
PSoC Architecture & Design Methodology ICTP-MLAB 1

SMR4110 Photo Album

PSoC
Design Methodology

Cristian Sisterna
S e n i o r A s s o c i a t e , I C T P - MLA B

P r o f es s o r a t U n i v e r s i da d N a c i o na l S a n J u a n - A r g e n t i na

PSoC Architecture & Design Methodology ICTP-MLAB 3

Agenda

01

02

PSoC Design Flow

PSoC Design Methodoloy

03 TCL – Overview and Usage

PSoC Design
Methodology

PSoC Architecture & Design Methodology ICTP-MLAB 4

PSoC Architecture & Design Methodology ICTP-MLAB 5

PSoC Design Flow

ICTP-MLABPSoC Architecture & Design Methodology

Requirements

Specifications

System Design
Software/Hardware

Partitioning

Hardware
Development &

Simulation

Software
Development &

Simulation

System Integration
and

Debug

IP Cores

Placement &Timing
Constraints

Software
Modules

Operating
Systems

Vivado IP Integrator Software Development Vitis

HLS
Model Composer
Custom

PSoC Architecture & Design Methodology ICTP-MLAB 6

PSoC Design – PL Design Flow

Spec

HDL

Elaborate

Behavioral

Verification:

Component &
System

Synthesis

Place & Route

Timing
Verification

Create Project

(Block Design)
Constraints

IP Cores

Bitstream Generation /

Hardware Export .xsa

Optional

Constraints

Constraints

Optional

VIVADO

VIVADO

PSoC Architecture & Design Methodology ICTP-MLAB 7

PSoC Design – Vivado-Vitis Design Flow

✓ Written specifications (spec for short) for the design to be done

✓ Spec can specify:

✓ Functionality

✓ Timing

✓ Interfaces

✓ Power

PSoC Architecture & Design Methodology ICTP-MLAB 8

PL Design Specification

Spec

✓ Divide and conquer strategy

✓ Complex design is progressively partitioned into smaller and
simpler functional units. This is known as

 Top-Down Design or Hierarchical Design

PSoC Architecture & Design Methodology ICTP-MLAB 9

PL Design Partition

✓ Behavioral model for each functional unit are written

✓It has its own synthesis results

✓It has it own functional test bench

✓Some cases it has its own place and route and timing
constraints

Spec

HDL

IP Cores

SC1a SC1b SC1c C2

SC1

C1

Top

PSoC Architecture & Design Methodology ICTP-MLAB 10

PL Design Partition - Clocking

CDC: Clock Domain Crossing

CDC
CDC

CDC

B

BCLK

PSoC Architecture & Design Methodology ICTP-MLAB 11

PL Design Partition

HDL

IP Cores

✓Minimize the I/O connections between different partitions.

✓Partition the design at functional boundaries.

✓Register all inputs and outputs of each block. This makes logic synchronous
and avoids glitches and avoids any delay penalty on signals that cross
between partitions. Registering I/Os typically eliminates the need to specify
timing requirements for signals that connect between different blocks.

✓Do not use “glue logic” or connection logic between hierarchical blocks.
When you preserve hierarchy boundaries, glue logic is not merged with
hierarchical blocks. Your synthesis software may optimize glue logic
separately, which can degrade synthesis results and is not efficient when
used with the LogicLock design methodology.

✓Remember that logic is not synthesized or optimized across partition
boundaries, which means any constant values (signals set to GND, for
example) will not be propagated across partitions.

PSoC Architecture & Design Methodology ICTP-MLAB 12

PL Design Partition
• Do not use tri-state signals or bidirectional ports on hierarchical boundaries. If

you use boundary tri-states in a lower-level block, synthesis pushes the tri-states
through the hierarchy to the top-level to take advantage of the tri-state drivers on
the output pins of Xilinx devices.

• Limit clocks to one per block. Partitioning the design into clock domains makes
synthesis and timing analysis easier.

• Partitioning the design into clock domains makes synthesis and timing analysis
easier.

• Place state machines in separate blocks to speed optimization and
provide greater encoding control.

• Separate timing-critical functions from non-timing-critical functions.

• Limit the critical timing path to one hierarchical block. You can group the logic
from several design blocks to ensure the critical path resides in one block

▪ Behavioral modeling describes the functionality of a component (design), that is,
what the component will do

o A behavioral prototype of a component can be quicly created

o Its functionality verified

o Synthesized, optimized and mapped, to a specific technology

PSoC Architecture & Design Methodology ICTP-MLAB 13

PL HDL Components

HDL

▪ Structural Modeling connect components to create a specific functionality.

o Architectural partitioning forms a structural model, but the functional components are
modeled behaviorally

▪ In general, a design should be partitioned along functional lines

into smaller functional units, each having a common clock

domain, and each of which is to be verified separately.

PSoC Architecture & Design Methodology ICTP-MLAB 14

PL Functional Verification – Block Level

✓ The verification process is threefold:

✓ Development of a test plan

✓ Development of test-benches

✓ Execution of the simulations

Spec

HDL

Elaborate

Behavioral
Verification

Create Project

(Block Design)

IP Cores

VIVADO

✓ Development of a test plan: Specify what functional features are to be tested and
how they are to be tested

✓For example, the test plan might specify that an exhaustive simulation of its behavior will
verify the instruction set of an ALU.

✓Test plans for sequential machines must be more elaborate to ensure a high level of
confidence in the design.

✓A test plan identifies the stimulus generators, response monitors, and the "gold" response
against which the model will be tested.

✓Your grade, and your company's future, will depend on the care that you take in
developing and executing your test plan.

PSoC Architecture & Design Methodology ICTP-MLAB 15

PL Functional Verification – Block Level

✓ Test bench development

✓ A Test Bench is a VHDL module in which the Unit Under Test (UUT) has to be instantiated
together with pattern generators that are to be applied to the inputs of the component
during simulation.

✓Note: If a design is formed as an architecture of multiple modules, each must be verified
separately, beginning with the lowest level of the design hierarchy, then the integrated
design must be tested to verify that the modules interact correctly

PSoC Architecture & Design Methodology ICTP-MLAB 16

PL Functional Verification – Block Level

✓ Test bench development Test bench execution

✓ The test bench is exercised according to a test plan, and the response is verified against
the original specification for the design

PSoC Architecture & Design Methodology ICTP-MLAB 17

PL Functional Verification – Block Level

SC1a SC1b SC1c

C2

SC1

C1

Top

C2_tb

SC1c_tbSC1a_tb SC1b_tb

SC1_tb

C1_tb

✓ After each of the functional sub components has been verified to have correct
functionality, the architecture must be integrated and verified to have the correct
overall functionality

✓ A separate test plan for the system is developed at the beginning of this step.

✓ This requires development of a separate testbench whose stimulus generators exercise
the input/output functionality of the top-level module, monitor port and bus activity
across module boundaries, and observe state activity in any embedded state machines.

✓ This step in the design flow is crucial and must be executed thoroughly to ensure that the
design that is being signed off for synthesis is correct.

PSoC Architecture & Design Methodology ICTP-MLAB 18

PL Design Integration – System Level Verification

PSoC Architecture & Design Methodology ICTP-MLAB 19

PL Design Integration – System Level Verification

SC1a SC1b SC1c

C2

SC1

C1

Top

C2_tb

SC1c_tbSC1a_tb SC1b_tb

SC1_tb

C1_tb

top_tb

✓ A synthesis tool is used to translate from ‘software’ (VHDL) to ‘hardware’: logic gates,
flip-flops, memory, etc.

✓ A synthesis tool removes redundant logic and seeks to satisfy the requirements
regarding the area of the logic needed to implement the functionality and the
performance (speed) specifications

✓ Post-Synthesis simulation is, in general, optional, but it is advisable in case of using
specific synthesis attributes.

PSoC Architecture & Design Methodology ICTP-MLAB 20

PL Synthesis Constraints – Post-Synthesis Simulation

ConstraintsSynthesis

✓ The logic generated by the synthesis tool is a netlist, commonly known as EDIF netlist,
that is take by the Place and Route tool to scatter the logic in the FPGA’s resources.

✓ P&R tool has different effort levels, which can be used in case the final result does
not meet the needed requirements.

✓ In complex design:

✓ P&R could take several hours to accomplish its task.

✓ Some floor planning may be needed (constraints).

PSoC Architecture & Design Methodology ICTP-MLAB 21

PL Place & Route

Place & Route Constraints

✓ The simulation test (test bench) not only test the logical/behavioural functionality but
also the timing of the whole system:

✓ Routing and logic delay are taking into consideration when executing this simulation

✓ Each delay is well known after the P&R

✓ Hold-time and Set-up time violations can be found out in this simulation as well as any
glitch

PSoC Architecture & Design Methodology ICTP-MLAB 22

PL Post Place & Route Simulation

Timing
Verification

Optional

▪ Once the bitstream is generated, export the hardware platform as an XSA (Xilinx Shell

Architecture) file.

▪ This file encapsulates all the hardware information, including the bitstream, address

map, and peripheral details, which will be used by Vitis.

PSoC Architecture & Design Methodology ICTP-MLAB 23

Export Hardware Platform (.xsa file)

PSoC Architecture & Design Methodology ICTP-MLAB 24

Vitis Flow Design
The AMD Vitis environment
provides a comprehensive
design flow for Zynq SoCs.

The Vitis flow emphasizes a
software-centric approach,
allowing developers to
create and write an
application in bare-metal ‘C’
code or run an Operating
System, such as FreeRTOS,
PetaLinux, etc.

From the Vitis application
can easily access to the logic
on the PL or any peripheral
in the PS.

PSoC Architecture & Design Methodology ICTP-MLAB 25

Vitis Design Flow

31 5

2 4 6

Create Board
Support

Package (BSP)

Customize App.
‘C’ code / OS

Configure
FPGA

(.bit file)

Create new
application:
‘Bare Metal’
or ‘OS Based’

Build the
application

‘Run on
hardware
.elf file’
(debug)

The Vitis environment takes over from the XSA file to facilitate software development.

PSoC Architecture & Design Methodology ICTP-MLAB 26

Vitis Design Flow

Create a Platform Project: Import the XSA file generated from Vivado to create a Vitis platform

project. This platform serves as the base for your software applications, providing information

about the hardware components and their addresses. You can choose to create platforms for:

•Standalone (Bare-metal) applications: For simple, direct control of hardware.

•FreeRTOS applications: For real-time operating system based designs.

•Linux applications: If you plan to run a full Linux OS on the Zynq's PS (Petalinux).

generation).

Create an Application Project: Based on the platform, create a new application project. This is where
you write your C/C++ code.

•You can select from various templates (e.g., "Hello World", memory tests) or start with an empty
application.
•For accelerated applications, you can define "kernels" (functions intended to run on the PL) which
will be compiled and implemented in the FPGA fabric.

PSoC Architecture & Design Methodology ICTP-MLAB 27

Vitis Design Flow

Write Software Application: Host Application (for PS): This is the C/C++ code that runs on the ARM
processor(s) of the Zynq. It interacts with the PL via AXI interfaces.

Build the Project: Vitis compiles your software application and links it with the necessary libraries
and the hardware platform. For accelerated designs, this also involves building the PL kernels and
generating the final bitstream if it includes custom hardware.

Generate Boot Image: Once your application is stable, generate a boot image (e.g., BOOT.BIN) that
includes the First Stage Boot Loader (FSBL), the bitstream, and your application. This image is used to
boot the Zynq device

Program and Run on Hardware: Load the boot image onto your Zynq board (e.g., via SD card, QSPI
flash, or JTAG) and run your application.

PSoC Architecture & Design Methodology ICTP-MLAB 28

Vitis Design Flow - .elf .bit Download

.elf

.bit

Software Stack
(Vitis)

Custom
Hardware-FPGA

(Vivado)

.xsa file

✓ First of all, configure the PL part of the Zynq, using the .bit file

✓ Download the .elf file to the PS (processor) part of the Zynq.

✓ Execute the C/Linux application

✓ Check the result into either:
✓ Terminal

✓ Console

✓ 3rd party terminal emulator

PSoC Architecture & Design Methodology ICTP-MLAB 29

Vitis - Running the App. - .elf .bit Download

Basics of TCL in Vivado

ICTP-MLAB 30PSoC Architecture & Design Methodology

TCL , is an interpreted programming language with variables,

procedures , and control structures, to interface to a variety of design

tools and to design data.

ICTP-MLAB 31

Tool Command Language

PSoC Architecture & Design Methodology

It has been an industry standard language since early 90s’

AMD-Xilinx adopted TCL for the Vivado Design Suite

TCL in Vivado enables the designer to:

ICTP-MLAB 32

Tool Command Language (cont)

PSoC Architecture & Design Methodology

▪ Create a project

▪ Target a SoPC device/board

▪ Create a block design

▪ Include IP Cores

▪ Configure PS, IP Cores, etc.

▪ Run synthesis

▪ Run implementation

▪ Modify P&R options

▪ Customize reports

▪ Program SoPC

ICTP-MLAB 33

Tool Command Language (cont)

PSoC Architecture & Design Methodology

ICTP-MLAB 34

How to run a provided .tcl script

PSoC Architecture & Design Methodology

❑ Methot 1: Through Vivado TCL console

❑ Method 2: Through Command Line

ICTP-MLAB 35

Method 1: Run .tcl in Vivado TCL Console

PSoC Architecture & Design Methodology

1. Start Vivado Design Suite. You can see a tcl console on the left bottom of
Vivado Design Suite

2. Click on the title 'type a tcl command here‘ (button left of the screen)

3. Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

4. Once the directory has been changed, you can use the ‘ls’ command to list
the files in the current directory. Check that the .tcl is in there.

5. Run the .tcl script by using the following command:
 source <filename>.tcl

6. The processes defined in the .tcl file will be executed. It could take
sometimes to execute a .tcl file (depending on the defined processes)

ICTP-MLAB 36

Vivado TCL Console

PSoC Architecture & Design Methodology

ICTP-MLAB 37

Vivado TCL Option in the GUI

PSoC Architecture & Design Methodology

ICTP-MLAB 38

Method 2: Run .tcl through Command Line W10/11

PSoC Architecture & Design Methodology

1. In W10 you can start the Vivado TCL Shell by doing:
 Start-> All apps->Vivado 20xx.x Tcl Shell

2. A small command line window should come up

3. Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

4. Once the directory has been changed, you can use the ‘dir’ command to list
the files in the current directory. Check that the .tcl is in there.

5. Run the .tcl script by using the following command:

 source <filename>.tcl

6. The processes defined in the .tcl file will be executed. It could take some
times to execute a .tcl file (depending on the defined processes)

ICTP-MLAB 39

Run .tcl in Linux

PSoC Architecture & Design Methodology

1. Make sure TCL interpreter is installed:
 $whereis tclsh

 tclsh: /usr/bin/tclsh /usr/bin/tclsh8.4 /usr/share/man/man1/tclsh.1.gz

2. In case you don’t have the tcl interpreter installed, do the following:
 $ sudo apt-get install tcl8.4

 Note: if you have already installed Vivado, the Tcl interpreter should be installed

3. Execute TCL script:
 $ tclsh helloworld.tcl

(or)
 $ chmod u+x helloworld.tcl

 $./helloworld.tcl

ICTP-MLAB 40

Is there any Need to Learn TCL ?

PSoC Architecture & Design Methodology

It is purely based on your objectives.

If you want to automate some basic processes in creating design , it is the

best choice as we can export a tcl script to another computer and create

an exact replica of the project with same configurations, ip integrations in

just a single execution.

Vivado Design Suite TCL Command Reference Guide

Vivado Design Suite User Guide - Using TCL Scripting

TCL Tutorial (up to Chapter 14 for Vivado appl)

PSoC Architecture & Design Methodology ICTP-MLAB 41

Xilinx TCL Docs

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug894-vivado-tcl-scripting.pdf
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

	Slide 1: SMR4110 Photo Album
	Slide 2: PSoC Design Methodology
	Slide 3: Agenda
	Slide 4: PSoC Design Methodology
	Slide 5: PSoC Design Flow
	Slide 6: PSoC Design – PL Design Flow
	Slide 7: PSoC Design – Vivado-Vitis Design Flow
	Slide 8: PL Design Specification
	Slide 9: PL Design Partition
	Slide 10: PL Design Partition - Clocking
	Slide 11: PL Design Partition
	Slide 12: PL Design Partition
	Slide 13: PL HDL Components
	Slide 14: PL Functional Verification – Block Level
	Slide 15: PL Functional Verification – Block Level
	Slide 16: PL Functional Verification – Block Level
	Slide 17: PL Functional Verification – Block Level
	Slide 18: PL Design Integration – System Level Verification
	Slide 19: PL Design Integration – System Level Verification
	Slide 20: PL Synthesis Constraints – Post-Synthesis Simulation
	Slide 21: PL Place & Route
	Slide 22: PL Post Place & Route Simulation
	Slide 23: Export Hardware Platform (.xsa file)
	Slide 24: Vitis Flow Design
	Slide 25: Vitis Design Flow
	Slide 26: Vitis Design Flow
	Slide 27: Vitis Design Flow
	Slide 28: Vitis Design Flow - .elf .bit Download
	Slide 29: Vitis - Running the App. - .elf .bit Download
	Slide 30: Basics of TCL in Vivado
	Slide 31: Tool Command Language
	Slide 32: Tool Command Language (cont)
	Slide 33: Tool Command Language (cont)
	Slide 34: How to run a provided .tcl script
	Slide 35: Method 1: Run .tcl in Vivado TCL Console
	Slide 36: Vivado TCL Console
	Slide 37: Vivado TCL Option in the GUI
	Slide 38: Method 2: Run .tcl through Command Line W10/11
	Slide 39: Run .tcl in Linux
	Slide 40: Is there any Need to Learn TCL ?
	Slide 41: Xilinx TCL Docs

