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● Rise of real-time ML
○ ML is now used in latency-critical domains: HEP, robotics, autonomous systems, IoT.

● The need for fast and efficient inference
○ Low-latency, low-power inference.

● Why FPGAs?
○ Highly parallel and reconfigurable, tuned for latency and energy efficiency.

● The challenge
○ ML models are software-native.
○ Hardware mapping is complex and manual.
○ Needs automation and abstraction.

Summing up the previous content
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“The inspiration for the creation of the hls4ml package stems from the high energy physics 

community at the CERN Large Hadron Collider (LHC). While machine learning has already been 

proven to be extremely useful in analysis of data from detectors at the LHC, it is typically 

performed in an “offline” environment after the data is taken and agglomerated.” [hls4ml]

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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“However, one of the largest problems at detectors on the LHC is that collisions, or “events”, 

generate too much data for everything to be saved. As such, filters called “triggers” are used 

to determine whether a given event should be kept. Using FPGAs allows for significantly 

lower latency so machine learning algorithms can essentially be run “live” at the detector 

level for event selection. As a result, more events with potential signs of new physics can be 

preserved for analysis.” [hls4ml]

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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Duarte, J., Han, S., Harris, P., Jindariani, S., 
Kreinar, E., Kreis, B., ... & Wu, Z. (2018). Fast 
inference of deep neural networks in FPGAs 
for particle physics. Journal of instrumentation, 
13(07), P07027.
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● Binary & Ternary neural networks:  [2020 Mach. Learn.: Sci. Technol] 
○ Compressed weights for low resource inference

● Boosted Decision Trees: [JINST 15 P05026 (2020)]
○ Low latency for Decision Tree ensembles

● GarNet / GravNet: [arXiv: 2008.03601] 
○ Distance weighted graph neural networks suitable for sparse/irregular point-cloud data

● Quantization aware training QKeras + support in hls4ml: [arXiv: 2006.10159]

● Convolutional neural networks: Mach. Learn.: Sci. Technol. 2 045015 (2021)

https://iopscience.iop.org/article/10.1088/2632-2153/aba042/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2101.05108
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● Python package.

● It enables the transformation of neural network models into firmware deployable on 

FPGAs for efficient inference.

○ https://fastmachinelearning.org/hls4ml/

○ https://github.com/hls-fpga-machine-learning/hls4ml

○ pip install hls4ml

● Extremely configurable: precision, resource vs latency/throughput tradeoff.

● Easy to use.

Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B., ... & Wu, Z. (2018). Fast inference of deep neural networks in FPGAs for particle physics. Journal of 
instrumentation, 13(07), P07027.

https://fastmachinelearning.org/hls4ml/
https://github.com/hls-fpga-machine-learning/hls4ml
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hls4ml workflow

https://github.com/fastmachinelearning/


ML framework support:

● (Q)Keras
● PyTorch 
● (Q)ONNX 

https://fastmachinelearning.org/hls4ml/
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ML framework support:

● (Q)Keras
● PyTorch
● (Q)ONNX 

Neural networks architectures:

● Fully Connected NN 
● Convolutional NN
● Recurrent NN
● Graph NN

HLS backends:

● Vivado HLS 
● Intel HLS
● Vitis HLS 
● Catapult HLS
● oneAPI (experimental)

https://fastmachinelearning.org/hls4ml/
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High-Level Synthesis for Machine Learning 

hls4ml is tested on the following platforms:

Vivado HLS versions 2018.2 to 2020.1
Intel HLS versions 20.1 to 21.4. Versions > 21.4 have not been tested.
Vitis HLS versions 2022.2 to 2024.1. Versions <= 2022.1 are known not to work.
Catapult HLS versions 2024.1_1 to 2024.2
oneAPI versions 2024.1 to 2025.0

https://fastmachinelearning.org/hls4ml/
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How does it work?

With hls4ml, each layer of output values is calculated independently in 
sequence, using pipelining to speed up the process by accepting new 
inputs after an initiation interval. The activations, if nontrivial, are 
precomputed.

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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How does it work?

With hls4ml, each layer of output values is calculated independently in 
sequence, using pipelining to speed up the process by accepting new 
inputs after an initiation interval. The activations, if nontrivial, are 
precomputed.

Simplifying the input network must be done before using hls4ml to 
generate HLS code, for optimal compression to provide a sizable 
speedup.

[hls4ml] https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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Trade-off between latency and FPGA resource usage determined by the parallelization of the calculations in 
each layer.
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https://fastmachinelearning.org/hls4ml/

Trade-off between latency and FPGA resource usage determined by the parallelization of the calculations in 
each layer.

Reuse factor: number of times a multiplier is used to do a computation.

https://fastmachinelearning.org/hls4ml/
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Trade-off between latency and FPGA resource usage determined by the parallelization of the calculations in 
each layer.

Reuse factor: number of times a multiplier is used to do a computation.

Fewer resources,
Lower throughput,
Higher latency

More resources,
Higher throughput,
Lower latencyhttps://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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I/O types: supports multiple styles for handling data transfer to/from the network and between layers.

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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I/O types: supports multiple styles for handling data transfer to/from the network and between layers.

io_parallel 

io_stream

https://fastmachinelearning.org/hls4ml/
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I/O types: supports multiple styles for handling data transfer to/from the network and between layers.

io_parallel 

Data is passed in parallel between the layers.

This style allows for maximum parallelism and is well suited for MLP networks and small CNNs which aim 
for lowest latency.

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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I/O types: supports multiple styles for handling data transfer to/from the network and between layers.

https://fastmachinelearning.org/hls4ml/

io_stream

Data is passed one “pixel” at a time.

Each pixel is an array of channels, which are always sent in parallel. This method for sending data between 
layers is recommended for larger CNN and RNN networks.

With this IO type, each layer is connected with the subsequent layer through first-in first-out (FIFO) buffers.
The implementation of the FIFO buffers contribute to the overall resource utilization of the design, impacting in 
particular the BRAM or LUT utilization.

https://fastmachinelearning.org/hls4ml/
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Strategy: the implementation of core matrix-vector multiplication routine, which can be latency-oriented, 
resource-saving oriented, or specialized. 

Different strategies will have an impact on overall latency and resource consumption of each layer 
and users are advised to choose based on their design goals.

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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Strategy: the implementation of core matrix-vector multiplication routine, which can be latency-oriented, 
resource-saving oriented, or specialized. 

Different strategies will have an impact on overall latency and resource consumption of each layer 
and users are advised to choose based on their design goals.

If one layer would have >4096 elements, we should set ['Strategy'] = 'Resource' for that layer, or 
increase the reuse factor by hand.

4096 elements is related to the maximum size of an array to be partitioned. This value might 
change, it should be checked with the hardware synthesis tool.

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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Activations - Implementation parameter

● latency: Good latency, high resource usage. It does not work well if there are many output classes.

● stable: Slower but with better accuracy, useful in scenarios where higher accuracy is needed.

● legacy: An older implementation with poor accuracy, but good performance. Usually the latency 
implementation is preferred.

● argmax: If you don’t care about normalized outputs and only care about which one has the highest 
value, using argmax saves a lot of resources. This sets the highest value to 1, the others to 0.

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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Profiling

● The tools in hls4ml.model.profiling can help to choose the right precision for the model.
● hls4ml.model.profiling.numerical method with three objects: a Keras model object, test data, and an 

HLSModel.

https://fastmachinelearning.org/hls4ml/

Image from ttps://fastmachinelearning.org/hls4ml/api/PROFILING.html

https://fastmachinelearning.org/hls4ml/
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Trace

● When we start using customised precision throughout the model, it can be useful to collect the output 
from each layer. We enable this trace collection by setting Trace = True for each layer whose output we 
want to collect.

for layer in config['LayerName'].keys():
    config['LayerName'][layer]['Trace'] = True

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml-tutorial/part2_advanced_config.html

https://fastmachinelearning.org/hls4ml/
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Workflow for Deep Neural Network Deployment 
On Embedded Architectures
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Dataset DNN model Compression

End-to-end workflow

A- DNN training and compression
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Dataset DNN model Compression

End-to-end workflow

A- DNN training and compression

B- Integration with a hardware synthesis  tool for ML

Hardware synthesis tool 
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Dataset DNN model Compression

Inference 
hardware

Final 
hardware Bitstream Application

End-to-end workflow

A- DNN training and compression

B- Integration with a hardware synthesis  tool for ML

C- Hardware assessment framework

Hardware synthesis tool 
for ML

Available at https://github.com/RomiSolMolina/workflowCompressionML
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https://github.com/RomiSolMolina/workflowCompressionML


A. DNN training and compression
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DNN training and compression
Stage 1 - Teacher training

Untrained teacher 
network

Dataset

Grab best hype-parameters 
combination

Train model 

teacherFP trained

Hyperparameters 
range

BO 
hyperparameters 

tuning 

Romina Soledad Molina | Mar del Plata - Argentina | 2025



DNN training and compression
Stage 2 - Student training

Untrained student 
network

Dataset

Grab best hype-parameters 
combination

Train model 
through QAP and KD

studentKDQP trained

Target sparsity 
(P) and number of 

bits (Q)

teacherFP trained

Hyperparameters 
range

BO 
hyperparameters 

tuning combined with 
QAP and KD
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B. Integration with a hardware synthesis  
tool for ML
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Integration with a hardware synthesis tool for ML

Model Compressed 
model

HLS 
conversion

HLS 
project

Tune
configuration

Custom 
firmware/kernel

https://github.com/fastmachinelearning/
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https://github.com/fastmachinelearning/


C. Hardware assessment 
framework
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Hardware assessment framework
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Hardware assessment framework
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General step-by-step cheat sheet
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Bare-metal PYNQ Cluster

- Train the DNN model.
- Compress the DNN model.

- hsl4ml for HLS project creation for the specific FPGA part.
- Export IP core.

- Create hardware and export .xsa file.

Create hardware platform. Initialize PYNQ-based board. Access to the HyperFPGA.

Create C application 
(interact with the communication 

block and the IP core). 

Upload .xsa file. Upload .xsa file.

Initialize serial communication. Python code to interact with the 
ML-based hardware.

Python code to interact with the 
ML-based hardware.

Program FPGA, load .elf, and 
check output in the serial 

terminal.

Run the application. Run the application.



Some results… 
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Results
Applications

● 1D-MLP is focused on 1-D signals: a pulse shape discriminator (PSD) based on a Multi-Layer 
Perceptron (MLP), to be used for event recognition in cosmic rays studies.
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Molina, R. S., Morales, I. R., Crespo, M. L., Costa, V. G., Carrato, S., & Ramponi, G. (2023). An end-to-end workflow to efficiently compress and deploy DNN classifiers on SoC/FPGA. IEEE Embedded Systems Letters, 16(3), 255-258.



Results
Applications

● Application in the field of object classification in 2D-images; its aim is moth classification in the 
context of pest detection. The solution 2D-CNN is based on ad-hoc CNN trained with a dataset 
obtained from in-field traps through an IoT system. This application was further developed in 
(2D-VGG16) using a larger pre-trained teacher network (VGG16), and a public dataset.
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Molina, R. S., Morales, I. R., Crespo, M. L., Costa, V. G., Carrato, S., & Ramponi, G. (2023). An end-to-end workflow to efficiently compress and deploy DNN classifiers on SoC/FPGA. IEEE Embedded Systems Letters, 16(3), 255-258.

Ad-hoc CNN 2D-VGG16
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Molina, R. S., Morales, I. R., Crespo, M. L., Costa, V. G., Carrato, S., & Ramponi, G. (2023). An end-to-end workflow to efficiently compress and deploy DNN classifiers on SoC/FPGA. IEEE Embedded Systems Letters, 16(3), 255-258.
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Complementary Frameworks for AI on FPGAs
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● PYNQ
○ Stands for Python Productivity for Zynq.

○ Open-source framework from Xilinx.

○ Provides libraries and Jupyter notebooks for quick prototyping.

○ Focus: Ease of use & education.

Complementary Frameworks for AI on FPGAs
PYNQ · FINN · Vitis AI
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● FINN (Overview)

● Developed by Xilinx Research Labs.

● Specializes in quantized neural networks (QNNs).

● Generates dataflow-style FPGA accelerators.

● Optimized for ultra-low latency & high throughput.

● Focus: Efficient deep learning inference.

Complementary Frameworks for AI on FPGAs
PYNQ · FINN · Vitis AI
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● Vitis AI (Overview)

● Vitis AI (Overview)

● Xilinx’s official AI development platform

● Supports TensorFlow, PyTorch, Caffe models

● Provides optimized DPU (Deep Processing Unit) for FPGAs/SoCs

● Toolchain includes model quantization, pruning, and compilation

● Focus: Production-ready AI acceleration

Complementary Frameworks for AI on FPGAs
PYNQ · FINN · Vitis AI
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● How They Complement Each Other

○ PYNQ → Rapid prototyping & education

○ FINN → Research & deployment of QNNs

○ Vitis AI → Industrial-grade AI acceleration

○ hls4ml → Converts ML models into FPGA firmware via HLS

Complementary Frameworks for AI on FPGAs
PYNQ · FINN · Vitis AI
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● How They Complement Each Other

■ PYNQ → Rapid prototyping & education

■ FINN → Research & deployment of QNNs

■ Vitis AI → Industrial-grade AI acceleration

■ hls4ml → Converts ML models into FPGA firmware via HLS

Together: learning → prototyping → research → production pipeline

Complementary Frameworks for AI on FPGAs
PYNQ · FINN · Vitis AI
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Key Takeaways

PYNQ: Python-friendly FPGA development

FINN: QNN accelerators, low latency

Vitis AI: Full-stack AI deployment

hls4ml: Bridges ML frameworks with FPGA design

Complementary Frameworks for AI on FPGAs
PYNQ · FINN · Vitis AI
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Key Takeaways

PYNQ: Python-friendly FPGA development

FINN: QNN accelerators, low latency

Vitis AI: Full-stack AI deployment

hls4ml: Bridges ML frameworks with FPGA design

Complementary roles, not competitors
Enable innovation across education, research, prototyping, and industry

Complementary Frameworks for AI on FPGAs
PYNQ · FINN · Vitis AI


