SMR4110 Photo Album

Scan to start sharing

the receiver to scan this QR code with their dev

PSoC Architecture & Design Methodology ICTP-MLAB

Joint ICTP-IAEA School on

. . The Abdus SCIlCI:I'I] ’]) m
‘\Df\etiqtorl_5|gna_l Prgcessmg and {CTP) International Centre @;} e

achine Learning for for Theoretical Physics |JAEA & &ifioe
Scientific Instrumentation and

Reconfigurable Computing

PSoC
Design Methodology

. . . Senior Associate, ICTP-MLAB ICTP
Cristian Sisterna

Professor at Universidad Nacional San Juan- Argentina &2

Agenda

||n> PSoC Design Flow
||n> PSoC Design Methodoloy

||m> TCL — Overview and Usage

PSoC Design
Methodology

PSoC Design FlowM‘i’“ﬂ‘

Specnflcahons

VIVADO’

HLS
IP Cores - Model Compose
Custom

i

- s s e - e s

|

|
l
l
l
l
l
l
l
l
\

Constraints

[Placement &Timing]
N

Vivado IP Integrator

PSoC Architecture & Design Methodology

XILINX

Software
Modules

—_—

Software
Development &
Simulation

/
-~ e - s s e = -

Operating
Systems

N\ J

Software Development Vitis

PSoC Design - PL Design Flow

Constraints

Synthesis

Eonstraints l

____________ ' Optional

|
| }
Place & Route : Eonstraints l
|
|

1 i

Timing | .
---------------------- Y.

Elaborate

VIVADO !

PSoC Architecture & Design Methodology ICTP-MLAB

PSoC Design - Vivado-Vitis Design Flow
VIVADO?

Open VIVADO Create Board Support Package

Create New Project Create New ‘C’ Application
Create New Block Design Write ‘C’ Code

Add PS7 Build the Application
Configure PS7

Run Block Automation
Add and Configure other IPs Configure FPGA
Run Connection Automation

Validate Design Run on Hardware (Debug)

Create HDL Wrapper
Generate Output Files

Generate Bitstream

Export Hardware to SDK

PSoC Architecture & Design Methodology ICTP-MLAB

PL Design Specification

v Written specifications (spec for short) for the design to be done

v Spec can specify:
v" Functionality
v Timing

v’ Interfaces

v" Power

PSoC Architecture & Design Methodology ICTP-MLAB

PL Design Partition

v Divide and conquer strategy

v" Complex design is progressively partitioned into smaller and
simpler functional units. This is known as

[Top-Down Design or Hierarchical Design]

v" Behavioral model for each functional unit are written
VIt has its own synthesis results
v'It has it own functional test bench

v'Some cases it has its own place and route and timing
constraints

PSoC Architecture & Design Methodology ICTP-MLAB

PL Design Partition - Clocking

pr—
CDC b CCLK
fr— _
—‘AGLK . © CDATA
Syncronization
ADATA Modules Module C
R CADDR
AADDR -t
<t CEN
AEN 1/
CLD
ALD
CDC
B+—+ C
B Module B Syncronization
Syncronization . Modules
Modules
_/
Bref_clk

BADDR l BEN

Chip boundary

BDATA CDC: Clock Domain Crossing

PSoC Architecture & Design Methodology ICTP-MLAB

10

PL Design Partition

v Partition the design at functional boundaries.
l IP Cores '

v Minimize the 1/0 connections between different partitions.

v Register all inputs and outputs of each block. This makes logic synchronous HDL J_l
and avoids glitches and avoids any delay penalty on signals that cross —
between partitions. Registering I/Os typically eliminates the need to specify
timing requirements for signals that connect between different blocks.

v Do not use “glue logic” or connection logic between hierarchical blocks.
When you preserve hierarchy boundaries, glue logic is not merged with
hierarchical blocks. Your synthesis software may optimize glue logic
separately, which can degrade synthesis results and is not efficient when
used with the LogicLock design methodology.

v Remember that logic is not synthesized or optimized across partition
boundaries, which means any constant values (signals set to GND, for
example) will not be propagated across partitions.

PSoC Architecture & Design Methodology ICTP-MLAB

PL Design Partition

* Do not use tri-state signals or bidirectional ports on hierarchical boundaries. If
you use boundary tri-states in a lower-level block, synthesis pushes the tri-states
through the hierarchy to the top-level to take advantage of the tri-state drivers on
the output pins of Xilinx devices.

* Limit clocks to one per block. Partitioning the design into clock domains makes
synthesis and timing analysis easier.

* Partitioning the design into clock domains makes synthesis and timing analysis
easier.

* Place state machines in separate blocks to speed optimization and
provide greater encoding control.
* Separate timing-critical functions from non-timing-critical functions.

* Limit the critical timing path to one hierarchical block. You can group the logic
from several design blocks to ensure the critical path resides in one block

PSoC Architecture & Design Methodology ICTP-MLAB

PL HDL Components

= Behavioral modeling describes the functionality of a component (design), that is,
what the component will do

o A behavioral prototype of a component can be quicly created HDL

o lIts functionality verified

o Synthesized, optimized and mapped, to a specific technology

= Structural Modeling connect components to create a specific functionality.

o Architectural partitioning forms a structural model, but the functional components are
modeled behaviorally

PSoC Architecture & Design Methodology ICTP-MLAB

PL Functional Verification — Block Level

= In general, a design should be partitioned along functional lines
into smaller functional units, each having a common clock
domain, and each of which is to be verified separately.

v The verification process is threefold: t HDL

v Development of a test plan

v Development of test-benches VIVADO

v" Execution of the simulations

P R EEEE LR

PSoC Architecture & Design Methodology ICTP-MLAB

PL Functional Verification — Block Level

v" Development of a test plan: Specify what functional features are to be tested and
how they are to be tested

v'For example, the test plan might specify that an exhaustive simulation of its behavior will
verify the instruction set of an ALU.

v'Test plans for sequential machines must be more elaborate to ensure a high level of
confidence in the design.

v'A test plan identifies the stimulus generators, response monitors, and the "gold" response
against which the model will be tested.

v'Your grade, and your company's future, will depend on the care that you take in
developing and executing your test plan.

PSoC Architecture & Design Methodology ICTP-MLAB

PL Functional Verification — Block Level

v Test bench development

v A Test Bench is a VHDL module in which the Unit Under Test (UUT) has to be instantiated
together with pattern generators that are to be applied to the inputs of the component
during simulation.

v'Note: If a design is formed as an architecture of multiple modules, each must be verified
separately, beginning with the lowest level of the design hierarchy, then the integrated
design must be tested to verify that the modules interact correctly

v Test bench development Test bench execution

v" The test bench is exercised according to a test plan, and the response is verified against
the original specification for the design

PSoC Architecture & Design Methodology ICTP-MLAB

PL Functional Verification — Block Level

Top

c2 C2_tb

SCla SC1b

SClc_tb

PL Design Integration — System Level Verification

v After each of the functional sub components has been verified to have correct
functionality, the architecture must be integrated and verified to have the correct
overall functionality

v A separate test plan for the system is developed at the beginning of this step.

AN

This requires development of a separate testbench whose stimulus generators exercise
the input/output functionality of the top-level module, monitor port and bus activity
across module boundaries, and observe state activity in any embedded state machines.

v This step in the design flow is crucial and must be executed thoroughly to ensure that the
design that is being signed off for synthesis is correct.

PSoC Architecture & Design Methodology ICTP-MLAB

PL Design Integration — System Level Verification
Top

Cl

PL Synthesis Constraints — Post-Synthesis Simulation

| Synthesis l*&onstraints l

v A synthesis tool is used to translate from ‘software’ (VHDL) to ‘hardware’: logic gates,
flip-flops, memory, etc.

v" A synthesis tool removes redundant logic and seeks to satisfy the requirements

regarding the area of the logic needed to implement the functionality and the
performance (speed) specifications

v Post-Synthesis simulation is, in general, optional, but it is advisable in case of using
specific synthesis attributes.

PSoC Architecture & Design Methodology ICTP-MLAB

PL Place & Route

I Place & Route libonstraints l

v The logic generated by the synthesis tool is a netlist, commonly known as EDIF netlist,
that is take by the Place and Route tool to scatter the logic in the FPGA’s resources.

v" P&R tool has different effort levels, which can be used in case the final result does
not meet the needed requirements.

v" In complex design:
v P&R could take several hours to accomplish its task.

v Some floor planning may be needed (constraints).

PSoC Architecture & Design Methodology ICTP-MLAB

PL Post Place & Route Simulation

Timing .

v" The simulation test (test bench) not only test the logical/behavioural functionality but
also the timing of the whole system:

v Routing and logic delay are taking into consideration when executing this simulation
v Each delay is well known after the P&R

v Hold-time and Set-up time violations can be found out in this simulation as well as any
glitch

PSoC Architecture & Design Methodology ICTP-MLAB

Export Hardware Platform (.xsa file)

= Once the bitstream is generated, export the hardware platform as an XSA (Xilinx Shell

Architecture) file.

= This file encapsulates all the hardware information, including the bitstream, address

map, and peripheral details, which will be used by Vitis.

PSoC Architecture & Design Methodology ICTP-MLAB

Vitis Flow Design

PSoC Architecture & Design Methodology

Create Board Support Package

Create New ‘C’ Application

Write ‘C’ Code

Build the Application

Configure FPGA

Run on Hardware (Debug)

ICTP-MLAB

The AMD Vitis environment
provides a comprehensive
design flow for Zynq SoCs.

The Vitis flow emphasizes a
software-centric approach,
allowing developers to
create and write an
application in bare-metal ‘C’
code or run an Operating
System, such as FreeRTOS,
Petalinux, etc.

From the Vitis application
can easily access to the logic
on the PL or any peripheral
in the PS.

Vitis Design Flow

Create Board Customize App. Configure
Support ‘C’ code / 0S FPGA
Package (BSP) (.bit file)

Create new Build the ‘Run on
application: application hardware
‘Bare Metal’ .elf file’
or ‘0S Based’ (debug)

PSoC Architecture & Design Methodology ICTP-MLAB

Vitis Design Flow

The Vitis environment takes over from the XSA file to facilitate software development.

Create a Platform Project: Import the XSA file generated from Vivado to create a Vitis platform
project. This platform serves as the base for your software applications, providing information
about the hardware components and their addresses. You can choose to create platforms for:
eStandalone (Bare-metal) applications: For simple, direct control of hardware.
*FreeRTOS applications: For real-time operating system based designs.
eLinux applications: If you plan to run a full Linux OS on the Zynq's PS (Petalinux).
generation).

Create an Application Project: Based on the platform, create a new application project. This is where
you write your C/C++ code.
eYou can select from various templates (e.g., "Hello World", memory tests) or start with an empty
application.
eFor accelerated applications, you can define "kernels" (functions intended to run on the PL) which
will be compiled and implemented in the FPGA fabric.

PSoC Architecture & Design Methodology ICTP-MLAB

Vitis Design Flow

Write Software Application: Host Application (for PS): This is the C/C++ code that runs on the ARM
processor(s) of the Zynq. It interacts with the PL via AXI interfaces.

Build the Project: Vitis compiles your software application and links it with the necessary libraries
and the hardware platform. For accelerated designs, this also involves building the PL kernels and
generating the final bitstream if it includes custom hardware.

Generate Boot Image: Once your application is stable, generate a boot image (e.g., BOOT.BIN) that
includes the First Stage Boot Loader (FSBL), the bitstream, and your application. This image is used to
boot the Zynqg device

Program and Run on Hardware: Load the boot image onto your Zynqg board (e.g., via SD card, QSPI
flash, or JTAG) and run your application.

PSoC Architecture & Design Methodology ICTP-MLAB

Vitis Design Flow - .elf .bit Download

Software Stack

elf 4 (Vitis) n

.Xsa file

—==f-————---==--

I] Custom
bit - Hardware- FPGA_[
(Vivado)

Vitis - Running the App. - .elf .bit Download

First of all, configure the PL part of the Zynq, using the .bit file
Download the .elf file to the PS (processor) part of the Zynq.

Execute the C/Linux application

X N X

Check the result into either:

v’ Terminal
v Console
v" 3rd party terminal emulator

PSoC Architecture & Design Methodology ICTP-MLAB

Basics of TCL in Vivado

Tool Command Language

TCL, is an interpreted programming language with variables,
procedures , and control structures, to interface to a variety of design

tools and to design data.

It has been an industry standard language since early 90s’

AMD-Xilinx adopted TCL for the Vivado Design Suite

PSoC Architecture & Design Methodology ICTP-MLAB

Tool Command Language (cont)

TCL in Vivado enables the designer to:

= Create a project = Run synthesis

= Target a SoPC device/board = Run implementation
= Create a block design * Modify P&R options
" Include IP Cores = Customize reports

= Configure PS, IP Cores, etc. = Program SoPC

PSoC Architecture & Design Methodology ICTP-MLAB

Tool Command Language (cont

¥ Vivado +w2018.3.1 (€4-bit)

SW Build 2489853 on Tue Mar 26 04:18:30 MDT 2019

IP Build 248€692% on Tus Mar 26 06:44:21 MDT 2015

Start of session at: Wed May 22 20:07:21 2015

Process ID: 15215

$ Current directory: /cris projescts

$ Command line: wiwvado

Log file: /cris projects/vivado.log

Journal file: fecris projects/vivado.jou
o
start gui

create project project 1 fcris projects/ZedBoard/borrar/hw —part
xc7z020clg484-1

set property board part em.avnet.com:zed:partl:1.4

[current project]

set_property target language VHDL [current project]
create bd design "design 1"

update compile order —-fileset sources 1

startgroup

create bd cell -type ip —-vlnv

xilinx.com:ip:processing system7:5.5 processing system7 0
endgroup

apply bd automation -rule

xilinx.com:bd rule:processing system7 -config {make external
"FIXED IO, DDR" apply board preset "1" Master "Disable" Slave
"Disable" } [get bd cells processing system7 0]

generate target all [get files

/cris projects/ZedBoard/borrar/hw/project l.srcs/sources
1/bd/design_1l/design 1.bd]

PSoC Architecture & Design Methodology startgroup 33

How to run a provided .tcl script

J Methot 1: Through Vivado TCL console
1 Method 2: Through Command Line

Method 1: Run .tcl in Vivado TCL Console

1. Start Vivado Design Suite. You can see a tcl console on the left bottom of
Vivado Design Suite

2. Click on the title type a tcl command here’ (button left of the screen)
Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

4. Once the directory has been changed, you can use the /s’ command to list
the files in the current directory. Check that the .tcl is in there.

5. Run the .tcl script by using the following command:
source <filename>.tcl

6. The processes defined in the .tcl file will be executed. It could take
sometimes to execute a .tcl file (depending on the defined processes)

PSoC Architecture & Design Methodology ICTP-MLAB

Vivado TCL Console

B A s L all B) ¢ (100%) o)

File Flow Tools Window Help = G Quick Access

VIVADO! £ XILINX.

HLx Editions

Recent Projects

Py_Qt TS
feris_projects/pyquPy_Qt TS

Quick Start

lab_gpio_in_out
feris_projects/ictp_labsflab_gpio_inout/lab_gpio_in_out

project_registers_dma
feris_projects/tclitest/project_registers_dma

project_registers_dma
feris_projects/axi_dma_test/project_registers_dma/proj...

project_registers_dma
fhome/cristian/project_registers_dma

project_registers_dma
feris_projects/axi_dma_test/project_registers_dma

project_2 o

Tcl Console ? 00X

a = = I B B @

PSoC Architecture & Design Methodology ICTP-MLAB

Vivado TCL Option in the GUI

Eile Edit Flow Tools Reports Window Layout \iew Help
=

7 Create and Package Mew IP... |
Flow Navigator Create Interface Definition...
~ PROJECT MANAGE Enable Partial Reconfiguration...
o Settings Bun Tcl Script... %
Property Editor Ctrl+)

&dd Sources
Associate ELE Files...
Language Temp Generate Memory Configuration File... les

iF IP Catalog Compile Simulation Libraries...

Download Latest Boards...

v IP INTEGRATOR ¥ilinx Tcl Store...

Create Block De Custom Commands ¥ ki

Open Block Desi Language Templates

£ O

Generate Block Settings...

PSoC Architecture & Design Methodology ICTP-MLAB

1.

Method 2: Run .tcl through Command Line W10/11

In W10 you can start the Vivado TCL Shell by doing:
Start-> All apps->Vivado 20xx.x Tcl Shell

A small command line window should come up
Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

Once the directory has been changed, you can use the dir command to list
the files in the current directory. Check that the .tcl is in there.

Run the .tcl script by using the following command:

source <filename>.tcl

The processes defined in the .tcl file will be executed. It could take some
times to execute a .tcl file (depending on the defined processes)

PSoC Architecture & Design Methodology ICTP-MLAB

Run .tcl in Linux

1. Make sure TCL interpreter is installed:

Swhereis tclsh

tclsh: /usr/bin/tclsh /usr/bin/tclsh8.4 /usr/share/man/manl/tclsh.1.gz

2. In case you don’t have the tcl interpreter installed, do the following:
S sudo apt-get install tcl8.4

Note: if you have already installed Vivado, the Tcl interpreter should be installed

3. Execute TCL script:
S tclsh helloworld.tcl
(or)
S chmod u+x helloworld.tcl
S ./helloworld. tcl

PSoC Architecture & Design Methodology ICTP-MLAB

Is there any Need to Learn TCL ?

It is purely based on your objectives.

If you want to automate some basic processes in creating design, it is the

best choice as we can export a tcl script to another computer and create

an exact replica of the project with same configurations, ip integrations in
just a single execution.

PSoC Architecture & Design Methodology ICTP-MLAB

Xilinx TCL Docs

Vivado Design Suite TCL Command Reference Guide

Vivado Design Suite User Guide - Using TCL Scripting

TCL Tutorial (up to Chapter 14 for Vivado appl)

PSoC Architecture & Design Methodology ICTP-MLAB

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug894-vivado-tcl-scripting.pdf
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

	Slide 1: SMR4110 Photo Album
	Slide 2: PSoC Design Methodology
	Slide 3: Agenda
	Slide 4: PSoC Design Methodology
	Slide 5: PSoC Design Flow
	Slide 6: PSoC Design – PL Design Flow
	Slide 7: PSoC Design – Vivado-Vitis Design Flow
	Slide 8: PL Design Specification
	Slide 9: PL Design Partition
	Slide 10: PL Design Partition - Clocking
	Slide 11: PL Design Partition
	Slide 12: PL Design Partition
	Slide 13: PL HDL Components
	Slide 14: PL Functional Verification – Block Level
	Slide 15: PL Functional Verification – Block Level
	Slide 16: PL Functional Verification – Block Level
	Slide 17: PL Functional Verification – Block Level
	Slide 18: PL Design Integration – System Level Verification
	Slide 19: PL Design Integration – System Level Verification
	Slide 20: PL Synthesis Constraints – Post-Synthesis Simulation
	Slide 21: PL Place & Route
	Slide 22: PL Post Place & Route Simulation
	Slide 23: Export Hardware Platform (.xsa file)
	Slide 24: Vitis Flow Design
	Slide 25: Vitis Design Flow
	Slide 26: Vitis Design Flow
	Slide 27: Vitis Design Flow
	Slide 28: Vitis Design Flow - .elf .bit Download
	Slide 29: Vitis - Running the App. - .elf .bit Download
	Slide 30: Basics of TCL in Vivado
	Slide 31: Tool Command Language
	Slide 32: Tool Command Language (cont)
	Slide 33: Tool Command Language (cont)
	Slide 34: How to run a provided .tcl script
	Slide 35: Method 1: Run .tcl in Vivado TCL Console
	Slide 36: Vivado TCL Console
	Slide 37: Vivado TCL Option in the GUI
	Slide 38: Method 2: Run .tcl through Command Line W10/11
	Slide 39: Run .tcl in Linux
	Slide 40: Is there any Need to Learn TCL ?
	Slide 41: Xilinx TCL Docs

