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What is RISC-V? (And What is it Not?)

            RISC-V is
● An Instruction Set Architecture 

(ISA)
● A Specification or Blueprint
● A Standard (like AXI)
● The language SW uses to talk 

to  HW

          RISC-V is not
● A processor
● An implementation or IP core
● A company (like ARM or Intel)
● A chip (like a cortex)

add x1, x2, x3

lw x4, 0(x5)

Memory Model

Extensions (M, C, F...)

AMD/Xilinx Microblaze V

Small 5-stages RV32IMC

SiFive P550

High-performance 13-stages RV64G

Your own vhdl core

Custom 3-stage RV32I + custom insns.

RISC-V standard
Implemented as
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What is an ISA?

● Contract between hardware (HW) and software (SW)

● Has profound implications:
– 99% of laptops/desktop/servers based on AMD x86-64 ISA

● CPUs built by Intel or AMD
– 99% of mobile phones and tablets based on ARM v7/v8 ISA
– Intel and ARM have tried to penetrate the other markets
– Limited or no success. Can guess why?
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The Old World (Proprietary ISAs)

MicroBlaze (Classic): 
Microcontroller

Configurable soft-core
Licensed

x86 (Intel/AMD)
Complex (CISC)

High-performance
Licensed

ARM Cortex
Simpler (RISC)

 scalable
Licensed (royalties, 
architecture fees)
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The RISC-V Proposition

● A free, open-standard ISA.
– Same kind of freedom as in free software

● Simple
– Far smaller than most commercial ISAs

● Clean design
– Clear separation between user and privileged ISA
– No microarchitecture or technology-dependent features

● Modular
– Small standard base ISA
– Multiple standard (and optional) extensions

● Extensible and customizable by design
● Stable

– Base and standard extensions are frozen
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A Little History

● May 2010: The Beginning
– A team at UC Berkeley starts a 3-month project to create a new ISA for 

their undergraduate and graduate courses.
– Existing options (x86, Arm) were too complex and proprietary for 

teaching.
● 2010 - 2014: From Project to Movement

– The "3-month project" turns into 4 years of intensive research, 
publications, and several chip tape-outs.

– The team discovers a large following in industry and academia who are 
actively using and relying on the spec.

● August 2015: The Foundation is Born
– Realizing the project was bigger than the university, the RISC-V 

Foundation was created to steward the open standard.
● the "V" refers to the 5th generation of RISC from UC Berkeley.
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RISC-V International

● The non-profit organization established in 2015
● Based in Switzerland (neutrality).
● Role of the foundation:

– Lead future development of ISA
– Formal verification of the ISA

– Community development
– Ecosystem development
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The Rise of RISC-V

● Market & Geopolitical Drivers:
– US monopoly on CPU technology (Intel, AMD, NVIDIA)
– Seeking for technological sovereignty: 

● especially in the EU and China
● The potential NVIDIA-Arm deal accelerates this.

● The Open-Source Advantage:
– Democratizes CPU Design: 

● open-source nature 
– Fosters Innovation & Ecosystem: 

● Strong community (industry + academia) 
● rich software ecosystem (compilers, operating systems, tools)

– Customization: 
● custom processors for specific workloads (AI, HPC, IoT, storage controllers).
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From Micro to Macro

● RISC-V has been design to build from small microcontrollers to HPC 
multiprocessors
– eg. The AndesCore RISC-V families

Source: Andes
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RISC-V Market Forecast

● Royalty revenues (paid per-unit-shipped) are forecast to surpass 
licensing fees (paid for access to the IP) around 2027.
– Shift from design revenues to to shipping RISC-V based products

● Royalties expected from $16.7M in 2022 to $968.1M by 2030.
– 60.2% Compound Annual Growth Rate (CAGR)

Source: The SHD Group, January 2024
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Global Adoption: Who is Building on RISC-V?

Tech giants and startups are 
integrating RISC-V for 
specific, high-growth areas:
Intel, AMD, google, SiFive,
Tenstorrent

Focused on HPC and 
sovereignty.
European Processor Initiative 
(EPI).

Self-reliance and Data Center
Alibaba, Saifang Tech, 
Loongson.
AI chips development
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The European Processor Initiative

● develop cutting-edge HPC hardware and software based on RISC-V
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ISA

● Standard naming convention to describe the ISAs supported by a given 
implementation.

● ISA Name Format:
– RV[###][abc.....xyz] RV

● RISC-V architecture.
– [###]: {32, 64, 128} 

● Width of the integer register file and the size of the user address space.
– [abc...xyz]

● set of extensions supported by an implementation.
● The Base ISAs:

– RV32I: The 32-bit base integer instruction set. (The "I" is for Integer).
– RV64I: The 64-bit base integer instruction set.
– RV32E: A tiny (16-register) base for the smallest embedded cores.
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Standard Extensions: G set

● M: Integer Multiply/Divide
● A: Atomics

– For locking, semaphores, OS support
● F: Single-Precision Floating Point
● D: Double-Precision Floating Point
● C: Compressed Instructions

– 16-bit instructions
● G = IMAFD:

– The common "General-purpose" set
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Standard Extensions
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Other Extensions

● P: Packed SIMD
● V: Vector Extension

– for HPC, AI/ML
● B: Bit Manipulation

– crypto, graphics
● T: Transactional memory
● The "Killer Feature": Custom Extensions! 

– You can add your own instructions to the (Z) extensions, and it's part of 
the spec!
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RISC-V Core extensions: the problem
● Your code is slow

● But Hw implementation of the complex math function could take a pair of cycles

● 2 options:
– External accelerator
– Custom instruction: insert extra hw in the CPU pipeline

for (i = 0; i < 1_000_000; i++) {
  // This one line is 95% of the runtime!
  result = my_complex_math(a, b, c);
}

Integration ?
my_complex_math

a

b
c
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External acceleration

● Wrap your logic into a bus peripheral:
– ej. AXI accelerator

HW flow
● Build logic
● Wrap as AXI IP core
● Connect to the AXI Bus

Sw flow
● CPU writes into  mem-mapped address

– Data and trigger operation
● CPU polls (or int) for completion
● CPU reads result from mem-mapped 

adress
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External acceleration: pros & cons

Pros
● Standard & Well-Supported: 

This is the default Vivado/Vitis 
flow. HLS generates this.

● Asynchronous: Your IP can run 
for a long time (e.g., process a 
whole video frame) while the 
CPU does other tasks.

● High Throughput: Perfect for 
large data. AXI-Stream and 
DMA are designed to move 
massive blocks of data 
efficiently.

Cons
● High Latency & Overhead: Every. 

Single. Transaction. is slow. You 
have bus arbitration, address 
decoding, and multiple clock 
cycles for one register read.

● Bad for "Micro-Tasks": If your 
task only takes 3 cycles, but the 
AXI bus transaction to start it 
takes 100 cycles, you've lost.

● Software Complexity: You must 
write (or generate) a driver. You 
have to manage base addresses, 
register offsets, and polling loops.
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Custom Instructions

● RISC-V is architected to enable user-defined custom instructions
● 4 major opcodes reserved for use (out of 32)

– And 2 more in the case of RV32C

Source: https://www.edn.com/creating-a-custom-processor-with-risc-v/
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Custom Instructions

● Custom logic is part of the pipeline HW flow
● Build logic
● Connect to reg. File 

and insert between 
stages

● Extend decoder
Sw flow
● CPU fetches a single instruction, e.g., MY_CUSTOM_OP x1, x2, x3.
● CPU pipeline sends values from registers x2 and x3 to 

my_complex_math unit.
● Computation is completed in 2 cycles.
● Result is written back to register x1, just like a normal ADD instruction.
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Custom Instructions: pros & cons

Pros
● Ultra-Low Latency: As fast as 

the CPU's own ADD instruction 
(1-2 cycles).

● Zero Software Overhead: It's 
not a "driver." It's a single, 
atomic instruction.

● Perfect for "Micro-Tasks": Ideal 
for accelerating the "inner loop" 
of an algorithm (e.g., custom 
math, bit manipulation, crypto).

Cons
● Synchronous: The CPU stalls (waits) 

until your instruction is finished. Your 
logic must be fast (1-10 cycles).

● Tightly Coupled: You can't have a 
10,000-cycle instruction; it would stall 
the whole processor.

● Limited Data: You are limited to the 
data in the CPU's registers (e.g., two 
32-bit inputs, one 32-bit output). Not for 
streaming large data.

● HW Complexity: You are modifying the 
processor, not just connecting to a bus.

● SW Complexity: has an impact in the 
toolchain
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Software Stack Implications

AXI Accelerator
● Implies writing a driver:

– Using Xil_In32 and Xil_Out32, 
primitives

● Doesn’t affect the compiler

Custom Instruction
● Requires the extension of the 

compiler with the new 
instruction

● Usage through inline assembly 
macros

#include "my_driver.h"

MyAccel_SetData(...);
MyAccel_Start(...);
while(!MyAccel_IsDone(…));
result = MyAccel_GetData(...);

my_driver.c
#define my_complex_math(a, b) ({ \
int res; \
  asm volatile ("myop %0, %1, %2" \ 
  : "=r"(res) \
  : "r"(a), "r"(b)); \
   Res; \
})

my_complex_math.h

my_program.c
#include “my_complex_math.h”

Result = my_complex_math(a, b);
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RISC-V Core extensions: Which One To Use?

● Use accelerators when:
– Dealing with large blocks of data (e.g., an image, a large vector).

● And move data through DMAs, not through CPU buses
– The task takes a long time (e.g., an FFT, a video encoder).
– You want the CPU to do other work while the accelerator runs.

● Use a Custom Instruction when:
– The task is small and very repetitive
– The task operates on register-sized data (e.g., a*b+c)
– You need the absolute lowest possible latency
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The Processor Spectrum on Xilinx

Hard-core processors
● Physical Hw core on the die
● Pros

– Max. performance and power 
efficiency

– Full-featured: MMUs, caches, 
complex pipelines

– No use of FPGA resources
● Cons

– Fixed and not configurable neither 
extensible

Soft-core procesor (Microblaze)
● Built on FPGA resources
● Pros

– Flexible and Scalable
– Well integrated in the flow

● Cons
– Worse performance
– Consumes FPGA resources
– Proprietary
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From Microblaze to Microblaze V

● Xilinx (AMD) became a member of RISC-V International in 2020
● Microblaze has been superseeded by Microblaze V
● Total redesign
● 32-bit soft-core fully compatible with RISC-V ISA
● No royalties
● Highly flexible
● Smaller for equivalent configs.
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Microblaze V at a glance

● ISA: RV32IMC
– RV32I: The base 32-bit Integer instruction set.
– M: Includes the Multiply/Divide extension

● synthesis tools will infer DSPs for this!
– C: Includes the Compressed instruction extension.

● Why is the 'C' Extension so important for FPGAs?
– It mixes 16-bit and 32-bit instructions.
– This makes your program's binary ~30% smaller.

● ~30% less Block RAM (BRAM) is needed to store the program
● Pipeline: 5-stage, in-order (The classic RISC pipeline).
● AXI4 Interfaces

– seamless integration with the Xilinx IP ecosystem
● Same exact Design flow and tool support:

– You won’t notice the difference
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Microblaze vs Microblaze V

Feature Microblaze Microblaze V

ISA Propietary Xilinx RISC-V (RV32IMC)

Ecosystem Xilinx-only Global RISC-V (gcc, etc)

Resources baseline ~30% smaller (fewer LUTs)

Performance baseline "~1.4x Faster (CoreMark)

OS Support FreeRTOS, Linux (w/ MMU) FreeRTOS (No MMU yet)

Tool Flow Vitis (GCC) Vitis (GCC)

Debug Vitis Debugger (GDB) Vitis Debugger (GDB)
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Microblaze V extensions

● Microblaze V is configurable, but not modifiable
● Delivered as a encrypted pre-compiled IP
● No access to code and pipeline
● Configuration

– Enable/disable Instruction and Data Caches
– Enable/disable the M (Multiply/Divide) extension
– Enable the Interrupt Controller
– Configure Debug levels

● No true Custom Instructions
● Bus-based approach, but 2 alternatives

– AXI accelerator
– AXI stream coprocessor

configuration
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Microblaze V extensions

AXI accelerator
● Standard memory-mapped 

peripheral
● Sw flow:

– Standard MMIO
Xil_Out32(BASE_ADDR, data);

– while(Xil_In32(STATUS_ADDR) != 
DONE);

● Loosely-coupled from CPU
– Asynchronous execution
– CPU triggers and waits for 

interrupt

AXI stream coprocessor
● Dedicated AXIS ports on the core

– stream links
● Sw flow:

– Special builtin coprocessor 
instructions
putf(my_coproc_id, data);

getf(my_coproc_id, &result);

● Tight-coupled with CPU
– Synchronous communication

● Putf / getf may stall the pipeline
– Asynchronous execution
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Beyond Microblaze V

● MicroBlaze V is the easy, supported path
● But with RISC-V, you are not limited to it
● There are numerous open-source alteratives

– Look at https://github.com/riscv/learn?tab=readme-ov-file#open-risc-v-implementations

27 projects

Currently listed
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X-HEEP Project

● Stands for eXtensible Hardware Engineering Education Platform
● Developed by EPFL (https://github.com/esl-epfl/x-heep)
● Goal: 

– design, verification, and deployment of RISC-V-based Systems-on-Chip
● provides a modular, pre-verified framework for building custom 

microcontrollers
● Characteristics:

– Modular Architecture: Easy to add/remove peripherals and accelerators
– Configurable: Choose your processor, memory, and bus structure
– Open-Source: All hardware (Verilog/VHDL) and software are freely available
– FPGA-First: Designed with FPGA implementation in mind
– Some ASIC ports

https://github.com/esl-epfl/x-heep
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X-HEEP Architecture
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X-HEEP Base Processors & SoC Generation

● User choice
● By default based on the RISC-V OpenHW Group CPUs:

– CVE2
– CV32E40P / CV32E40PX
– CV32E40X CPU

● SoC:
– generator-based approach (Python scripts + fusesoc utils)
– Configuration File: SoC definition in a simple YAML text file 
– Generation: The script reads your configuration and automatically:

● Instantiates chosen RISC-V core.
● Adds standard peripherals (UART, SPI, GPIO, Timers).
● Configures memory controllers (SRAM, DDR).
● Generates the top-level Verilog/VHDL for the entire SoC.

– This output is then synthesizable directly for FPGA.
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X-HEEP Extension

● Through external accelerators
● Similar to the MicroBlaze V's AXI peripherals.
● X-HEEP typically uses an AXI or Wishbone bus as its primary system 

interconnect.
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X-HEEP Extension

● Through custom instructions 
(coprocessor)

● Based on the extension interface CV-X-IF 
– Available on cv32e40px or cv32e40x 

RISC-V CPUs
● CV-X-IF

– Tightly-Coupled
– The CPU forwards instructions not 

recognized
– Streamlined Handshake:

● Interface defined by signal groups that 
manage the entire "life" of a custom 
instruction

– Internal pipeline stages similar to the CPU
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RISC-Vfpga Course

● Comprehensive, open-source training course developed by Imagination 
Technologies in collaboration with RISC-V International.

● Designed to teach RISC-V ISA concepts, system-on-chip (SoC) design, and 
embedded programming using a real RISC-V core on a real FPGA board.

● FPGA-Centric: 
– Based on the Digilent Nexys A7 FPGA Board (Xilinx Artix-7 device)

● Practical & Hands-On: 
It’s not just theory; you’ll be building, running, and debugging RISC-V code on 
hardware.

● Open-Source Core: The course utilizes the SweRV Core EH1, an open-
source RISC-V core, allowing you to explore its Verilog source code.

● System-Level Design: 
– Integration of RISC-V core with peripherals (UART, GPIO, timers) to build a SoC.
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RISC-Vfpga Course

● RVfpga: A first course about the RISC-V core, memory system, and 
peripherals.

● RVfpga-SoC: a second course that shows how to:
– Build a RISC-V SoC from building blocks
– Install the Zephyr RTOS (real-time operating system)
– Run programs on Zephyr
– Run simple Tensorflow programs

● Both courses (RVfpga and RVfpga-SoC) are available as separate 
downloads (free upon registration) at:
– https://university.imgtec.com/rvfpga/
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RISC-Vfpga Soc
● Open-source system-on-chip 

(SoC) from Chips Alliance
● Open-source core from 

Western Digital
– 32-bit (RV32ICM) core, with 

single-
– issue 4-stage pipeline
– Separate instruction and 

data memories
– (ICCM and DCCM) tightly 

coupled to the core
– 4-way set-associative I$ with 

parity or ECC protection
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