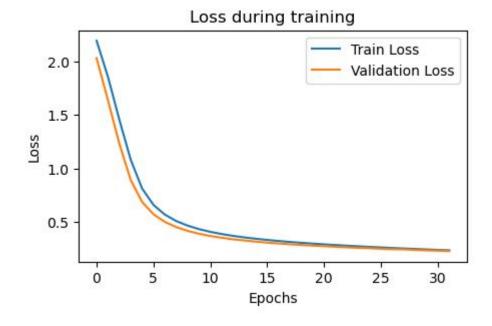
Adam

- It adapts the learning rate to each parameter individually.
- Adam uses first- and second-order moments to dynamically adjust the learning rate at each iteration.
- The gradient is a vector that indicates the direction and magnitude of the fastest change of a function.
- In Machine Learning and optimization, the gradient of a loss function L with respect to the model parameters tells us how to adjust those parameters to minimize the loss.

• Why metrics are important?

Accuracy and loss during training

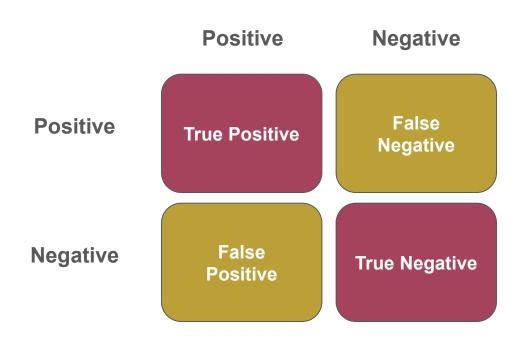




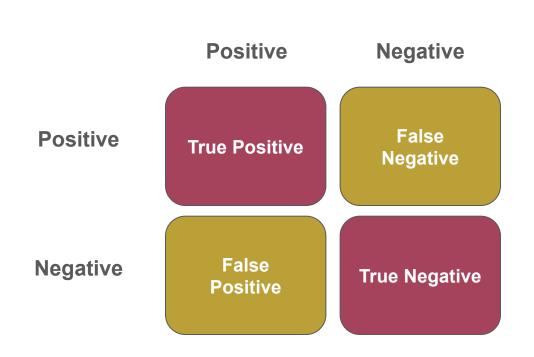
Confusion matrix

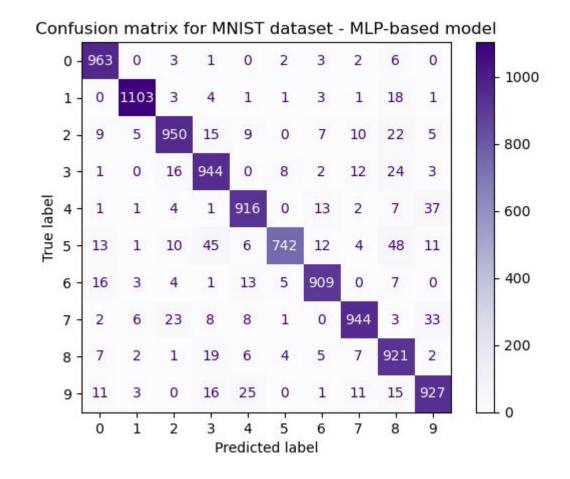
- True Positives (TP)
 - The number of instances where the model correctly predicted the positive class.
- True Negatives (TN)
 - The number of instances where the model correctly predicted the negative class.
- False Positives (FP)
 - The number of instances where the model incorrectly predicted the positive class.
- False Negatives (FN)
 - The number of instances where the model incorrectly predicted the negative class.

Confusion matrix



Confusion matrix



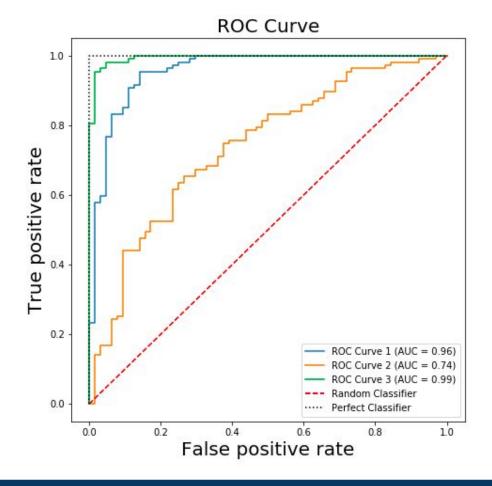


Receiver operating characteristic (ROC) curve

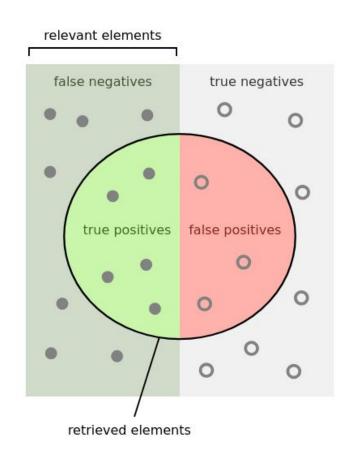
It illustrates the trade-off between the true positive rate (TPR)
and the false positive rate (FPR) at various threshold settings.

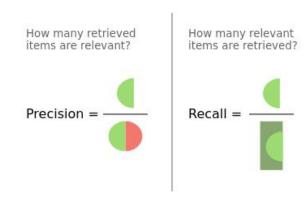
TPR =
$$TP/(TP+FN)$$
 | **FPR** = $FP/(FP+TN)$

- The ROC curve helps evaluate how well a model distinguished between classes.
- The ROC curve is always plotted between 0 and 1 on both axes because both TPR and FPR are proportions (ratios) and therefore can only range from 0 to 1.
- Area Under the Curve (AUC) measures the overall ability of the model to distinguish between the classes. An AUC score of 1 means perfect classification, while an AUC score of 0.5 means the model performs no better than random guessing.

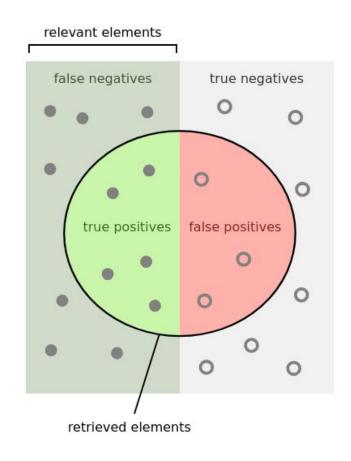


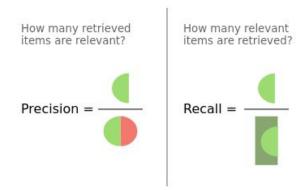
Precision and Recall





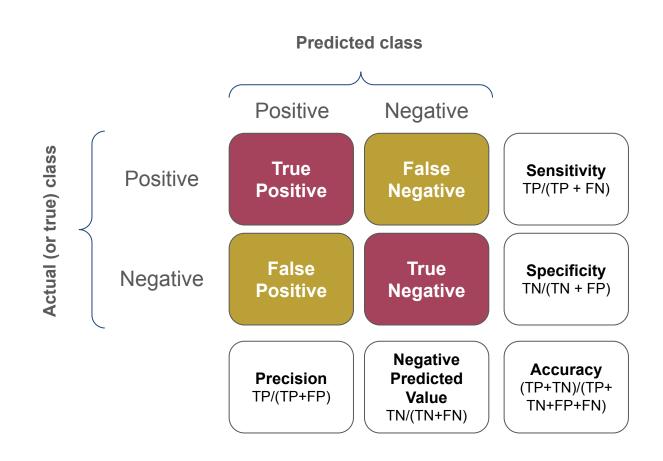
Precision and Recall





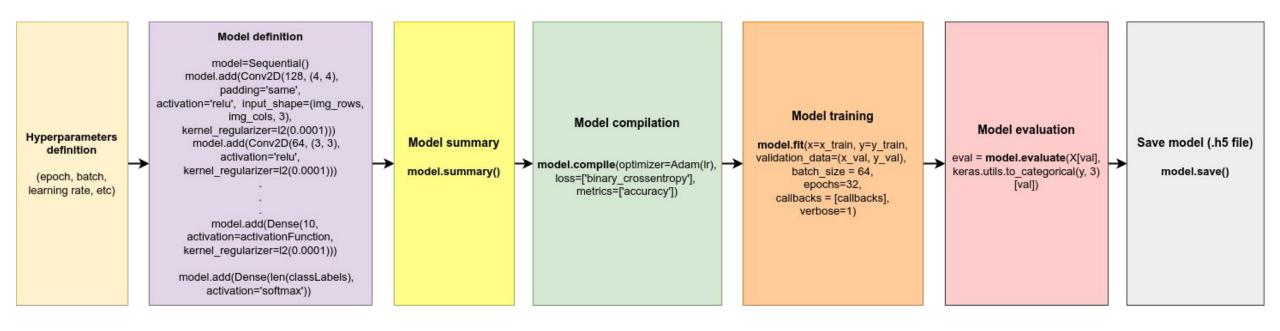
Precision: Of all the positive predictions the model made, how many were actually positive?

Recall: Of all the actual positive cases, how many were correctly detected by the model?



General steps Keras+TensorFlow

General steps Keras+TensorFlow



General steps Keras+TensorFlow

General overview

- The first two steps focus on **defining the hyperparameters and configuring the machine learning architecture**. Afterward, a model summary provides an overview of how the model was constructed.
- Once the model is created, parameters such as the optimizer, loss function, and metrics are configured using the **model.compile()** function.
- Finally, training is performed with the **model.fit()** function, where the dataset, batch size, number of epochs, and callbacks, among other settings, are specified.

General steps Keras+TensorFlow

```
model= Sequential([
    Flatten(input_shape=(w, h)),
    Dense(256, activation='relu'),
                                                                         Model definition
    Dense(64, activation='relu'),
    Dense(32, activation='relu'),
    Dense(n classes, activation='softmax')
1)
model.summary()
                                                                         Model summary
```


General steps Keras+TensorFlow

```
learningRate = 0.001
optimizer = Adam(learningRate)
Epochs = 32
Batch = 16
Defining some of the hyperparameters
```


General steps Keras+TensorFlow

Loss: A metric that measures how far the model's predictions are from the actual values.

Optimizer: An algorithm that adjusts the weights of the neural network to minimize the loss function.

Learning Rate: A hyperparameter that controls the size of the adjustments the optimizer makes to the model's weights during each iteration.

Metrics: Additional values monitored during training to evaluate the model's performance. For example, accuracy (used in classification).

General steps Keras+TensorFlow

```
history = model.fit(x_train_norm, y_train, epochs= 32, batch_size = 50, validation_split=0.2) — Model fit
```

x_train_norm: normalized dataset obtained by applying a transformation to x_train.

y_train: labels (or expected values) corresponding to the training data.

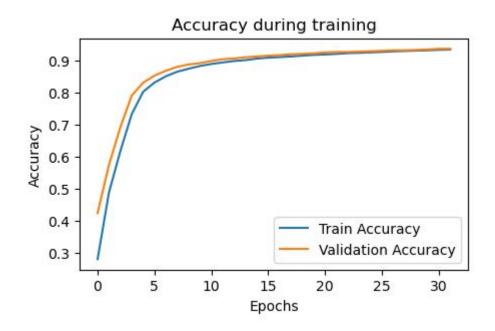
batch: number of samples processed before updating the model's weights.

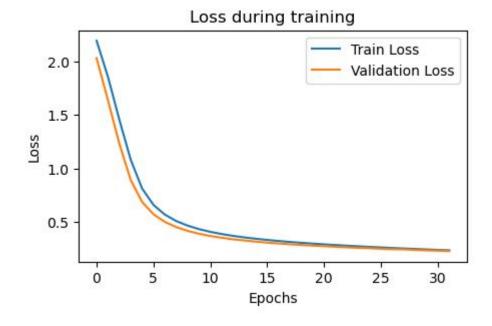
epochs: number of times the model will go through the entire training dataset.

validation_split: percentage of the training dataset (x_train, y_train) reserved for validation.

General steps Keras+TensorFlow

Plot the Accuracy and Loss from the history variable during training





Demo: MLP training for MNIST dataset

Joint ICTP-IAEA School on Detector Signal Processing and Machine Learning for Scientific Instrumentation and Reconfigurable Computing

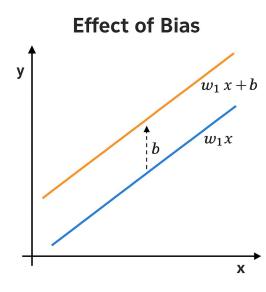
Fundamentals of Applied Machine Learning

smr4110 | Trieste, Italy - 2025

Romina Soledad Molina, Ph.D.

Bias

- The bias allows the model to **learn shifts and adjust its decision boundary**, making it possible to represent more complex relationships.
- The bias shifts (or "moves") the activation function to the left or right. This allows the model to:
 - Not rely solely on the origin (0,0) to learn patterns.
 - Adjust the position of the decision boundary.
 - Learn more flexible relationships between inputs and outputs.



Weights + Bias

Weights + bias form the decision boundary

