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5G Core (5GC) Network
Cloud-Native Service-Based Architecture (SBA)
• Collection of virtual Network Functions (NFs)
• Sofware-based implementation in virtualized environment
• NFs offers one or more services via their APIs to other NFs/consumers

Support for Network Slicing
• Support for services with different requirements
• Creating multiple virtual networks on a shared physical infrastructure
• 5G slice provides complete network functionality (RAN, CN, transport)

3GPP TS 23.501, “System architecture for the 5G System (5GS),” V18.0.0, December 2022.
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AI/ML in the 5G Core Network
ML/AI Integration in 5GC
• Initial Steps started in Rel. 15 in 5GC

• NWDAF – Network Data Analytics Function

• Goal: Enable automated data collection and data analytics provisioning

Evolution of NWDAF
• Initial function (Rel. 15) to provide network slice analytics (load level)
• Provide data collection and analytics exposure to other NFs (Rel. 16)
• UE application data collection (Rel. 17)

3GPP TS 29.520, “5G System; Network Data Analytics Services; Stage 3,” V18.6.0, June 2024.



Network Data Analytics Function (NWDAF)
Main Functions
• Data Collection Interface for Network Nodes
• Predefined Data Analytics Functions
• Data and Analytics Exposure Interface for Authorised Consumers (via NEF)
NWDAF Services
• Analytics Subscription/Analytics Information, e.g., Load and Mobility Prediction,
Predictive QoE, Slice SLA Assurance

• ML Model Information/Provision provides information and model request and
retrieval

• Distributed Implementation – Central NWDAF (e.g., AI model repository) and Edge
NWDAF (low-latency use cases)

Chouman, A., Manias, D.M. and Shami, A., „Towards supporting intelligence in 5G/6G core networks: NWDAF
implementation and initial analysis,“ IWCMC 2022, pp. 324-329, 2022.



5G Core (5GC) Open Source Implementations
OpenAir Interface (OAI) 5GC

https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/blob/master/docs/DEPLOY_HOME.md
NWDAF support: https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-nwdaf/-/blob/master/docs/TUTORIAL.md



ML/AI in 5GC: A Sample of Research
Scaling and Orchestration of 5GC Network
• Sheoran, A., Fahmy, S., Cao, L., & Sharma, P., AI-Driven Provisioning in the 5G Core. IEEE
Internet Computing, 25(2), 18–25, 2021.

• Atalay, T.O., Stojadinovic, D., Stavrou, A. and Wang, H., Scaling Network Slices with a 5G
Testbed: A Resource Consumption Study. IEEE Wireless Communications and Networking
Conference (WCNC), pp. 2649-2654, 2022.

NWDAF (distributed) implementation study
• Lee, S., Lee, J., Kim, T., Jung, D., Cha, I., Cha, D., Ko, H. and Pack, S., Design and
Implementation of Network Data Analytics Function in 5G. ICTC, pp. 757-759, 2022.

• Hossain, M.A., Hossain, A.R., Liu, W., Ansari, N., Kiani, A. and Saboorian, T., A distributed
collaborative learning approach in 5G+ core networks. IEEE Network, 2023.

NWDAF ML/AI-based Functions
• Murudkar, C.V., Chen, K.C. and Gitlin, R.D., Network Architecture for Machine Learning: A
Network Operator's Perspective. IEEE Communications Magazine, 60(7), pp. 68-74, 2022.

• Jeong, J., Roeland, D., Derehag, J., Johansson, Å.A., Umaashankar, V., Sun, G. and
Eriksson, G., Mobility prediction for 5G core networks. IEEE Communications Standards
Magazine, 5(1), pp. 56-61.



Example: Mobility Prediction in 5GC

• Example service:mobility prediction service
• Data required: mobility events streamed by AMF to NWDAF via data collection
API
• Life-cycle management: Handles aperiodicity of mobility patterns and reduce
learning delay, LCM detects concept drift and trigger retraining

Jeong, J., Roeland, D., Derehag, J., Johansson, Å.A., Umaashankar, V., Sun, G. and Eriksson, G., Mobility
prediction for 5G core networks. IEEE Communications Standards Magazine, 5(1), pp. 56-61.
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3GPP ML/AI study for 5G RAN
Initial Technical Study Item
• 3GPP TR 37.817, “Study on enhancement for data collection for NR and
EN-DC,” V17.0.0, April 2022.

Main Outcomes
• Functional Framework for RAN Intelligence
• AI-enabled RAN for three use cases:

• Network Energy Saving via traffic offloading and cell deactivation
• Load Balancing via prediction-based across RAN cells and multiple-RATs
• Mobility Optimization via UE cell association

• Led to Approval of Rel. 18 Study on AI/ML for 5G NR RAN

https://www.3gpp.org/technologies/ai-ml-nr



3GPP ML/AI study for 5G RAN

3GPP TR 37.817, “Study on enhancement for data collection for NR and EN-DC,” V17.0.0, April 2022.
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Rel. 18 Work on ML/AI for NG-RAN
Follow Up Technical Study Item
3GPP TR 38.843, “Study on artificial intelligence (AI)/machine learning (ML)
for NR air interface,” V18.0.0., January 2024.
Main Targets
• General Framework for Enhancing Air Interface Using ML/AI
• Main topics:

• defining stages of AI/ML algorithms (model training, validation, testing, inference)
• UE-gNB collaboration levels
• required data sets for model training, validation and testing
• model life-cycle management (LCM)

3GPP TR 38.843, “Study on artificial intelligence (AI)/machine learning (ML) for NR air interface,” V18.0.0., Jan 2024.



Rel. 18 Work on ML/AI for NR Air Interface
Three use cases
• CSI Feedback: Use ML/AI to reduce CSI overhead (e.g., spatial-frequency
domain CSI compression), improve feedback accuracy, and enable
prediction (e.g., time domain CSI prediction at UE)
• Beam Management: Use ML/AI to reduce beam management overhead
and latency, and improve beam selection accuracy. Design methods for
spatial-domain and time-domain downlink beam prediction.
• Positioning: Improve positioning accuracy for different scenarios including
heavy NLOS conditions. Use either direct ML/AI approach (e.g., via
fingerprinting) or AI/ML assisted approach (infer useful side-features)

3GPP TR 38.843, “Study on artificial intelligence (AI)/machine learning (ML) for NR air interface,” V18.0.0., Jan 2024.
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O-RANML/AI study for 5G RAN
O-RAN Alliance
• https://specifications.o-ran.org/specifications
• O-RAN.WG1.OAD-R003-v012.00: „O-RAN Architecture Description“,
Technical Specification, 06/2024

O-RAN Architecture
• Disaggregation of NG-RAN into open, virtualised, interoperable and AI-
driven architecture
• Augments 3GPP NG-RAN architecture and interfaces (F1, E1, Xn, NG)
with open interfaces (A1, E2, O1, O2)
• Introduces two Radio Interface Controllers (RIC): non-real-time RIC
(non-RT RIC) and near real-time RIC (near-RT RIC)
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O-RAN Non-RT RIC
Service Management and Orchestration (SMO) Framework
• Responsible for RAN domain management
• Non-RT RIC: main SMO element that interfaces all other O-RAN NFs (O-
NFs): near-RT RIC, O-CU-CP/UP, O-DU, O-RU implemented as VNF/PNF
• Fault, configuration, accounting, performance, and security (FCAPS)

Non-RT RIC Functions
• Controls Near-RT RIC via A1 through: 1) policy-based guidelines, 2) AI/ML
model management, 3) enrichment information for Near-RT RIC
• Intelligent Non-RT (> 1s) RAN optimization control loops
• rApps (Non-RT RIC applications): AI/ML data-driven non-real time (> 1s)
resource optimization – actions triggered via A1, O1, O2, Open FH-M



O-RAN Near-RT RIC
Near-RT RIC Functions
• Enables AI/ML data-driven near-real time (10ms – 1s) control and
optimisation of RAN O-NFs (O-CUs and O-DUs)
• Actions triggered via E2 interface
• xApps (Near-RT RIC applications): collect data in near-real time from E2
nodes and provide back value-added services to E2 nodes (O-CU, O-DU)
• In O-RAN, O-DU is split into O-DU (VNF) and O-RU (PNF) according
to 7-2x lower layers split (one of the 3GPP split scenarios)

M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understanding O-RAN: Architecture, interfaces, algorithms, security, and
research challenges,” IEEE Communications Surveys & Tutorials, 25(2), pp.1376-1411, 2023, https://arxiv.org/abs/2202.01032
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ML/AI in 5G NG-RAN: A Sample of Research
O-RAN xApps and rApps implementation
• Kouchaki, M. and Marojevic, V., Actor-Critic Network for O-RAN Resource Allocation: xApp
Design, Deployment, and Analysis, IEEE Globecom Workshops, pp. 968-973, 2022.

• Vilà, I., Sallent, O. and Pérez-Romero, J., On the Implementation of a Reinforcement Learning-
based Capacity Sharing Algorithm in O-RAN, IEEE Globecom Workshops, pp. 208-214, 2022.

O-RAN Open Source Testbed Implementation
• Open AI Cellular (https://github.com/openaicellular) - Upadhyaya, P.S., Abdalla, A.S.,
Marojevic, V., Reed, J.H. and Shah, V.K., Prototyping next-generation O-RAN research testbeds
with SDRs. arXiv:2205.13178.

• OpenRAN Gym (https://openrangym.com/) -M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T.
Melodia, “ColO-RAN: Developing Machine Learning-based xApps for Open RAN Closed-loop
Control on Programmable Experimental Platforms,” IEEE Trans. Mobile Computing, July 2022.

• Both OAI and srsRAN are developing their O-RAN compliant software
OAI: https://openairinterface.org/oai-5g-ran-project/
srsRAN:https://docs.srsran.com/projects/project/en/latest/knowledge_base/source/oran_gnb/
source/index.html
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ML/AI-based Signal Detection
Deep Learning-based Timing Offset and Carrier Frequency Offset Estimation

• First batch of baseband signal processing steps (before channel estimation)
O’Shea, T., Karra, K., and Clancy, T.C., "Learning approximate neural estimators for wireless channel state
information", Proc. IEEE 27th Int. WorkshopMach. Learn. Signal Process. (MLSP), pp. 1-7, Sep. 2017.

• Extensions to I/Q imbalance, phase noise and power amplifier nonlinearities
Pihlajasalo, J., Korpi, D., Riihonen, T., Talvitie, J., Uusitalo, M.A. and Valkama, M., Detection of Impaired
OFDMWaveforms Using Deep Learning Receiver, IEEE SPAWC 2022, pp. 1-5, 2022.

• DL-based timing offset and CFO estimation for Wi-Fi
Ninkovic, V., Valka, A., Dumic, D. and Vukobratovic, D., Deep learning-based packet detection and carrier
frequency offset estimation in IEEE 802.11 ah, IEEE Access, 9, pp. 99853-99865, 2021.

ML/AI-BASED SIGNAL DETECTION,
TIMING/CFO ESTIMATION



ML/AI-based Channel Estimation
Deep Learning-based Channel Estimation
• DNN trained to map received pilots and data symbols directly into equalised data
symbols (without intermediate channel estimation)

Ye, H., Li, G.Y. and Juang, B.H., Power of deep learning for channel estimation and signal detection in OFDM
systems, IEEE Wireless Communications Letters, 7(1), pp. 114-117, 2017.
• Channel estimation as CNN-based 2D image recovery of channel response grid
Soltani, M., Pourahmadi, V., Mirzaei, A. and Sheikhzadeh, H., Deep learning-based channel estimation. IEEE
Communications Letters, 23(4), pp. 652-655, 2019.
• Extensions to mmWave, massive MIMO, RIS, Thz channels, etc.
• Recommended paper on DL-based Channel Estimation Interpretability
Hu, Q., Gao, F., Zhang, H., Jin, S. and Li, G.Y., Deep learning for channel estimation: Interpretation,
performance, and comparison. IEEE Transactions onWireless Communications, 20(4), pp. 2398-2412, 2020.
• Recommended paper on implementation aspects
Haq, S.A.U., Gizzini, A.K., Shrey, S., Darak, S.J., Saurabh, S. and Chafii, M., Deep Neural Network
Augmented Wireless Channel Estimation for Preamble-Based OFDM PHY on Zynq System on
Chip, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023.

ML/AI-BASED
CHANNEL
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ML/AI-based Coding/Modulation
End-to-End Autoencoder-Based Deep Learning
• End-to-end learning of Communication Systems using Deep Autoencoders
O’Shea, T. and Hoydis, J., An introduction to deep learning for the physical layer. IEEE Transactions on
Cognitive Communications and Networking, 3(4), pp. 563-575, 2017.
• Deep Autoencoder-based PHY design in OFDM systems
Dörner, S., Cammerer, S., Hoydis, J. and Ten Brink, S., Deep learning based communication over the air. IEEE
Journal of Selected Topics in Signal Processing, 12(1), pp. 132-143, 2017.

• Autoencoder-based UEP codes and Rateless codes
Ninkovic, V., Vukobratovic, D., Häger, C., Wymeersch, H. and i Amat, A.G., Autoencoder-Based Unequal
Error Protection Codes. IEEE Communications Letters, 25(11), pp. 3575-3579, 2021.
Ninkovic, V., Vukobratovic, D., Häger, C. and Wymeersch, H., Rateless Autoencoder Codes: Trading off
Decoding Delay and Reliability, IEEE ICC 2023, Rome, Italy, May 2023.

• Open source libraries for end-to-end learning
https://developer.nvidia.com/sionna
https://developer.nvidia.com/aerial-sdk

ML/AI-BASED
CODING/MODULATION



ML/AI-based Coding/Decoding
Neural-Enhanced Belief Propagation Decoding
Neural-network inspired Belief Propagation decoder
• Nachmani, E., Marciano, E., Lugosch, L., Gross, W.J., Burshtein, D. and Be’ery, Y., Deep learning methods for improved
decoding of linear codes. IEEE Journal of Selected Topics in Signal Processing, 12(1), pp.119-131, 2018.

Principled Approach for Combining Data-Based and Model-Based Methods
• Shlezinger, N., Whang, J., Eldar, Y.C. and Dimakis, A.G., 2023. Model-based deep learning. Proceedings of the
IEEE, 111(5), pp.465-499.

Decoding Using Graph-Neural Networks
Decoding LDPC codes using GNNs derived from code factor graph
• Cammerer, S., Hoydis, J., Aoudia, F.A. and Keller, A., Graph neural networks for channel decoding. In 2022 IEEE
Globecom Workshops (GCWkshps) (pp. 486-491), 2022.

• Ninkovic, V., Kundacina, O., Vukobratovic, D., Häger, C., A. Graell i Amat, Decoding Quantum LDPC Codes Using Graph
Neural Networks. arXiv preprint arXiv:2408.05170, to appear, IEEE GLOBECOM 2024.

Decoding Using Transformers
Transformer-based approach to decoding LDPC codes
• Choukroun, Y. and Wolf, L., 2024. Learning Linear Block Error Correction Codes. arXiv preprint arXiv:2405.04050.

ML/AI-BASED
CODING/MODULATION



AI-Based PHY Design
Deep Learning for the Physical Layer
Hoydis, J., Aoudia, F.A., Valcarce, A. and Viswanathan, H., Toward a 6G AI-native air interface, IEEE
Communications Magazine, 59(5), pp. 76-81, 2021.

Question: Which PHY blocks to replace with AI/ML?

ML/AI-BASED
CODING/MODULATION



ML/AI-based Beamforming
ML for Beam Alignment
Ma, W., Qi, C. and Li, G.Y., Machine learning for beam alignment in millimeter wave massive MIMO. IEEE Wireless
Communications Letters, 9(6), pp. 875-878, 2020.

ML-based Initial Beam Alignment

Sohrabi, F., Chen, Z. and Yu, W., Deep active learning approach to adaptive beamforming for mmWave initial
alignment. IEEE Journal on Selected Areas in Communications, 39(8), pp. 2347-2360, 2021.

Joint Learning of Beams and Alignments

Heng, Y., Mo, J. and Andrews, J.G., Learning site-specific probing beams for fast mmWave beam alignment, IEEE
Transactions on Wireless Communications, 21(8), pp. 5785-5800, 2022.
Overview of AI/ML Beamforming Methods

Al Kassir, H., Zaharis, Z.D., Lazaridis, P.I., Kantartzis, N.V., Yioultsis, T.V. and Xenos, T.D., A Review of the State of the Art
and Future Challenges of Deep Learning-Based Beamforming. IEEE Access, 2022.

BeamManagement
Khan, M.Q., Gaber, A., Schulz, P. and Fettweis, G., Machine Learning for Millimeter Wave and Terahertz Beam
Management: A Survey and Open Challenges, IEEE Access, 11, pp. 11880-11902, 2023.

ML/AI BASED
PRECODING/BEAMFORMING
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AI/ML model transfer in 5G
Use Cases and Requirements for Model Transfer
• AI/ML operation splitting (split learning): keep privacy- or latency-
sensitive parts in UE, offload computation- or energy-intensive parts
• AI/ML model data distribution: adaptive model downloading when
needed (efficient unicast/multicast)
• Distributed/Federated learning over 5G: UEs perform local training while
a central entity trains a global model by aggregating local models

TR 22.874 is extended in Rel. 18/19 to TS 22.261 (KPIs for model transfer)
• Example:maximum allowed downlink end-to-end latency is 1 s and experienced downlink data rate
required is 1.1 Gbps for image recognition related AI/ML model distribution

• 3GPP TR 22.874, “Study on traffic characteristics and performance requirements for AI/ML model
transfer,” V18.2.0., December 2021.

• 3GPP TS 22.261, “Service requirements for the 5G system,” V19.7.0, June 2024.
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• 5G network is evolving towards ideal platform for large-scale and
distributed communication and computation

• Evolution includes native support for futureMachine Learning
(ML) and Artificial Intelligence(AI)-based services

• Integration of Smart Grids and 5G networks is one of the Third
Generation Partnership Project (3GPP) work plan topics for
Release 18/19 of 5G standards

Smart Grids and 5G Integration

X. Xia, C. Mei, X. Zhou, S. Wang, H. Wang, and Y. Xing, “A review of 3gpp release 18 on smart energy and infrastructure,” in Proc.
IEEE/CIC International Conference on Communications in China, 2021, pp. 384–388.



Distributed State Estimation using Gaussian BP

M. Cosovic, D. Vukobratovic, Distributed Gauss–Newton method for state estimation using Belief
Propagation, IEEE Transaction on Power Systems, January 2019.
M. Cosovic, M. Delalic, D. Raca, D. Vukobratovic, Observability analysis for large-scale power systems using
factor graphs, IEEE Transactions on Power Systems, September 2021.

Model-based SE:We explored Gaussian Belief Propagation for efficient
solution of distributed large-scale state estimation problem in power grids



Distributed State Estimation using GNNs

O. Kundacina, M. Cosovic, D. Vukobratovic: "State Estimation in Electric Power System Leveraging Graph Neural
Networks," Int'l Conference on Probabilistic Methods in Power Systems PMAPS 22, Manchester, UK, June 2022.
O. Kundacina, M. Cosovic, D. Miskovic, D. Vukobratovic: "Graph Neural Networks on Factor Graphs for Robust,
Fast, and Scalable Linear State Estimation with PMUs," Sustainable Energy, Grids and Networks (Elsevier), 2023.

Data-based SE:We explored message-passing Graph Neural Networks (GNNs)
for solving distributed large-scale state estimation problem in power grids



Large-Scale Distributed Algorithms and 5G

M. Cosovic, A. Tsitsimelis, D. Vukobratovic, J. Matamoros, C. Anton Haro: 5GMobile Cellular Networks:
Enabling Distributed State Estimation for Smart Grid, IEEE Communication Magazine, October 2017.



M. Cosovic, D. Miskovic, M. Delalic, D. Raca, D. Vukobratovic, Distributed Inference over Linear Models using Alternating
Gaussian Belief Propagation, IEEE Internet of Things Journal, 2023.



Distributed SE and 5G Networks
(Distributed) State Estimation –main function of Energy Mgt System (EMS)
• WAMS: Wide-Area Measurement System
• PMU: Phasor Measurement Units
Goal: Explore 5G network as a platform for
• Data collection:WAMS over 5G mMTC/URLLC
• Data Processing: Distributed SE as a
5G edge/core function
• Message-Passing Algorithms:Model-based
(GBP) and Data-based (GNN)

O. Kundacina, M. Forcan, M. Cosovic, D. Raca, M. Dzeferagic, D. Miskovic, M. Maksimovic, D. Vukobratovic: "Near Real-Time
Distributed State Estimation via AI/ML-Empowered 5G Networks ," IEEE SmartGridComm 2022, Singapore, October 2022.





Smart Grid Apps/Functions
• SG AF: Third-party CN function (via NEF)
• O-RAN Apps: SG xApps and rApps
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