
DEPARTMAN ZA ENERGETIKU, ELEKTRONIKU I TELE

5G NG-RAN

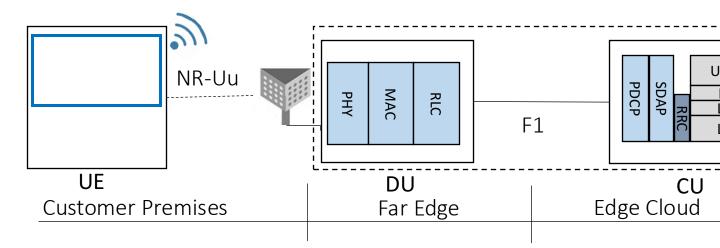
Outline of the talk

- AI/ML in the Core Network
- AI/ML in the RAN
- AI/ML for the PHY
- AI/ML at the Application Layer

Outline of the talk

- AI/ML in the Core Network
- AI/ML in the RAN
- AI/ML for the PHY
- Al/ML at the Application Layer

5G Core (5GC) Network


Cloud-Native Service-Based Archite

- Collection of virtual Network Functions
- Sofware-based implementation in virtual
- NFs offers one or more services via thei

Support for Network Slicing

- Support for services with different requ
- Creating multiple virtual networks on a
- 5G slice provides complete network fun

5G NG-RAN

Rommer, S., Mulligan, C., Hedman, P., Olsson, M., Frid, L., and Sultana,

AI/ML in the 5G Core Net

ML/Al Integration in 5GC

- Initial Steps started in Rel. 15 in 5GC
 - NWDAF Network Data Analytics Function
- Goal: Enable automated data collection

Evolution of NWDAF

- Initial function (Rel. 15) to provide netw
- Provide data collection and analytics ex
- UE application data collection (Rel. 17)

Network Data Analytics Fo

Main Functions

- Data Collection Interface for Network Node
- Predefined Data Analytics Functions
- Data and Analytics Exposure Interface for A


NWDAF Services

- Analytics Subscription/Analytics Information,
 Predictive QoE, Slice SLA Assurance
- ML Model Information/Provision provides inf retrieval
- Distributed Implementation Central NWDAF NWDAF (low-latency use cases)

Chouman, A., Manias, D.M. and Shami, A., "Towards supporting implementation and initial analysis," *IWCMC 2022*, pp. 324-329,

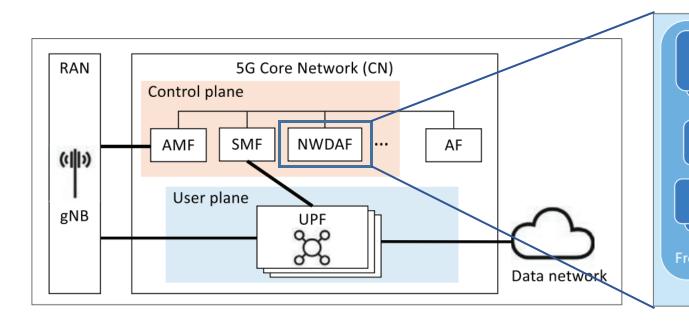
5G Core (5GC) Open Source

OpenAir Interface (OAI) 5GC

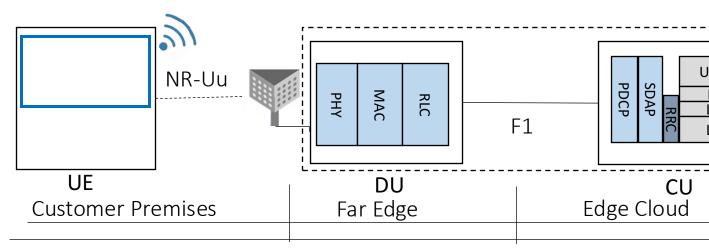
ML/AI in 5GC: A Sample o

Scaling and Orchestration of 5GC Network

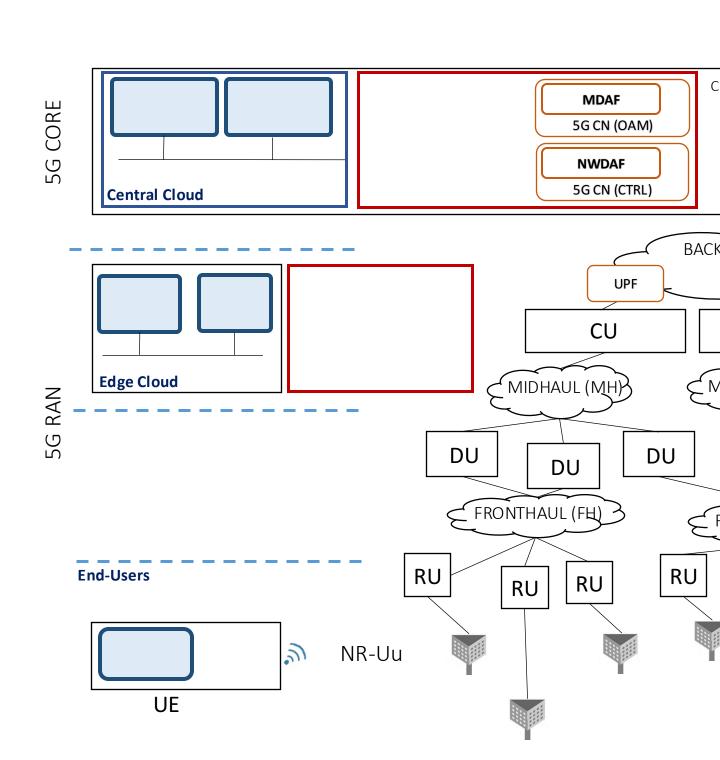
- Sheoran, A., Fahmy, S., Cao, L., & Sharma, P., AI-Drive Internet Computing, 25(2), 18–25, 2021.
- Atalay, T.O., Stojadinovic, D., Stavrou, A. and Wang, H Testbed: A Resource Consumption Study. *IEEE Wirele Conference (WCNC)*, pp. 2649-2654, 2022.


NWDAF (distributed) implementation study

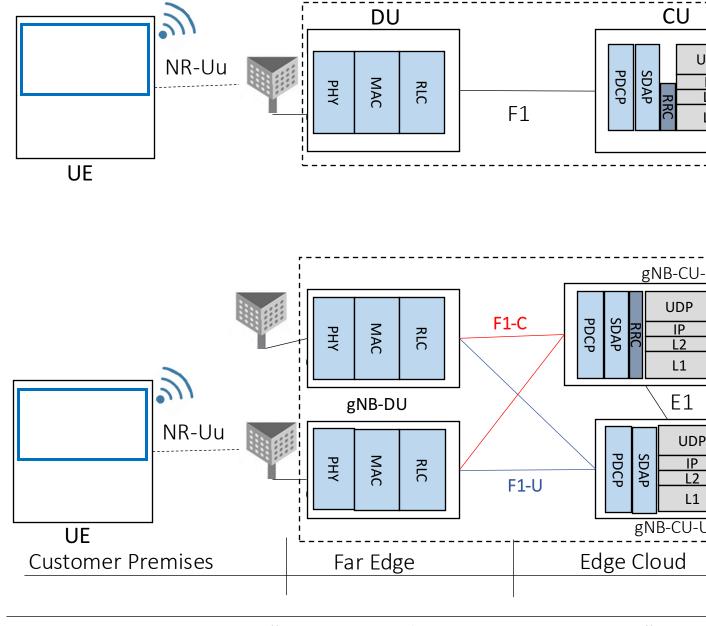
- Lee, S., Lee, J., Kim, T., Jung, D., Cha, I., Cha, D., Ko, H.
 Implementation of Network Data Analytics Function in
- Hossain, M.A., Hossain, A.R., Liu, W., Ansari, N., Kiani collaborative learning approach in 5G+ core networks


NWDAF ML/AI-based Functions

- Murudkar, C.V., Chen, K.C. and Gitlin, R.D., Network A Network Operator's Perspective. IEEE Communication
- Jeong, J., Roeland, D., Derehag, J., Johansson, Å.A., U Eriksson, G., Mobility prediction for 5G core networks Magazine, 5(1), pp. 56-61.


Example: Mobility Predict

- Example service: mobility prediction service
- Data required: mobility events streamed by API
- Life-cycle management: Handles aperiodicity learning delay, LCM detects concept drift and



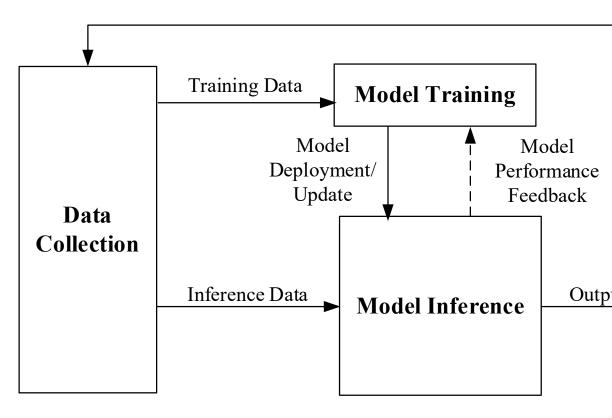
Ferrús, R., Sallent, O. and Perez-Romero, J., Data analytics architections and Perez-Romero, J., Data analytics architections National Research and Perez-Romero, J., Data analytics architection and Perez-Romero, Data analytics architecture analytics architecture analytic anal

Outline of the talk

- AI/ML in the Core Network
- AI/ML in the RAN
- AI/ML for the PHY
- AI/ML at the Application Layer

3GPP TS 38.401, "NG-RAN Architecture Description," V18

3GPP ML/AI study for 5G


Initial Technical Study Item

 3GPP TR 37.817, "Study on enhanceme EN-DC," V17.0.0, April 2022.

Main Outcomes

- Functional Framework for RAN Intelligent
- Al-enabled RAN for three use cases:
 - Network Energy Saving via traffic offloadir
 - Load Balancing via prediction-based across
 - Mobility Optimization via UE cell associati
- Led to Approval of Rel. 18 Study on AI/N

3GPP ML/AI study for 5G

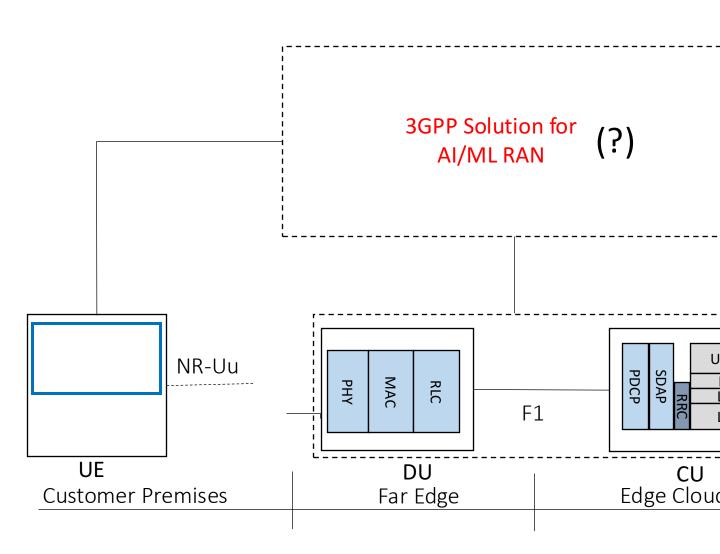
Functional Framework for RAN

Rel. 18 Work on ML/AI for

Follow Up Technical Study Item

3GPP TR 38.843, "Study on artificial intell for NR air interface," V18.0.0., January 20

Main Targets


- General Framework for Enhancing Air Ir
- Main topics:
 - defining stages of AI/ML algorithms (mode
 - UE-gNB collaboration levels
 - required data sets for model training, valid
 - model life-cycle management (LCM)

Rel. 18 Work on ML/AI for

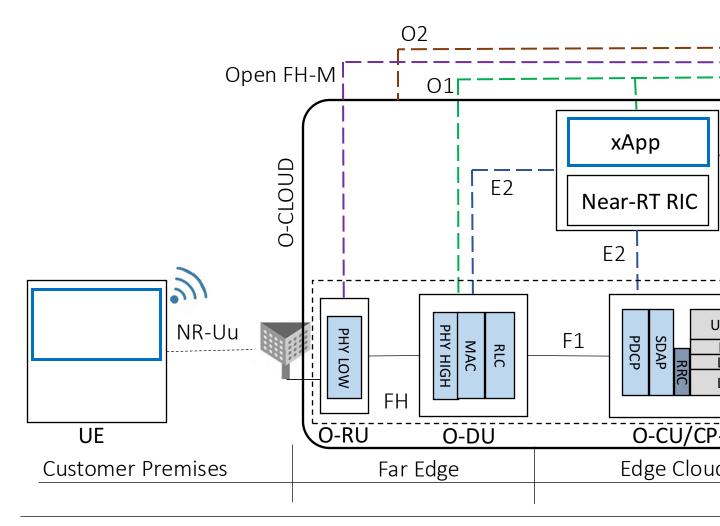
Three use cases

- CSI Feedback: Use ML/AI to reduce CSI domain CSI compression), improve feed prediction (e.g., time domain CSI prediction)
- Beam Management: Use ML/Al to redu and latency, and improve beam selection spatial-domain and time-domain downl
- Positioning: Improve positioning accurate heavy NLOS conditions. Use either direct fingerprinting) or AI/ML assisted approach

5G NG-RAN

Follow the development of 3GPP TR 38.843, "Study on artificial intelligence (AI)/ma

O-RAN ML/AI study for 50


O-RAN Alliance

- https://specifications.o-ran.org/specific
- O-RAN.WG1.OAD-R003-v012.00: "O-RA Technical Specification, 06/2024

O-RAN Architecture

- Disaggregation of NG-RAN into open, vi driven architecture
- Augments 3GPP NG-RAN architecture a with open interfaces (A1, E2, O1, O2)
- Introduces two Radio Interface Controlle (non-RT RIC) and near real-time RIC (near

5G NG-RAN

• O-RAN.WG1.OAD-R003-v12.00: "O-RAN Architecture De

O-RAN Non-RT RIC

Service Management and Orchestra

- Responsible for RAN domain management
- Non-RT RIC: main SMO element that int NFs): near-RT RIC, O-CU-CP/UP, O-DU, C
- Fault, configuration, accounting, perform

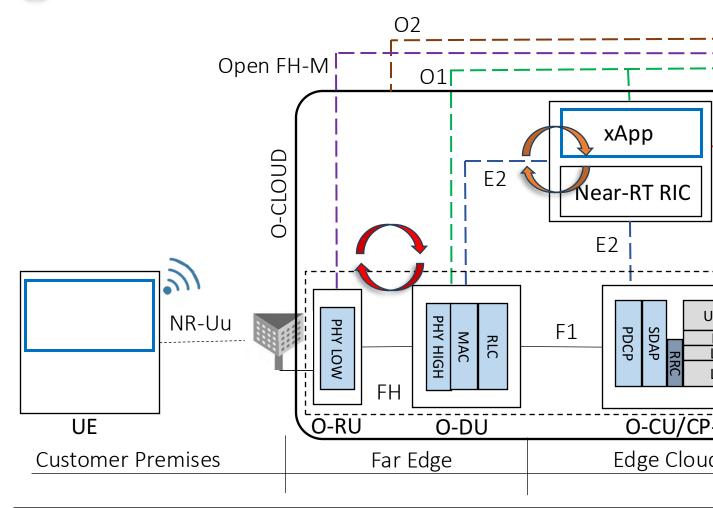
Non-RT RIC Functions

- Controls Near-RT RIC via A1 through: 1) model management, 3) enrichment info
- Intelligent Non-RT (> 1s) RAN optimizati
- rApps (Non-RT RIC applications): AI/ML resource optimization – actions triggere

O-RAN Near-RT RIC

Near-RT RIC Functions

- Enables AI/ML data-driven near-real times optimisation of RAN O-NFs (O-CUs and optimisation)
- Actions triggered via E2 interface
- xApps (Near-RT RIC applications): collect nodes and provide back value-added se
- In O-RAN, O-DU is split into O-DU (VNF) to 7-2x lower layers split (one of the 3G


Real-Time Control Loop

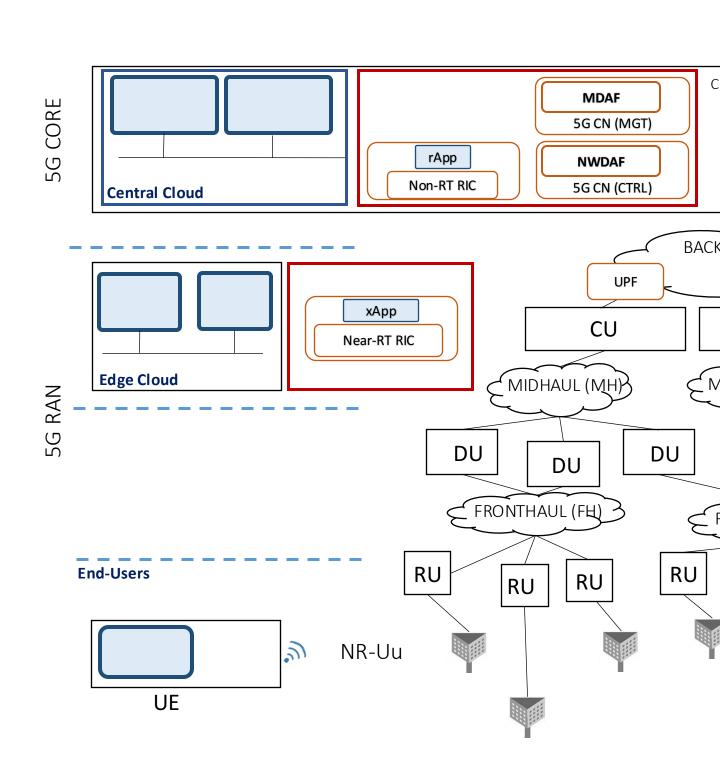
Near-Real-Time Control Loop

Non-Real-Time Control Loop

O-RAN.WG1.OAD-R003-v12.00: "O-RAN Architecture De

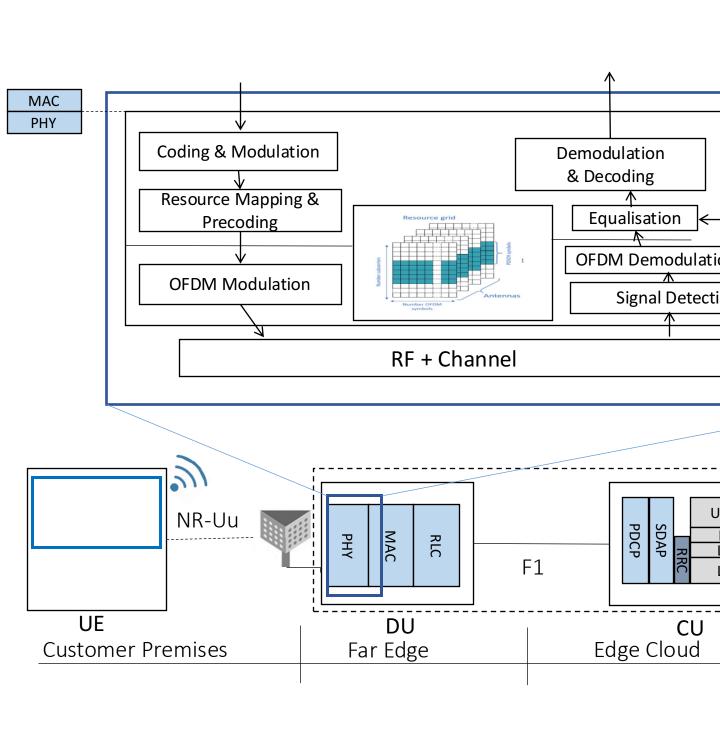
ML/AI in 5G NG-RAN: A Sa

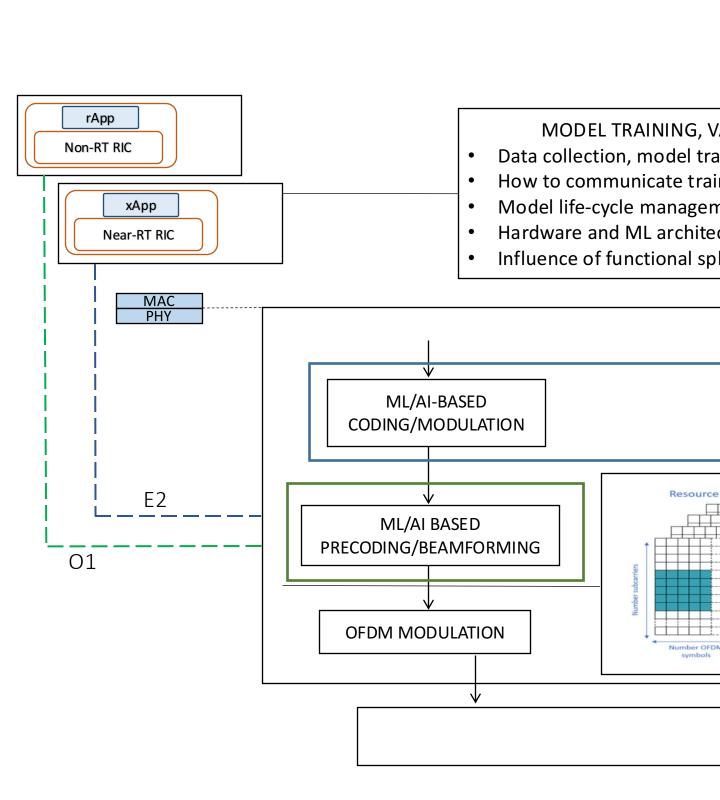
O-RAN xApps and rApps implementation


- Kouchaki, M. and Marojevic, V., Actor-Critic Network for Design, Deployment, and Analysis, IEEE Globecom Wor
- Vilà, I., Sallent, O. and Pérez-Romero, J., On the Implementation based Capacity Sharing Algorithm in O-RAN, IEEE Globe

O-RAN Open Source Testbed Implementation

- Open AI Cellular (https://github.com/openaicellular) Umarojevic, V., Reed, J.H. and Shah, V.K., Prototyping new with SDRs. arXiv:2205.13178.
- OpenRAN Gym (https://openrangym.com/) M. Polese Melodia, "ColO-RAN: Developing Machine Learning-base Control on Programmable Experimental Platforms," IEE
- Both OAI and srsRAN are developing their O-RAN comp


OAI: https://openairinterface.org/oai-5g-ran-project/


srsRAN:https://docs.srsran.com/projects/project/en/late source/index.html

Outline of the talk

- **AI/ML** in the Core Network
- AI/ML in the RAN
- AI/ML for the PHY
- Al/ML at the Application Layer

ML/AI-based Signal Detec

Deep Learning-based Timing Offset and Carrier Fr

- First batch of baseband signal processing steps (k O'Shea, T., Karra, K., and Clancy, T.C., "Learning approximate information", *Proc. IEEE 27th Int. Workshop Mach. Learn. Sig*
- Extensions to I/Q imbalance, phase noise and po Pihlajasalo, J., Korpi, D., Riihonen, T., Talvitie, J., Uusitalo, M., OFDM Waveforms Using Deep Learning Receiver, *IEEE SPAW*
- DL-based timing offset and CFO estimation for W Ninkovic, V., Valka, A., Dumic, D. and Vukobratovic, D., Deep frequency offset estimation in IEEE 802.11 ah, IEEE Access, 9

ML/AI-based Channel Esti

Deep Learning-based Channel Estimation

- DNN trained to map received pilots and data sym symbols (without intermediate channel estimation Ye, H., Li, G.Y. and Juang, B.H., Power of deep learning for chasystems, *IEEE Wireless Communications Letters*, 7(1), pp. 114
- Channel estimation as CNN-based 2D image recording Soltani, M., Pourahmadi, V., Mirzaei, A. and Sheikhzadeh, H., Communications Letters, 23(4), pp. 652-655, 2019.
- Extensions to mmWave, massive MIMO, RIS, Thz
- Recommended paper on DL-based Channel Estim Hu, Q., Gao, F., Zhang, H., Jin, S. and Li, G.Y., Deep learning for performance, and comparison. *IEEE Transactions on Wireless*
- Recommended paper on implementation aspects
 Haq, S.A.U., Gizzini, A.K., Shrey, S., Darak, S.J., Saurabh,
 Augmented Wireless Channel Estimation for Preamble-I
 Chip, IEEE Transactions on Very Large Scale Integration (

ML/AI-based Coding/Mod

End-to-End Autoencoder-Based Deep Learning

- End-to-end learning of Communication Systems O'Shea, T. and Hoydis, J., An introduction to deep learning for Cognitive Communications and Networking, 3(4), pp. 563-57
- Deep Autoencoder-based PHY design in OFDM synchronic Dörner, S., Cammerer, S., Hoydis, J. and Ten Brink, S., Deep le Journal of Selected Topics in Signal Processing, 12(1), pp. 132
- Autoencoder-based UEP codes and Rateless code Ninkovic, V., Vukobratovic, D., Häger, C., Wymeersch, H. and Error Protection Codes. *IEEE Communications Letters*, 25(11) Ninkovic, V., Vukobratovic, D., Häger, C. and Wymeersch, H., Decoding Delay and Reliability, *IEEE ICC 2023, Rome, Italy, M*
- Open source libraries for end-to-end learning https://developer.nvidia.com/sionna https://developer.nvidia.com/aerial-sdk

ML/AI-based Coding/Deco

Neural-Enhanced Belief Propagation Decoding

Neural-network inspired Belief Propagation decoder

• Nachmani, E., Marciano, E., Lugosch, L., Gross, W.J., Burshtein, D. decoding of linear codes. *IEEE Journal of Selected Topics in Signal*

Principled Approach for Combining Data-Based and Mc

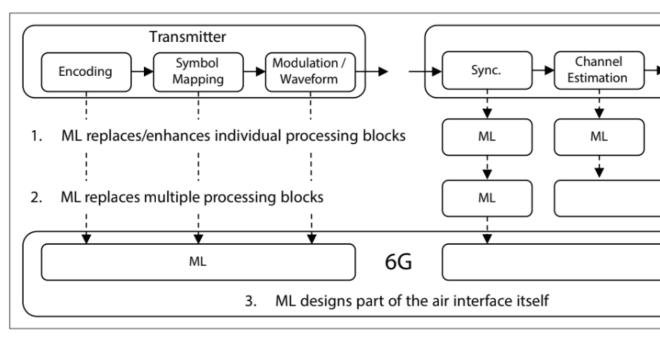
• Shlezinger, N., Whang, J., Eldar, Y.C. and Dimakis, A.G., 2023. Mod IEEE, 111(5), pp.465-499.

Decoding Using Graph-Neural Networks

Decoding LDPC codes using GNNs derived from code fa

- Cammerer, S., Hoydis, J., Aoudia, F.A. and Keller, A., Graph neural Globecom Workshops (GC Wkshps) (pp. 486-491), 2022.
- Ninkovic, V., Kundacina, O., Vukobratovic, D., Häger, C., A. Graell Neural Networks. arXiv preprint arXiv:2408.05170, to appear, IEE

Decoding Using Transformers


Transformer-based approach to decoding LDPC codes

• Choukroun, Y. and Wolf, L., 2024. Learning Linear Block Error Co.

AI-Based PHY Design

Deep Learning for the Physical Layer

Hoydis, J., Aoudia, F.A., Valcarce, A. and Viswanathan, H., Tov Communications Magazine, 59(5), pp. 76-81, 2021.

Question: Which PHY blocks to replace with AI/M

ML/AI-based Beamformin

ML for Beam Alignment

Ma, W., Qi, C. and Li, G.Y., Machine learning for beam alignment in Communications Letters, 9(6), pp. 875-878, 2020.

ML-based Initial Beam Alignment

Sohrabi, F., Chen, Z. and Yu, W., Deep active learning approach to a alignment. *IEEE Journal on Selected Areas in Communications*, 39(8)

Joint Learning of Beams and Alignments

Heng, Y., Mo, J. and Andrews, J.G., Learning site-specific probing be *Transactions on Wireless Communications*, 21(8), pp. 5785-5800, 2 **Overview of AI/ML Beamforming Methods**

Al Kassir, H., Zaharis, Z.D., Lazaridis, P.I., Kantartzis, N.V., Yioultsis, T. and Future Challenges of Deep Learning-Based Beamforming. *IEEE*

Beam Management

Khan, M.Q., Gaber, A., Schulz, P. and Fettweis, G., Machine Learnin Management: A Survey and Open Challenges, *IEEE Access*, 11, pp. 1

Outline of the talk

- AI/ML in the Core Network
- AI/ML in the RAN
- AI/ML for the PHY
- AI/ML at the Application Layer

AI/ML model transfer in 5

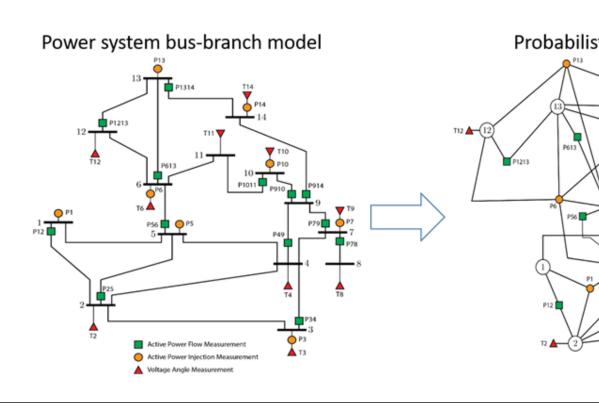
Use Cases and Requirements for Mo

- AI/ML operation splitting (split learning sensitive parts in UE, offload computation)
- AI/ML model data distribution: adaptive needed (efficient unicast/multicast)
- Distributed/Federated learning over 50
 a central entity trains a global model by

TR 22.874 is extended in Rel. 18/19 to TS

- Example: maximum allowed downlink end-to-end later required is 1.1 Gbps for image recognition related AI/M
- 3GPP TR 22.874, "Study on traffic characteristics and per transfer," V18.2.0., December 2021.
- 3GPP TS 22.261, "Service requirements for the 5G syster

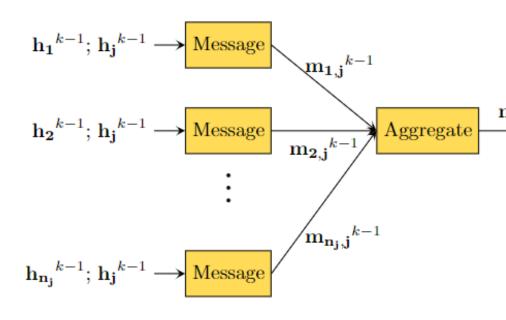
Outline of the talk


- AI/ML in the Core Network
- AI/ML in the RAN
- AI/ML for the PHY
- AI/ML at the Application Layer
- Case Study: AI/ML for 5G Smart G

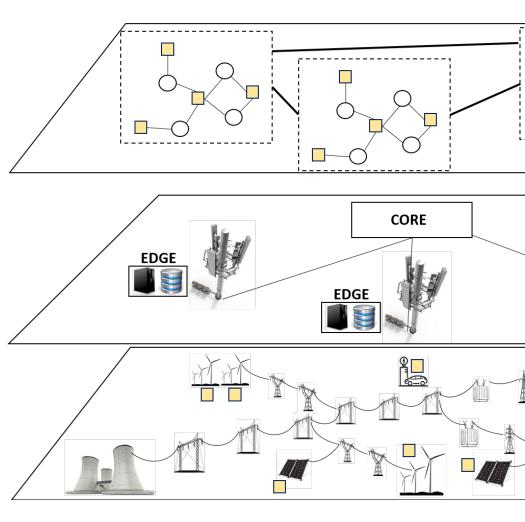
Smart Grids and 5G Integra

- 5G network is evolving towards idea distributed communication and com
- Evolution includes native support fo (ML) and Artificial Intelligence(AI)-k
- Integration of Smart Grids and 5G not Generation Partnership Project (3GF Release 18/19 of 5G standards

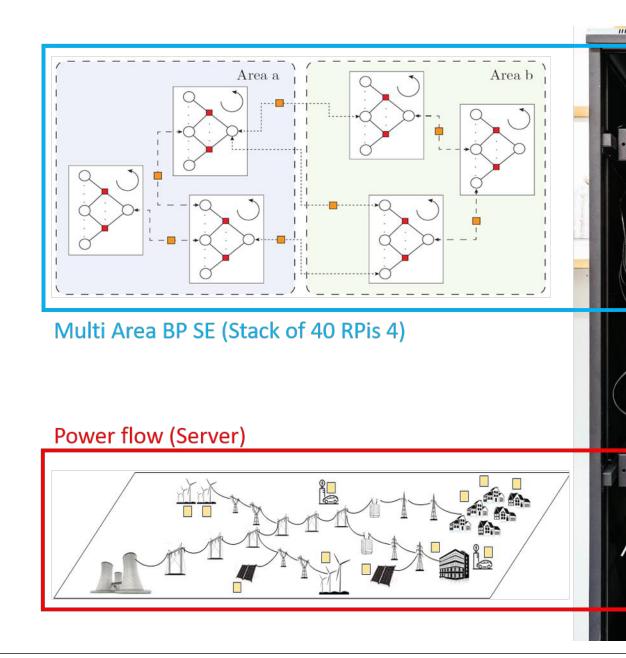
Distributed State Estimation


Model-based SE: We explored Gaussian Bel solution of distributed large-scale state estimates and selections of the selection of the selection

M. Cosovic, D. Vukobratovic, Distributed Gauss–Newton met Propagation, IEEE Transaction on Power Systems, January 20 M. Cosovic, M. Delalic, D. Raca, D. Vukobratovic, Observabilit factor graphs, IEEE Transactions on Power Systems, Septemb


Distributed State Estimation

Data-based SE: We explored message-passi for solving distributed large-scale state estir

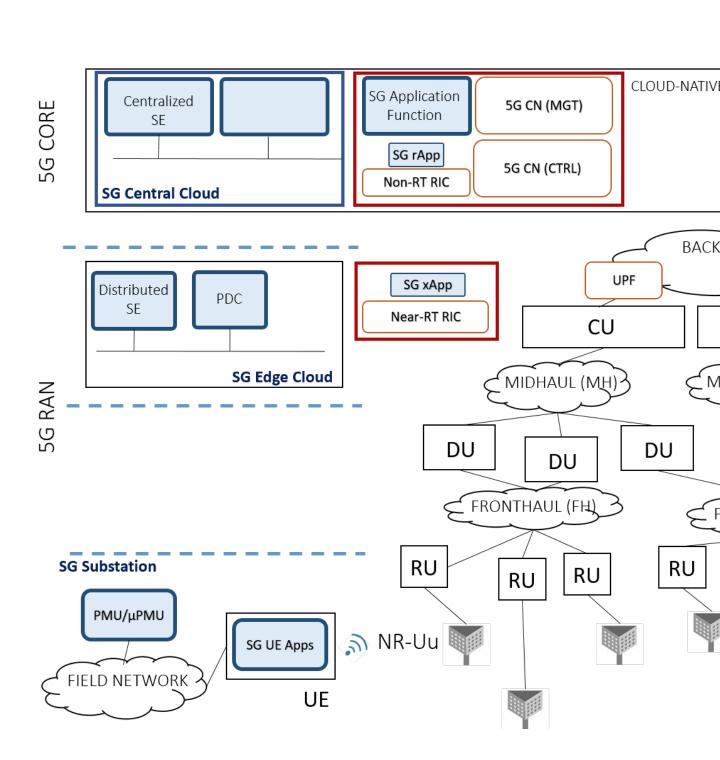


O. Kundacina, M. Cosovic, D. Vukobratovic: "State Estimation in Networks," Int'l Conference on Probabilistic Methods in Power S O. Kundacina, M. Cosovic, D. Miskovic, D. Vukobratovic: "Graph Fast, and Scalable Linear State Estimation with PMUs," Sustainal

Large-Scale Distributed Al

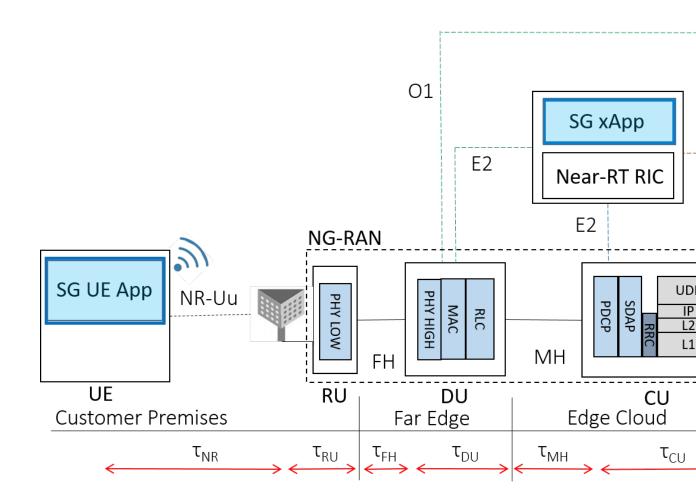
M. Cosovic, A. Tsitsimelis, D. Vukobratovic, J. Matamoros, C Enabling Distributed State Estimation for Smart Grid, IEEE

M. Cosovic, D. Miskovic, M. Delalic, D. Raca, D. Vukobratovic, Distribut Gaussian Belief Propagation, IEEE Internet of Things Journal, 2023.


Distributed SE and 5G Netv

(Distributed) State Estimation – main functi

- WAMS: Wide-Area Measurement System
- PMU: Phasor Measurement Units


Goal: Explore 5G network as a platform for

- Data collection: WAMS over 5G mMTC/UR
- Data Processing: Distributed SE as a 5G edge/core function
- Message-Passing Algorithms: Model-based (GBP) and Data-based (GNN)

Smart Grid Apps/Functions

- SG AF: Third-party CN function (via NEF)
- O-RAN Apps: SG xApps and rApps

DEPARTMAN ZA ENERGETIKU, ELEKTRONIKU I TELE

