
Smr4110 – Trieste (Oct.-Nov. 2025)

Workshop on Fully Programmable
Systems-On-Chip for Scientific

Applications

The Open Standard
RISC-V Architecture

Fernando Rincón
University of Castilla-La Mancha

fernando.rincon@uclm.es

Joint ICTP-IAEA School on
Detector Signal Processing
and Machine Learning
for Scientific Instrumentation
and Reconfigurable Computing

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 2

Contents

● What is RISC-V?
● Why RISC-V?
● RISC-V International
● RISC-V Modularity and ISA standards
● RISC-V Extensions
● RISC-V & AMD Xilinx: Microblaze V
● Beyond Microblaze V

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 3

What is RISC-V? (And What is it Not?)

 RISC-V is
● An Instruction Set Architecture

(ISA)
● A Specification or Blueprint
● A Standard (like AXI)
● The language SW uses to talk

to HW

 RISC-V is not
● A processor
● An implementation or IP core
● A company (like ARM or Intel)
● A chip (like a cortex)

add x1, x2, x3

lw x4, 0(x5)

Memory Model

Extensions (M, C, F...)

AMD/Xilinx Microblaze V

Small 5-stages RV32IMC

SiFive P550

High-performance 13-stages RV64G

Your own vhdl core

Custom 3-stage RV32I + custom insns.

RISC-V standard
Implemented as

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 4

What is an ISA?

● Contract between hardware (HW) and software (SW)

● Has profound implications:
– 99% of laptops/desktop/servers based on AMD x86-64 ISA

● CPUs built by Intel or AMD
– 99% of mobile phones and tablets based on ARM v7/v8 ISA
– Intel and ARM have tried to penetrate the other markets
– Limited or no success. Can guess why?

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 5

The Old World (Proprietary ISAs)

MicroBlaze (Classic):
Microcontroller

Configurable soft-core
Licensed

x86 (Intel/AMD)
Complex (CISC)

High-performance
Licensed

ARM Cortex
Simpler (RISC)

 scalable
Licensed (royalties,
architecture fees)

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 6

The RISC-V Proposition

● A free, open-standard ISA.
– Same kind of freedom as in free software

● Simple
– Far smaller than most commercial ISAs

● Clean design
– Clear separation between user and privileged ISA
– No microarchitecture or technology-dependent features

● Modular
– Small standard base ISA
– Multiple standard (and optional) extensions

● Extensible and customizable by design
● Stable

– Base and standard extensions are frozen

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 7

A Little History

● May 2010: The Beginning
– A team at UC Berkeley starts a 3-month project to create a new ISA for

their undergraduate and graduate courses.
– Existing options (x86, Arm) were too complex and proprietary for

teaching.
● 2010 - 2014: From Project to Movement

– The "3-month project" turns into 4 years of intensive research,
publications, and several chip tape-outs.

– The team discovers a large following in industry and academia who are
actively using and relying on the spec.

● August 2015: The Foundation is Born
– Realizing the project was bigger than the university, the RISC-V

Foundation was created to steward the open standard.
● the "V" refers to the 5th generation of RISC from UC Berkeley.

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 8

RISC-V International

● The non-profit organization established in 2015
● Based in Switzerland (neutrality).
● Role of the foundation:

– Lead future development of ISA
– Formal verification of the ISA

– Community development
– Ecosystem development

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 9

The Rise of RISC-V

● Market & Geopolitical Drivers:
– US monopoly on CPU technology (Intel, AMD, NVIDIA)
– Seeking for technological sovereignty:

● especially in the EU and China
● The potential NVIDIA-Arm deal accelerates this.

● The Open-Source Advantage:
– Democratizes CPU Design:

● open-source nature
– Fosters Innovation & Ecosystem:

● Strong community (industry + academia)
● rich software ecosystem (compilers, operating systems, tools)

– Customization:
● custom processors for specific workloads (AI, HPC, IoT, storage controllers).

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 10

From Micro to Macro

● RISC-V has been design to build from small microcontrollers to HPC
multiprocessors
– eg. The AndesCore RISC-V families

Source: Andes

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 11

RISC-V Market Forecast

● Royalty revenues (paid per-unit-shipped) are forecast to surpass
licensing fees (paid for access to the IP) around 2027.
– Shift from design revenues to to shipping RISC-V based products

● Royalties expected from $16.7M in 2022 to $968.1M by 2030.
– 60.2% Compound Annual Growth Rate (CAGR)

Source: The SHD Group, January 2024

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 12

Global Adoption: Who is Building on RISC-V?

Tech giants and startups are
integrating RISC-V for
specific, high-growth areas:
Intel, AMD, google, SiFive,
Tenstorrent

Focused on HPC and
sovereignty.
European Processor Initiative
(EPI).

Self-reliance and Data Center
Alibaba, Saifang Tech,
Loongson.
AI chips development

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 13

The European Processor Initiative

● develop cutting-edge HPC hardware and software based on RISC-V

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 14

ISA

● Standard naming convention to describe the ISAs supported by a given
implementation.

● ISA Name Format:
– RV[###][abc.....xyz] RV

● RISC-V architecture.
– [###]: {32, 64, 128}

● Width of the integer register file and the size of the user address space.
– [abc...xyz]

● set of extensions supported by an implementation.
● The Base ISAs:

– RV32I: The 32-bit base integer instruction set. (The "I" is for Integer).
– RV64I: The 64-bit base integer instruction set.
– RV32E: A tiny (16-register) base for the smallest embedded cores.

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 15

Standard Extensions: G set

● M: Integer Multiply/Divide
● A: Atomics

– For locking, semaphores, OS support
● F: Single-Precision Floating Point
● D: Double-Precision Floating Point
● C: Compressed Instructions

– 16-bit instructions
● G = IMAFD:

– The common "General-purpose" set

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 16

Standard Extensions

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 17

Other Extensions

● P: Packed SIMD
● V: Vector Extension

– for HPC, AI/ML
● B: Bit Manipulation

– crypto, graphics
● T: Transactional memory
● The "Killer Feature": Custom Extensions!

– You can add your own instructions to the (Z) extensions, and it's part of
the spec!

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 18

RISC-V Core extensions: the problem
● Your code is slow

● But Hw implementation of the complex math function could take a pair of cycles

● 2 options:
– External accelerator
– Custom instruction: insert extra hw in the CPU pipeline

for (i = 0; i < 1_000_000; i++) {
 // This one line is 95% of the runtime!
 result = my_complex_math(a, b, c);
}

Integration ?
my_complex_math

a

b
c

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 19

External acceleration

● Wrap your logic into a bus peripheral:
– ej. AXI accelerator

HW flow
● Build logic
● Wrap as AXI IP core
● Connect to the AXI Bus

Sw flow
● CPU writes into mem-mapped address

– Data and trigger operation
● CPU polls (or int) for completion
● CPU reads result from mem-mapped

adress

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 20

External acceleration: pros & cons

Pros
● Standard & Well-Supported:

This is the default Vivado/Vitis
flow. HLS generates this.

● Asynchronous: Your IP can run
for a long time (e.g., process a
whole video frame) while the
CPU does other tasks.

● High Throughput: Perfect for
large data. AXI-Stream and
DMA are designed to move
massive blocks of data
efficiently.

Cons
● High Latency & Overhead: Every.

Single. Transaction. is slow. You
have bus arbitration, address
decoding, and multiple clock
cycles for one register read.

● Bad for "Micro-Tasks": If your
task only takes 3 cycles, but the
AXI bus transaction to start it
takes 100 cycles, you've lost.

● Software Complexity: You must
write (or generate) a driver. You
have to manage base addresses,
register offsets, and polling loops.

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 21

Custom Instructions

● RISC-V is architected to enable user-defined custom instructions
● 4 major opcodes reserved for use (out of 32)

– And 2 more in the case of RV32C

Source: https://www.edn.com/creating-a-custom-processor-with-risc-v/

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 22

Custom Instructions

● Custom logic is part of the pipeline HW flow
● Build logic
● Connect to reg. File

and insert between
stages

● Extend decoder
Sw flow
● CPU fetches a single instruction, e.g., MY_CUSTOM_OP x1, x2, x3.
● CPU pipeline sends values from registers x2 and x3 to

my_complex_math unit.
● Computation is completed in 2 cycles.
● Result is written back to register x1, just like a normal ADD instruction.

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 23

Custom Instructions: pros & cons

Pros
● Ultra-Low Latency: As fast as

the CPU's own ADD instruction
(1-2 cycles).

● Zero Software Overhead: It's
not a "driver." It's a single,
atomic instruction.

● Perfect for "Micro-Tasks": Ideal
for accelerating the "inner loop"
of an algorithm (e.g., custom
math, bit manipulation, crypto).

Cons
● Synchronous: The CPU stalls (waits)

until your instruction is finished. Your
logic must be fast (1-10 cycles).

● Tightly Coupled: You can't have a
10,000-cycle instruction; it would stall
the whole processor.

● Limited Data: You are limited to the
data in the CPU's registers (e.g., two
32-bit inputs, one 32-bit output). Not for
streaming large data.

● HW Complexity: You are modifying the
processor, not just connecting to a bus.

● SW Complexity: has an impact in the
toolchain

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 24

Software Stack Implications

AXI Accelerator
● Implies writing a driver:

– Using Xil_In32 and Xil_Out32,
primitives

● Doesn’t affect the compiler

Custom Instruction
● Requires the extension of the

compiler with the new
instruction

● Usage through inline assembly
macros

#include "my_driver.h"

MyAccel_SetData(...);
MyAccel_Start(...);
while(!MyAccel_IsDone(…));
result = MyAccel_GetData(...);

my_driver.c
#define my_complex_math(a, b) ({ \
int res; \
 asm volatile ("myop %0, %1, %2" \
 : "=r"(res) \
 : "r"(a), "r"(b)); \
 Res; \
})

my_complex_math.h

my_program.c
#include “my_complex_math.h”

Result = my_complex_math(a, b);

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 25

RISC-V Core extensions: Which One To Use?

● Use accelerators when:
– Dealing with large blocks of data (e.g., an image, a large vector).

● And move data through DMAs, not through CPU buses
– The task takes a long time (e.g., an FFT, a video encoder).
– You want the CPU to do other work while the accelerator runs.

● Use a Custom Instruction when:
– The task is small and very repetitive
– The task operates on register-sized data (e.g., a*b+c)
– You need the absolute lowest possible latency

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 26

The Processor Spectrum on Xilinx

Hard-core processors
● Physical Hw core on the die
● Pros

– Max. performance and power
efficiency

– Full-featured: MMUs, caches,
complex pipelines

– No use of FPGA resources
● Cons

– Fixed and not configurable neither
extensible

Soft-core procesor (Microblaze)
● Built on FPGA resources
● Pros

– Flexible and Scalable
– Well integrated in the flow

● Cons
– Worse performance
– Consumes FPGA resources
– Proprietary

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

From Microblaze to Microblaze V

● Xilinx (AMD) became a member of RISC-V International in 2020
● Microblaze has been superseeded by Microblaze V
● Total redesign
● 32-bit soft-core fully compatible with RISC-V ISA
● No royalties
● Highly flexible
● Smaller for equivalent configs.

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

Microblaze V at a glance

● ISA: RV32IMC
– RV32I: The base 32-bit Integer instruction set.
– M: Includes the Multiply/Divide extension

● synthesis tools will infer DSPs for this!
– C: Includes the Compressed instruction extension.

● Why is the 'C' Extension so important for FPGAs?
– It mixes 16-bit and 32-bit instructions.
– This makes your program's binary ~30% smaller.

● ~30% less Block RAM (BRAM) is needed to store the program
● Pipeline: 5-stage, in-order (The classic RISC pipeline).
● AXI4 Interfaces

– seamless integration with the Xilinx IP ecosystem
● Same exact Design flow and tool support:

– You won’t notice the difference

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

Microblaze vs Microblaze V

Feature Microblaze Microblaze V

ISA Propietary Xilinx RISC-V (RV32IMC)

Ecosystem Xilinx-only Global RISC-V (gcc, etc)

Resources baseline ~30% smaller (fewer LUTs)

Performance baseline "~1.4x Faster (CoreMark)

OS Support FreeRTOS, Linux (w/ MMU) FreeRTOS (No MMU yet)

Tool Flow Vitis (GCC) Vitis (GCC)

Debug Vitis Debugger (GDB) Vitis Debugger (GDB)

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025) 30

Microblaze V extensions

● Microblaze V is configurable, but not modifiable
● Delivered as a encrypted pre-compiled IP
● No access to code and pipeline
● Configuration

– Enable/disable Instruction and Data Caches
– Enable/disable the M (Multiply/Divide) extension
– Enable the Interrupt Controller
– Configure Debug levels

● No true Custom Instructions
● Bus-based approach, but 2 alternatives

– AXI accelerator
– AXI stream coprocessor

configuration

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

Microblaze V extensions

AXI accelerator
● Standard memory-mapped

peripheral
● Sw flow:

– Standard MMIO
Xil_Out32(BASE_ADDR, data);

– while(Xil_In32(STATUS_ADDR) !=
DONE);

● Loosely-coupled from CPU
– Asynchronous execution
– CPU triggers and waits for

interrupt

AXI stream coprocessor
● Dedicated AXIS ports on the core

– stream links
● Sw flow:

– Special builtin coprocessor
instructions
putf(my_coproc_id, data);

getf(my_coproc_id, &result);

● Tight-coupled with CPU
– Synchronous communication

● Putf / getf may stall the pipeline
– Asynchronous execution

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

Beyond Microblaze V

● MicroBlaze V is the easy, supported path
● But with RISC-V, you are not limited to it
● There are numerous open-source alteratives

– Look at https://github.com/riscv/learn?tab=readme-ov-file#open-risc-v-implementations

27 projects

Currently listed

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

X-HEEP Project

● Stands for eXtensible Hardware Engineering Education Platform
● Developed by EPFL (https://github.com/esl-epfl/x-heep)
● Goal:

– design, verification, and deployment of RISC-V-based Systems-on-Chip
● provides a modular, pre-verified framework for building custom

microcontrollers
● Characteristics:

– Modular Architecture: Easy to add/remove peripherals and accelerators
– Configurable: Choose your processor, memory, and bus structure
– Open-Source: All hardware (Verilog/VHDL) and software are freely available
– FPGA-First: Designed with FPGA implementation in mind
– Some ASIC ports

https://github.com/esl-epfl/x-heep

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

X-HEEP Architecture

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

X-HEEP Base Processors & SoC Generation

● User choice
● By default based on the RISC-V OpenHW Group CPUs:

– CVE2
– CV32E40P / CV32E40PX
– CV32E40X CPU

● SoC:
– generator-based approach (Python scripts + fusesoc utils)
– Configuration File: SoC definition in a simple YAML text file
– Generation: The script reads your configuration and automatically:

● Instantiates chosen RISC-V core.
● Adds standard peripherals (UART, SPI, GPIO, Timers).
● Configures memory controllers (SRAM, DDR).
● Generates the top-level Verilog/VHDL for the entire SoC.

– This output is then synthesizable directly for FPGA.

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

X-HEEP Extension

● Through external accelerators
● Similar to the MicroBlaze V's AXI peripherals.
● X-HEEP typically uses an AXI or Wishbone bus as its primary system

interconnect.

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

X-HEEP Extension

● Through custom instructions
(coprocessor)

● Based on the extension interface CV-X-IF
– Available on cv32e40px or cv32e40x

RISC-V CPUs
● CV-X-IF

– Tightly-Coupled
– The CPU forwards instructions not

recognized
– Streamlined Handshake:

● Interface defined by signal groups that
manage the entire "life" of a custom
instruction

– Internal pipeline stages similar to the CPU

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

RISC-Vfpga Course

● Comprehensive, open-source training course developed by Imagination
Technologies in collaboration with RISC-V International.

● Designed to teach RISC-V ISA concepts, system-on-chip (SoC) design, and
embedded programming using a real RISC-V core on a real FPGA board.

● FPGA-Centric:
– Based on the Digilent Nexys A7 FPGA Board (Xilinx Artix-7 device)

● Practical & Hands-On:
It’s not just theory; you’ll be building, running, and debugging RISC-V code on
hardware.

● Open-Source Core: The course utilizes the SweRV Core EH1, an open-
source RISC-V core, allowing you to explore its Verilog source code.

● System-Level Design:
– Integration of RISC-V core with peripherals (UART, GPIO, timers) to build a SoC.

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

RISC-Vfpga Course

● RVfpga: A first course about the RISC-V core, memory system, and
peripherals.

● RVfpga-SoC: a second course that shows how to:
– Build a RISC-V SoC from building blocks
– Install the Zephyr RTOS (real-time operating system)
– Run programs on Zephyr
– Run simple Tensorflow programs

● Both courses (RVfpga and RVfpga-SoC) are available as separate
downloads (free upon registration) at:
– https://university.imgtec.com/rvfpga/

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

RISC-Vfpga Soc
● Open-source system-on-chip

(SoC) from Chips Alliance
● Open-source core from

Western Digital
– 32-bit (RV32ICM) core, with

single-
– issue 4-stage pipeline
– Separate instruction and

data memories
– (ICCM and DCCM) tightly

coupled to the core
– 4-way set-associative I$ with

parity or ECC protection

The Open Standard RISC-V Architecture Smr4110 – Trieste (Oct.- Nov. 2025)

References
● RISC-V foundation

– Main site: https://riscv.org
– Resources: https://riscv.org/members/resources/
– training and certification: https://riscv.org/community/training/

● “RISC V ISA & Foundation Overview”. Youtube, uploaded by RISC-V International,
May 20th 2018.

● “RISC-V Market Trends and Preddictions Till 2030”. Electronics for you, [June 7,
2024], www.electronicsforyou.biz/eb-specials/risc-v-market-trends-predictions-till-
2030/

● "The World Is Getting Riskier." Omdia, [Day Month Year],
omdia.tech.informa.com/om019360/the-world-is-getting-riscier.

● “MicroBlaze V Processor Reference Guide (UG1629)”, AMD Xilinx, 2025.
● X-Heep: https://github.com/esl-epfl/x-heephttps://github.com/esl-epfl/x-heep
● Rvfpga: https://university.imgtec.com/rvfpga/

https://riscv.org/
https://riscv.org/members/resources/
https://riscv.org/community/training/
https://github.com/esl-epfl/x-heep
https://github.com/esl-epfl/x-heep

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

