

THERAPEUTICALLY USED RADIONUCLIDES AND RADIOPHARMACEUTICALS IN NUCLEAR MEDICINE

Jens Kurth

Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany

Joint ICTP-IAEA Workshop on Radiation Protection in Diagnostic and Therapeutic Nuclear Medicine | (smr 4112)

Disclosures

Travel

Nothing to declare

Research grant

- AAA/Novartis
- Oncobeta
- Life Molecular

Honorarium

- GE Healthcare
- Oncobeta

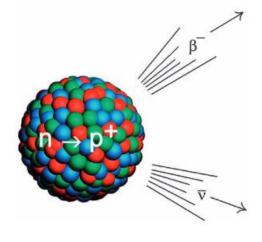
Advisory Board/Consultant

- GE Healthcare
- Novartis
- Lilly

Agenda

- current therapies and future developments
- most important radionuclides / pharmaceuticals
 - Beta Particles
 - Iodine-131
 - Lutetium-177
 - Yttrium-90
 - Samarium-153
 - Rhenium-188
 - Alpha Particles
 - Radium-223
 - Actinium-225
 - "New" radionuclides / pharmaceuticals
 - Terbium-161

Note: Radiation protection issues are covered in the corresponding lecture on radiation protection.


Current therapies and future developments

- use of ¹³¹I for therapy of malignant and benign thyroid diseases still dominant
 - incidence of benign thyroid diseases is decreasing → partly due to better iodine supply
 - MIBG-therapy
- ¹⁷⁷Lu will be increasingly used
 - pharmaceuticals like DOTA-TATE and PSMA-617 will have an growing role in clinical arena
 - successful phase III-trials (NETTER-I, NETTER-II for NET and VISION for prostate cancer)
 - possibly the most widely used in the future
 - new therapeutic agents are on the horizon (i. e. FAPI, Bombesin (GRPr))
- medical devices, such as microspheres labeled with ⁹⁰Y are used in the treatment of hepatocellular carcinoma (HCC) and liver metastases
- alpha emitters will enter clinical arena
 - already estabslished → ²²³Ra in the treatment of bone metastasis of prostate cancer
 - ²²⁵Ac and ²¹²Pb labeled pharmaceutiacls will be used more frequently in future
- New beta emitters
 - ¹⁶¹Tb, ⁶⁷Cu, ...

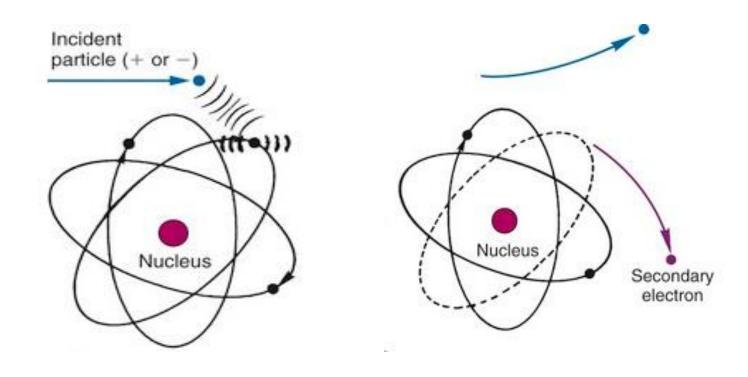
PHARMACEUTICALS LABELED WITH β- - RADIONUCLIDEDS

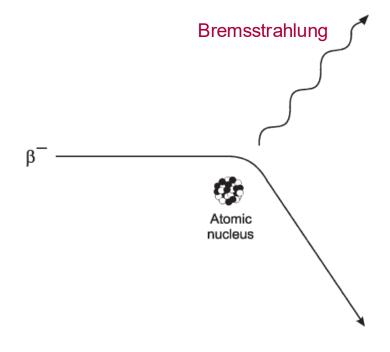
Beta Particles – Interaction with matter

$$n \to p^+ + \beta^- + \bar{v} \to \text{caused by neutron/proton (n/p) imbalance}$$

- occurs when n/p ratio is too high
- Neutron → Proton + Electron + Antineutrino
- Atomic number +1, mass number unchanged
- often accompanied by gamma emission

$$^{131}_{53}I \rightarrow {}^{M}_{Z}X + {}^{0}_{-1}e$$
 M: 131 = M + 0, so M = 131
Z: 53 = Z - 1, so Z = 53 + 1 = 54


$$^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}e + 0,97 \text{ MeV}$$


Continuous energy spectrum

Range: $0 \rightarrow E_{max}$, most $\approx \frac{1}{3} E_{max}$ $E_{mean} \sim \frac{1}{3} E_{max}$ Beta particle energy

L'Annunziata Michael F. Radioactivity. Elsevier Science B.V. 2007

Beta Particles – Interaction with matter

Interaction with an orbital electron resulting in ionization. Less-close encounters may result in atomic excitation without ionization.

deflected by a nucleus and loses kinetic energy → emission of a photon of x-radiation

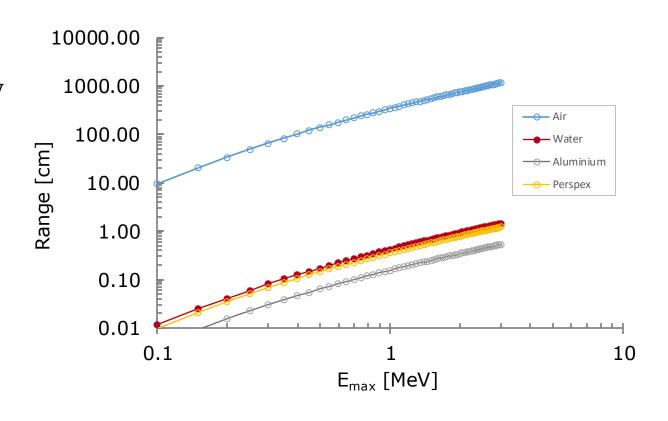
Bremsstrahlung: An electron is

https://radiologykey.com/interaction-of-radiation-with-matter/ L'Annunziata Michael F. Radioactivity. Elsevier Science B.V. 2007

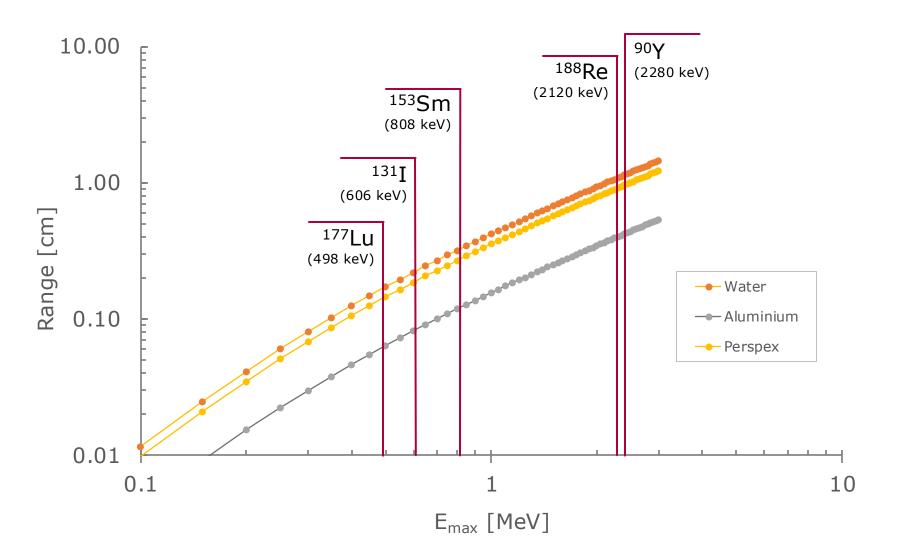
Beta Particles - Range in matter

$$r = \begin{cases} \frac{1}{\rho} (0.542 \cdot E_{max} - 0.133); & E_{max} > 0.8 \text{ MeV} \\ \frac{1}{\rho} 0.407 \cdot E_{max}; & 0.15 \text{ MeV} < E_{max} < 0.8 \text{ MeV} \end{cases}$$

Glendenin et al. 1948


$$r = \frac{1}{\rho} \cdot 0.11 \cdot \left(\sqrt{1 + 22.4 \cdot E_{max}^2} - 1 \right); \quad 0 < E_{max} < 3 \text{ MeV}$$

Paul and Steinwedel, 1955


r: range in matter; [r] = cm

 ρ : density of matter; $[\rho] = g/cm^3$

https://mirdsoft.org/products/MIRDspecs

Beta Particles - Range in matter, shielding

Shielding of beta particles Rule of thumb

Thickness of absorber

$$D[\text{cm}] \approx 0.5 \cdot E_{max}[\text{MeV}]$$

 Y_{90} : 0,5 · 2,3 *MeV*

 $D \approx 1 cm \text{ Perspex}$

THERAPEUTIC PROCEDURES RADIONUCLIDES

NM-Therapies - Mechanisms of Uptake

- Specific cellular active transporters
 - e. g. NIS for ¹³¹I or norephrine transporters for [¹³¹I]mIBG
- Selectivity for certain receptors or antigens (+/- internalization)
 - e. g. peptides, small molecules, antibodies
 PSMA- or DOTATATE-therapies
- Local deposition
 - e. g. SIRT (radiolebaled spheres) or RSO

NM-Therapies - Administration Routes

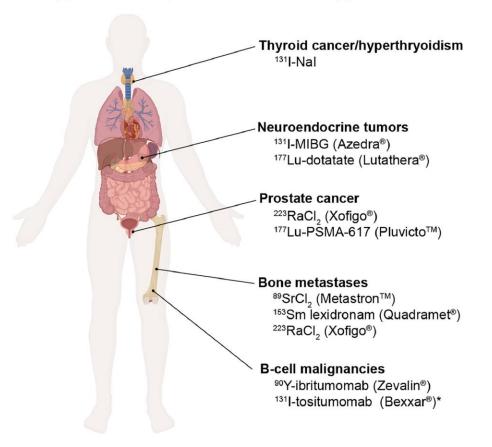
Systemic

Oral: Liquid of Solid (Capsule)

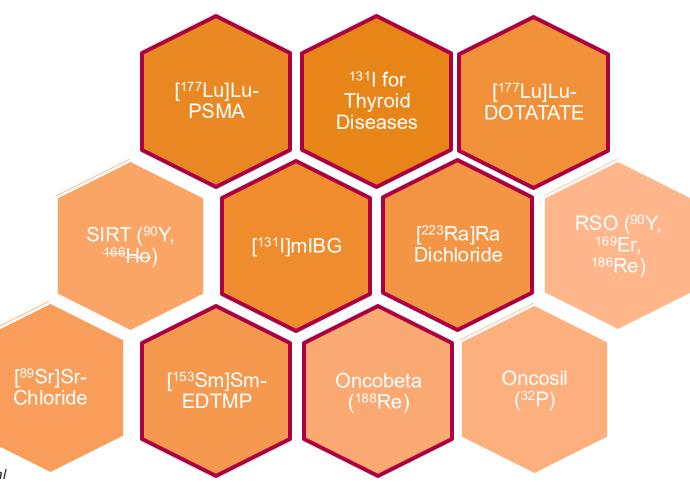
• e. g. ¹³¹I

Intra-venous / (Intra-arterial)

ocoregiona

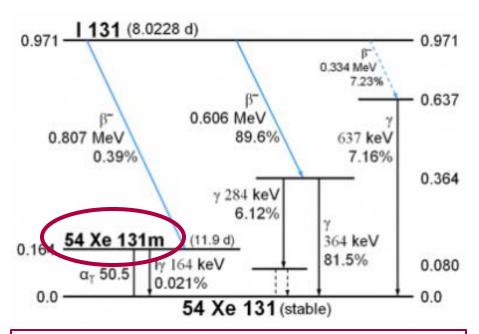

- Intra-arterial: hepatic radioembolization (SIRT)
- Intra-cavitary: intraperitoneal/intratumoral
- Intra-articular: radiosinoviortesis
- Cutaneous application

NM-Therapies - Radionuclides


Radio- nuclide	Туре	Energy [MeV]	Gamma Energy used for Imaging [keV]	Half Live [d]
¹³¹ I	β	0,61; Mean: 0,2	364	8,0
¹⁷⁷ Lu		0,5; Mean: 0,1	113; 208	6,6
90 Y		2.3; Mean 0,9	Bremsstrahlung	2,7
166 ₩0		1,8; Mean:	81	1,1
¹⁸⁸ Re		2,1; Mean: 0,8	155	0,7
¹⁵³ Sm		0,8; Mean: 0,2	103	1,9
⁸⁹ Sr		1,5; Mean: 0,6	Bremsstrahlung	50,6
32 p		1,7 ; Mean: 0,7		14,3
²²³ Ra	α	57,5	82	11,4
²²⁵ Ac	α	5,8 8,4	441	10
¹⁶⁹ Er	$eta^{\!-}$	0.4; Mean: 1,0	Bremsstrahlung	9,4
¹⁸⁶ Re		1,1; Mean: 0,4	137	3,7

THERAPEUTIC PROCEDURES

FDA-approved radiopharmaceutical therapy


NM therapy practices in Europe

Salerno, Kilian E et al. "A Primer on Radiopharmaceutical Therapy." *International journal of radiation oncology, biology, physics* vol. 115,1 (2023): 48-59.

IODINE-131

lodine-131 Physical Half-Life: 8.05 d

PHYSICAL DATA

Gamma

364 keV (82% abundance) 637 keV (7% abundance)

Beta

192 keV (89% abundance / average) 606 keV (89% abundance)

Maximum Beta Range in Water: 2 mm Maximum Beta Range in Air: ~165 cm

SHIELDING

Betas and electrons (complete)

3,3 mm of plastic

Gamma and X-rays

HVL (Lead): 2 mm TVL (Lead): 11 mm

INTERNAL EXPOSURE FOR STAFF

Critical Organ: Thyroid

Effective Doses per Unit intake (Sv/Bq)

Ingestion: 2.2E-8 **ALI**_{ingestion} ~ 1 MBq

Inhalation: 1.1E-8 **ALIi**_{nhalation} ~ 2 MBq

Delacroix et al. RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2002

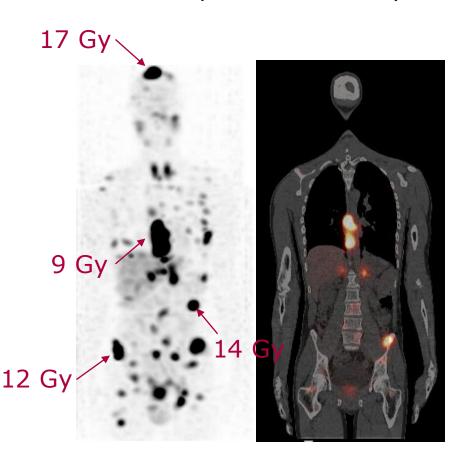
¹³¹I-Therapies for treatment of thyroid diseases

- Common Use: Radioiodine therapy is widely used across Europe for treating hyperthyroidism (like Graves' disease) and differentiated thyroid cancers (such as papillary and follicular thyroid cancer)
- Guidelines and Standards: Treatment follows guidelines set by organizations like the EANM and national societies and health bodies to ensure effectiveness, and standardized dosing protocols
 → fixed activities vs dosimetry
- Hospitalization Rules: Some European countries require hospital stays after therapy depending on the dose administered, while others allow outpatient treatment if radiation exposure to others remains below legal limits
- Access and Availability: Access to radioiodine therapy is generally good across Europe, but waiting times and availability can vary significantly between countries and even between regions within a country

 → however, availability needs to be watched: very recently, closure of production facility in Germany

Iodine-131 – Capsules - Treatment of thyroid diseases

Iodine-131 – mIBG therapy


Meta-iodobenzylguanidine, or Iobenguane

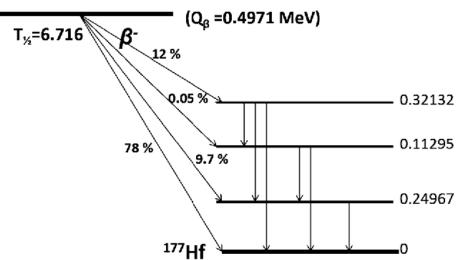
Indication: Treatment of

- phaeochromocytoma
- paraganglioma
- carcinoid tumour
- Stage III or IV neuroblastoma
- Metastatic or recurrent medullary thyroid cancer

usual single-administered activities range between 3.7 and 11 GBq, may be modified for medical reasons

♂ 17 y, met. Neuroblastoma 4,2 GBq I-131-mIBG Intratherapeutic Dosiemtry

Iodine-131 – Take home


- Iodine-131 is a useful as a therapeutic agent, due to emission of beta particles
 - used for I-131-tretament of thyroid diseases (malign and benign)
 - ¹³¹I-mIBG-therapy of neuroendocrine tumors
- gamma rays are also emitted → useful for imaging, need to be considered in radiation protection
- at environmental temperature, Iodine is a gas
 → even when it is in solution or embedded in a capsule, it is volatile and it is released in air
- Iodine capsules are solid radioactive source, but not a sealed source!
- In the decay of 131 I, radioactive 131 mXe (T1/2 = 11.9 d) is produced in little amount ($\sim 1 \%$)
- In addition to any consideration on shielding and prevention of surface contamination,
 Iodine-131 should ALWAYS be manipulated within a vented hood

LUTETIUM-177

Lutetium-177

Physical Half-Life: 6.7 d

PHYSICAL DATA

Gamma

113 keV (6% abundance) 208 keV (11% abundance)

Beta

Betas: 490 keV (79% abundance/max)

160 keV (average)

Maximum Beta Range in Water: 1,4 mm Maximum Beta Range in Air: ~140 cm

SHIELDING

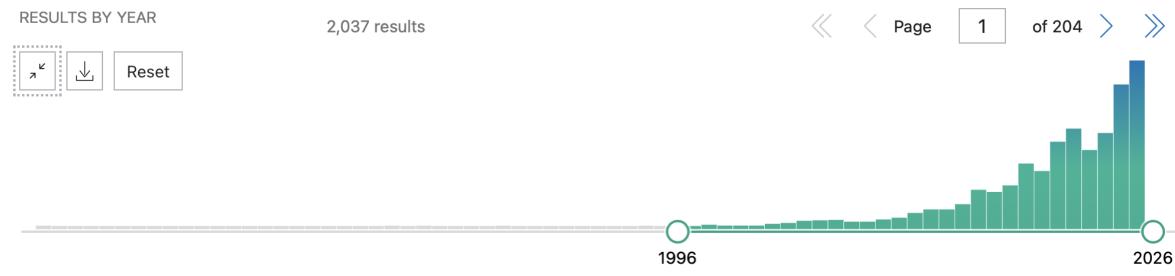
Betas and electrons (complete)

1,5 mm of plastic

Gamma and X-rays

HVL (Lead): 0,6 mm TVL (Lead): 2,1 mm

INTERNAL EXPOSURE FOR STAFF


Critical Organ: Lower Large Intestine (ingestion) Lung (inhalation)

Effective Doses per Unit intake (Sv/Bq)

Ingestion: 6,43E-9 **ALI**_{ingestion} ~ 3 MBq

Inhalation: 3,33E-9 **ALIi**_{nhalation} ~ **6 MBq**

http://www.hpschapters.org/northcarolina/NSDS/177LuPDF.pdf

Pubmed.org

Keywords: Lutetium-177 OR Lu-177

Why Lutetium-177?

- commercially available
- favourable physical properties
 - medium energy β -emitter ($E_{\beta max} = 0.497 \text{ MeV}$)
 - half-life of 6.7 days
 - co-emission of low energy gammas $(E_{\gamma} = 113 \text{ and } 208 \text{ keV})$
- favorable radiochemistry
 - forms very stable complexes with DOTA and similar chelators
 - compatible with well-established targeting vectors
- clinical success (treatment of NET and PCa)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Phase 3 Trial of ¹⁷⁷Lu-Dotatate for Midgut Neuroendocrine Tumors

J. Strosberg, G. El-Haddad, E. Wolin, A. Hendifar, J. Yao, B. Chasen, E. Mittra, P.L. Kunz, M.H. Kulke, H. Jacene, D. Bushnell, T.M. O'Dorisio, R.P. Baum, H.R. Kulkarni, M. Caplin, R. Lebtahi, T. Hobday, E. Delpassand, E. Van Cutsem, A. Benson, R. Srirajaskanthan, M. Pavel, J. Mora, J. Berlin, E. Grande, N. Reed, E. Seregni, K. Öberg, M. Lopera Sierra, P. Santoro, T. Thevenet, J.L. Erion, P. Ruszniewski, D. Kwekkeboom, and E. Krenning, for the NETTER-1 Trial Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer

O. Sartor, J. de Bono, K.N. Chi, K. Fizazi, K. Herrmann, K. Rahbar, S.T. Tagawa, L.T. Nordquist, N. Vaishampayan, G. El-Haddad, C.H. Park, T.M. Beer, A. Armour, W.J. Pérez-Contreras, M. DeSilvio, E. Kpamegan, G. Gericke, R.A. Messmann, M.J. Morris, and B.J. Krause, for the VISION Investigators*

[177Lu]Lu-DOTA-TOC / DOTA-TATE-therapy - Treatment option for neuroenodicrine tumors

- Neuroendocrine tumors (NET) are a relatively rare disease − incidence ~ 0,2 / 100.000
- most of the NET are diagnosed at advanced stages
- if local treatment isn't possible, systemic therapies are needed (chemo, immunotherapy, somatostatin analogues, ...)
- PRRT Peptide receptor radionuclide therapy, a second or third-line therapy for treatment of NET

Treatment of high-grade and other NEN

Liver-directed therapy

Neoadjuvant and salvage therapy

Renal protection

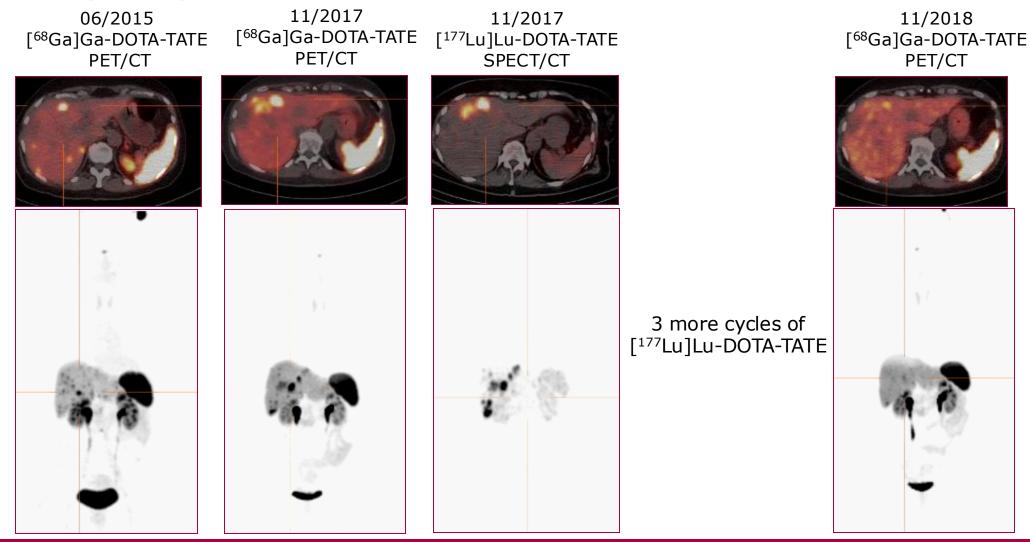
Dosimetry

Taal BG, Visser O. Neuroendocrinology, 2004;80 Suppl 1:3-7. Response prediction

Joint ICTP-IAEA Workshop on Radiation Protection in Diagnostic and Therapeutic Nuclear Medicine 2025

Minczeles, N et al. Curr Oncol Rep 23, 46 (2021)

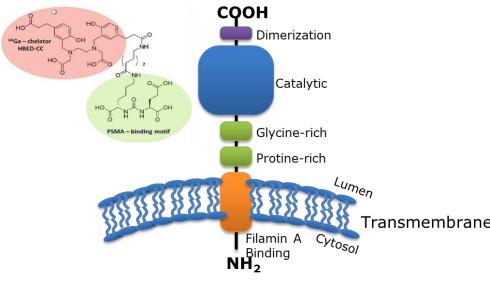
[177Lu]Lu-DOTA-TOC / DOTA-TATE-therapy - Treatment option for neuroenodicrine tumors


- Therapy has been developed and optimized mainly in the Netherlands (Rotterdam group), Italy, Sweden and Germany
- NETTER-I- Phase III-trial → major breakthrough
 - showed significant improvements in progression free survival and response rate
 - approved by FDA, EMA for GEP-NET-> [¹⁷⁷Lu]Lu-DOTA-TATE (Lutathera®)

- Lutathera® treatment:
 - 4 cycles with 6-10 weeks intervals
 - 7.4 GBq prescribed activity (depending on kidney function) infused in 30 min
 - infusion of amino acids for renal protection

Strosberg J et al. N Engl J Med 2017; 376:125-135

Example – patient with small intestine carcinoid


therapie with sandostatin

[¹⁷⁷Lu]Lu-PSMA-617-therapy – treatment of prostate cancer

- Prostate cancer is the most common cancer and the third leading cause of cancer death among men in Europe.
- Androgen deprivation is the mainstay of advanced PC treatment; despite initial responses, almost all patients progress to CRPC/mCRPC
- For treatment of mCRPC a number of systemic therapies are available
- For radiotherapy, predominantly lutetium-177 labeled peptides targeting PSMA are used
- early clinical studies on the use of [177Lu]Lu-PSMA therapy have yielded promising

results

- VISION-trial, phase III-study
 - 831 of 1179 screened patients were randomized
 - 6 x 7.4 GBq/cycle with 6-8 weeks interval

Eder et al., Bioconjugate Chem 2012


Alternate primary endpoints

¹⁷⁷Lu-PSMA-617 prolonged overall survival

All randomized patients (N = 831)100 Hazard ratio: 0.62 (95% CI: 0.52, 0.74) 90 p < 0.001Event-free probability (%) Median 15.3 vs 11.3 months 70 - 177 Lu-PSMA-617 + SOC (n = 551) 10 SOC alone (n = 280) 10 12 14 16 18 20 22 24 26 Time from randomization (months) Number of patients still at risk

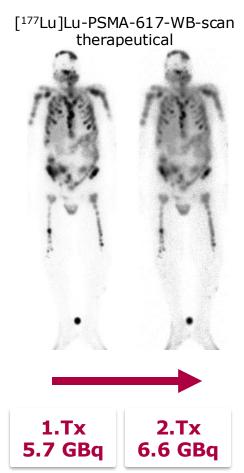
73

¹⁷⁷Lu-PSMA-617 improved rPFS

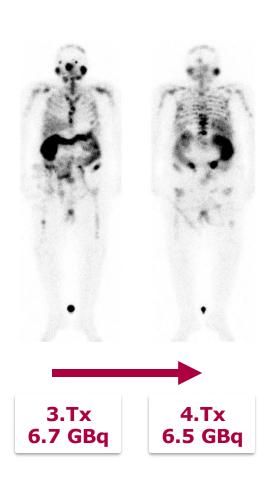
Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. *N Engl J Med* **2021**

238 203 173 155 133 117 98

Secondary endpoint: PSA responses

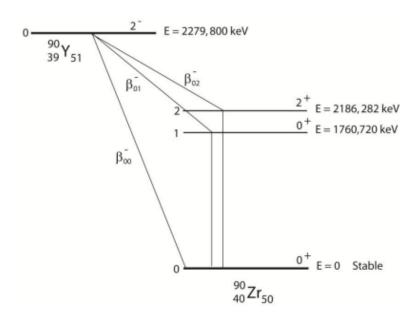

Sartor, O et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med 2021

mCRPC: [177Lu]Lu-PSMA-617 therapy


[68Ga]Ga-PSMA-11 PET/CT pretherapeutically

[68Ga]Ga-PSMA-11 after 2 cycles of PSMA therapy [68Ga]Ga-PSMA-11 after 4 cycles of PSMA therapy

PSA: 213 ALP: 256 PSA: 73 ALP: 112 PSA: 12 ALP: 69


Summary for Lutetium-177

- energy emitted by beta radiation is lower compared to iodine-131
- nevertheless, therapeutic activities used can be significant, e.g 7400 MBq !
- ¹⁷⁷Lu emits a gamma dose per unit of acivity lower even to ^{99m}Tc
- widely used in treatment of NET and prostate cancer
- an increased use of Lutetium-177 will be seen in future
- → see lecture on non-I-131-therapies

YTTRIUM-90

Yttrium-90

Physical Half-Life: 2.7 d

PHYSICAL DATA

Positron

0.015 % abundance \rightarrow 511 keV

Beta

2284 keV (99% abundance / maximum)

Maximum Beta Range in Water: 10,7 mm Maximum Beta Range in Air: ~ 870 cm

SHIELDING

Betas and electrons

9 mm of plastic

Gamma and X-rays

none

considerable Bremsstrahlung (4E-03 µGy/h per 1 MBq @ 100 cm)

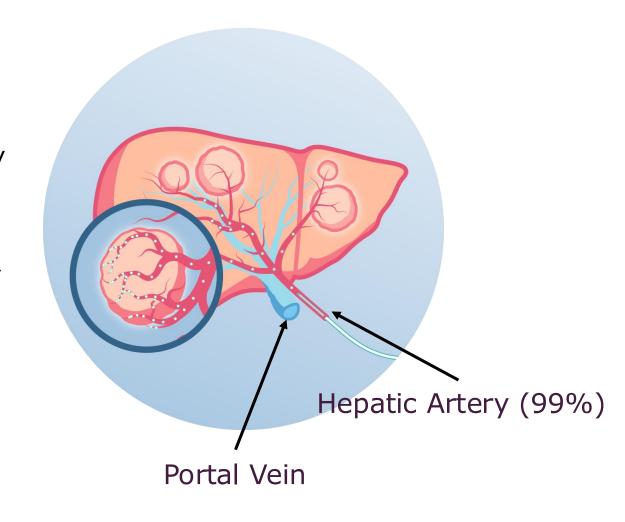
INTERNAL EXPOSURE FOR STAFF

Critical Organ: Lungs

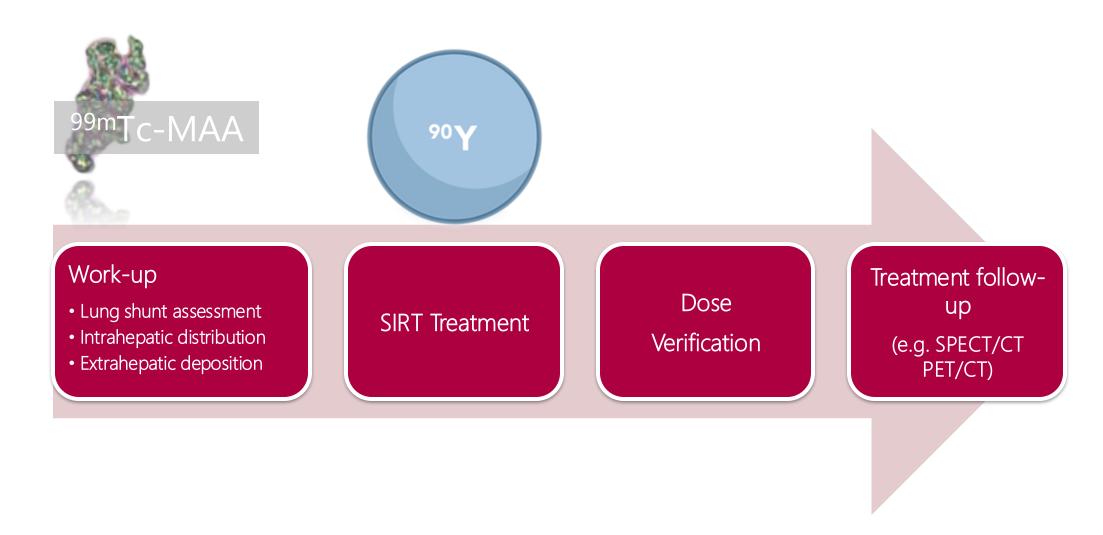
Effective Doses per Unit intake (Sv/Bq)

Ingestion: 2.7E-9

ALI_{ingestion} ∼ **7.4 MBq**

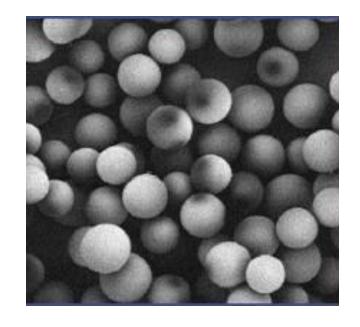

Inhalation: 1.6E-9

ALIi_{nhalation} ∼ 12 MBq


Delacroix et al. RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2002

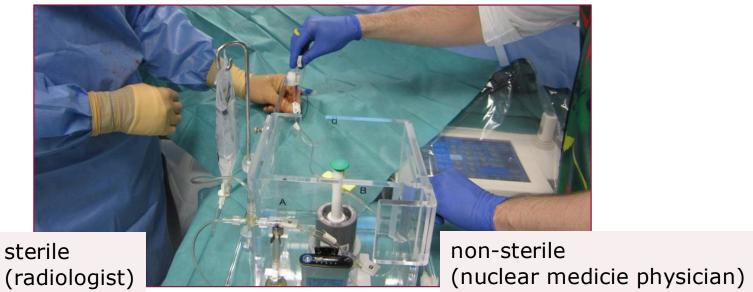
Principles of Selective intra-arterial radiation therapy (SIRT)

- Option to treat patients with primary and secondary liver cancer
- majority of liver tumors receive blood supply by the hepatic artery
- Minimally invasive procedure
- Trans-femoral catheter access to hepatic artery and the tumour supplying vessels
- Radioactive microspheres to deliver radiation directly via the hepatic artery (catheter) to the site of the liver tumors



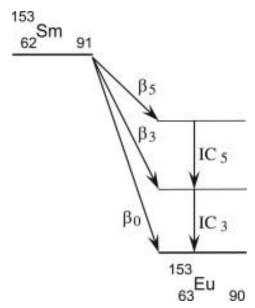
SIRT TREATMENT ALGORITHM WITH 90Y MICROSPHERES

two Yttrium-90 based devices


- First of all, SIRT systems are approved as medical devices, not radiopharmaceuticals!
- Resin microspheres (SIR-Spheres[®], Sirtex)
 - 90Y is coated on the surface of the spheres
 - particle size: 20-60 μm; activity per particle: 50 Bq
 - about 20-40 million particles per administration
 - uniform dose biodistribution
- Glass microspheres (TheraSphere®, Boston Scientific)
 - 90Y is produce by neutron activation inside the glass matrix (89Y is an integral constituent of the glass)
 - particle size: 20-30 μm; activity per particle: 2500 Bq
 - about 1.2 to 8 million particles per administration
 - less embolic effect on microvessels
 - potential influence of gravity on biodistribution

© Mario Marengo, University of Bologna

Practical implementation of the SIRT



Practical implementation of the SIRT

SAMARIUM-153

SAMARIUM-153 Physical Half-Life: 1.95 d

PHYSICAL DATA

Gamma

41 keV (49% abundance) 103 keV (28% abundance)

Beta

634 keV (35% abundance) 703 keV (44% abundance)

Maximum Beta Range in Water: 3 mm Maximum Beta Range in Air: ~260 cm

SHIELDING

Betas and electrons

2.4 mm of plastic

Gamma and X-rays

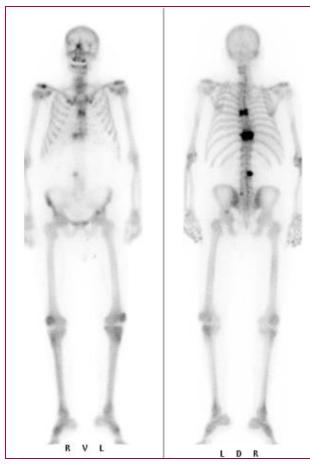
HVL (Lead): <1 mm TVL (Lead): <1 mm

INTERNAL EXPOSURE FOR STAFF

Critical Organ: lower large intestine

Effective Doses per Unit intake (Sv/Bq)

Ingestion: 7.4E-10 **ALI**_{ingestion} ~ **27 MBq**


Inhalation: 6.8E-10 **ALIi**_{nhalation} ~ **29 MBq**

SAMARIUM-153-EDTMP THERAPY

- limitations of other therapies
 - analgetics
 - bisphosphonates
 - chemotherapy
 - hormonal therapy and external beam radiotherapy
- bone-seeking radiopharmaceuticals have an important role in palliation of pain from bone metastases
- [153Sm]Sm-EDTMP is indicated for the treatment of bone pain in patients with multiple, painful skeletal osteoblastic metastases that uptake technetium-labeled bisphosphonates (99mTc).
- typical activity administered (according to Quadramet spc) is 37 MBq/kg

Bone Scan 730 MBq [^{99m}Tc]Tc-DPD

3500 MBq [¹⁵³Sm]Sm-EDTMP

RHENIUM-188

Rhenium -188

PHYSICAL DATA

Half Life

17,0 hours

Gamma

155 keV (15% abundance)

Beta

Betas: 2,12 keV (72% abundance/max) 784 keV (average)

Maximum Beta Range in Water: ~ 1 cm Mean Beta Range in Water: ~ 0.3 cm Maximum Beta Range in Air: ~ 820 cm

SHIELDING

Betas and electrons (complete)

8,3 mm of plastic

Gamma and X-rays

HVL (Lead): 3 mm

TVL (Lead): 23 mm

EXPOSURE (SKIN DOSE)

$$\Gamma_{\beta,H_{Haut}} = 1.8 \frac{\mu Sv}{h \cdot Bq \cdot cm^2}$$

Uniform Distribution: 2,32 mSv/h

 (1 kBq/cm^2)

Droplet: 1,35 mSv/h

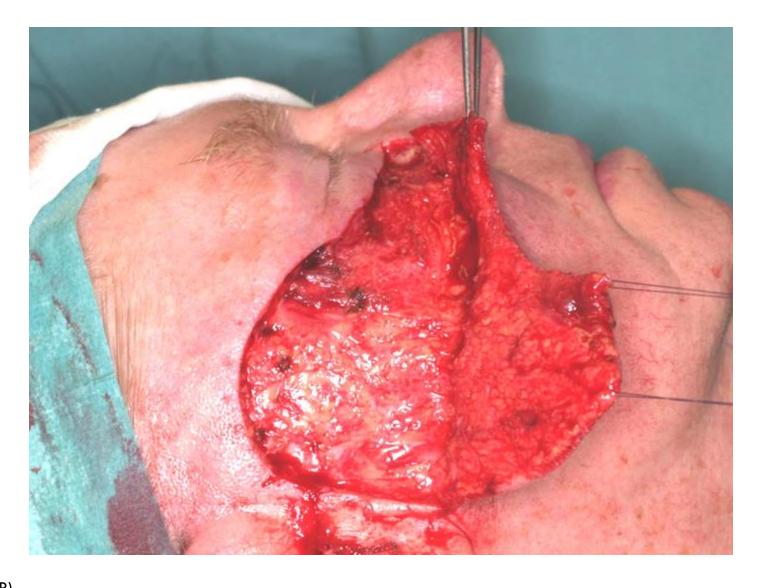
(1 kBq)

Radionuclide and Radiation Protection Data Handbook

TREATMENT OF BCC - RHENIUM-SCT®

Oncobeta – Treatment of Non-Melanoma Skin Cancer

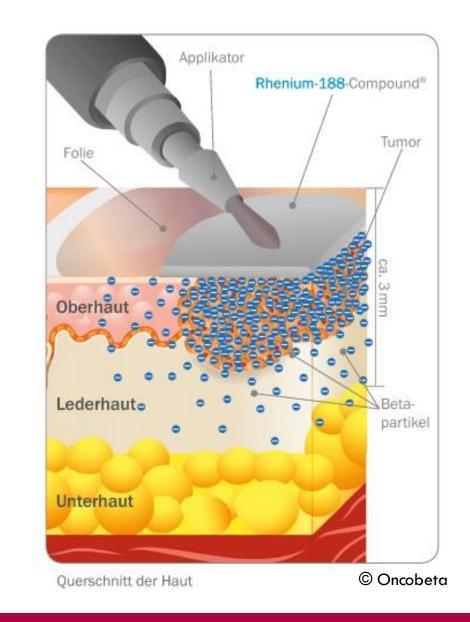
Most common tumour in humans (lifetime risk > 30%)



© J. Tietze (Dermatology, UMR)

Source: J. Tietze (Dermatology, UMR)

Source: J. Tietze (Dermatology, UMR)



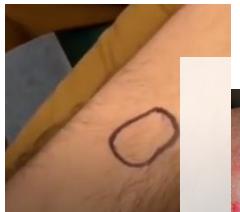
Quelle: J. Tietze (Dermatologie, UMR)

Rhenium-SCT® - mechanism of action

- Local irradiation of the tissue surface using Re-188
 → brachytherapy
- Therapeutic penetration depth of beta-emitting Re-188 is approx. 2-3 mm
- Beta particles cause damage to the first layers of skin and trigger a local immune response
- Required Activity is dervice lesion specific (depending on lesion area and depth) → Dosimetry

Rhenium-SCT® - Components of the treatment set

Rhenium-SCT® - Treatment Procedure


1

2

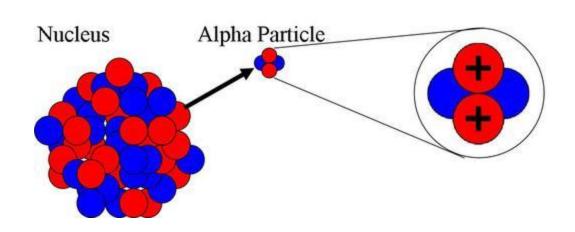
3

4

5

Mark the area to be treated (Target Area)

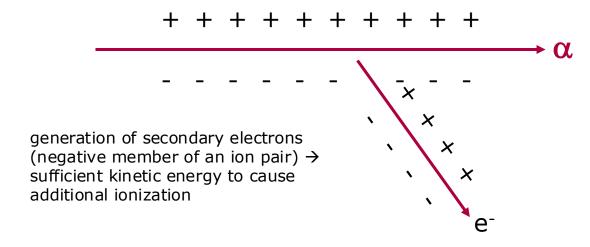
pretherapeutic

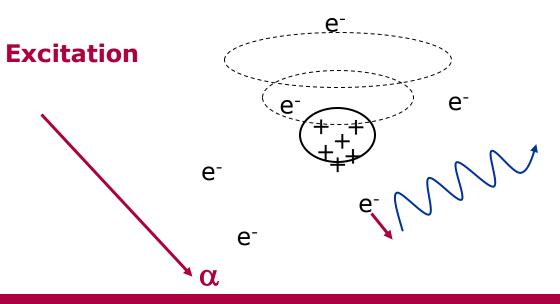

posttherapeutic (1.5 y)

Remove foil with activity after lesion/dose specific treatment time

ALPHA-EMITTER

Alpha Particles – Interaction with matter



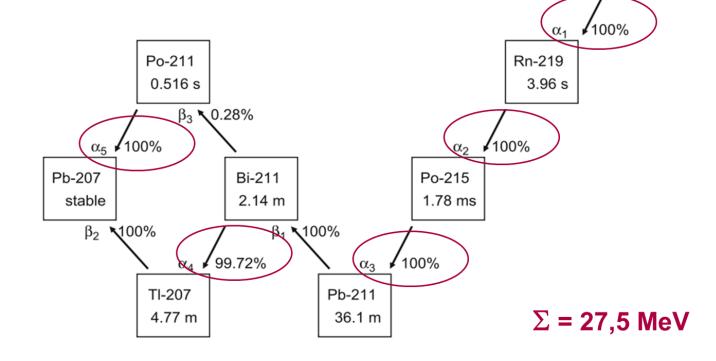

types of interactions

- Ionization
- Excitation

https://physicsopenlab.org/2016/02/11/alpha-%CE%B1-radioactivity/L'Annunziata Michael F. Radioactivity. Elsevier Science B.V. 2007

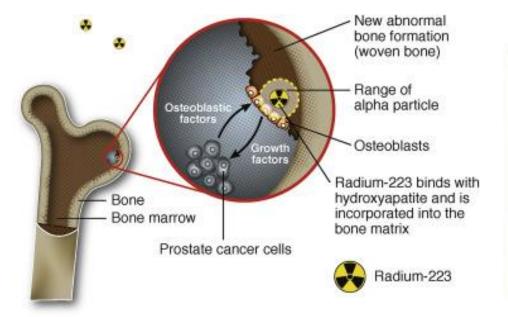
Ionization

RADIUM-223

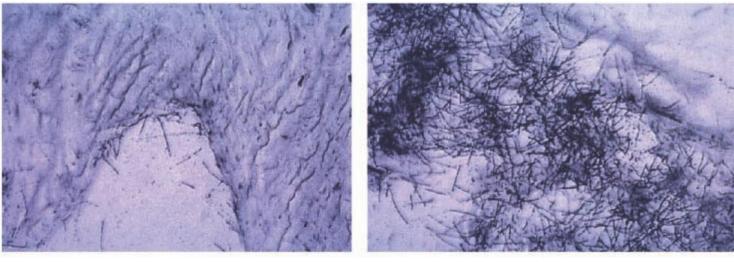

Radium-223

Parameter	²²³ Ra	²¹⁹ Rn	²¹⁵ Po	²¹¹ Pb	²¹¹ Bi	²⁰⁷ TI
t 1/2	11,43 d	3,96 s	1,78 ms	36,1 min	2,17 min	4,77 min
α-energy (MeV)	5.64	6.75	7.39		6.55	
β-energy (MeV)				1,37		1,42

Ra-223 11.43 d


Ac-227 / Ra-223 generator

$$\begin{array}{c}
\beta, 98.6\% \\
227 \text{Ac } (21.7 \text{ years}) \rightarrow {}^{227} \text{Th } (18.7 \text{ days}) \\
\downarrow^{\alpha}, 1.4\% \quad \beta \qquad \downarrow^{\alpha} \\
223 \text{Fr } (21.8 \text{ min}) \rightarrow {}^{223} \text{Ra } (11.4 \text{ days}) \\
\downarrow^{\alpha} \\
\downarrow^{215} \text{Po } (1.78 \text{ ms}) \\
\downarrow^{\alpha} \\
\downarrow^{\alpha} \\
\downarrow^{\alpha} \\
\downarrow^{211} \text{Pb } (36.1 \text{ min}) \rightarrow {}^{211} \text{Bi } (2.15 \text{ min}) \rightarrow {}^{211} \text{Po } (0.52 \text{ s}) \\
\downarrow^{\alpha}, 99.72\% \quad \beta \qquad \downarrow^{\alpha} \\
207 \text{Tl } (4.77 \text{ min}) \rightarrow {}^{207} \text{Pb}
\end{array}$$



Shishkin DN et al. Radiochemistry (53). 2011

Ra-223-Dichlorid (Xofigo®)

Microautoradiography of the bone of a dog after injection ²²³Ra

spongious bone

osteoblastic area

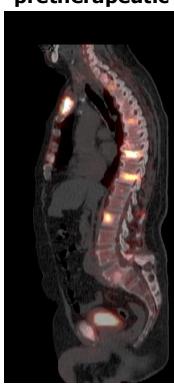
- energy fraction emitted as alpha particles is \sim 95 %, Σ =27.5 MeV
- fast biodistribution (~ 10 min until incorporation into bone)
- excretion is mainly with feces, ~ 5% via urine, no evidence for hepatobiliary excretion

Bruland, O. S. Clin Cancer Res 2006;12

Tai-Lung Cha, Journal of the Formosan Medical Association, Volume 116, Issue 11,2017,

Xofigo®

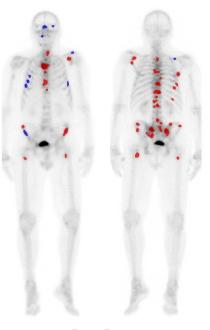
- intravenous administration; approved by EMA for the treatment of men with mCRPC and symptomatic bone mets without visceral mets
- applied activity: 50 kBq per kg bodyweight and cacle


Patient Case

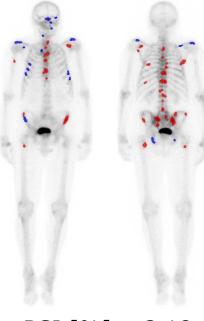
♂, 72 years chemotherapy osseous mets

6 x 50 kBq/kg p.i. Xofigo®

Bone Scan pre- and postherpeutical


pretherapeutic

postherapeutic



pretherapeutic

BSI [%] = 2,50

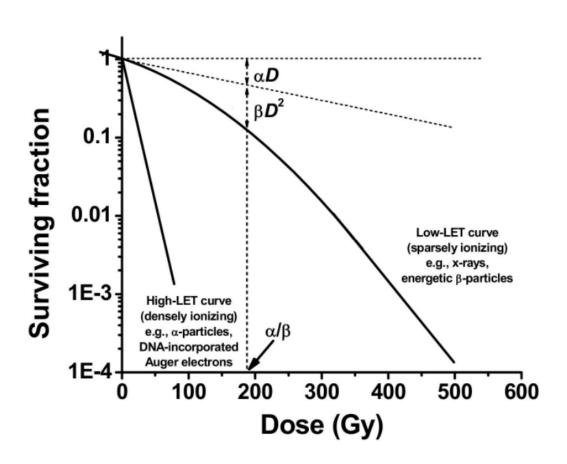
postherapeutic

BSI
$$[\%] = 2,18$$

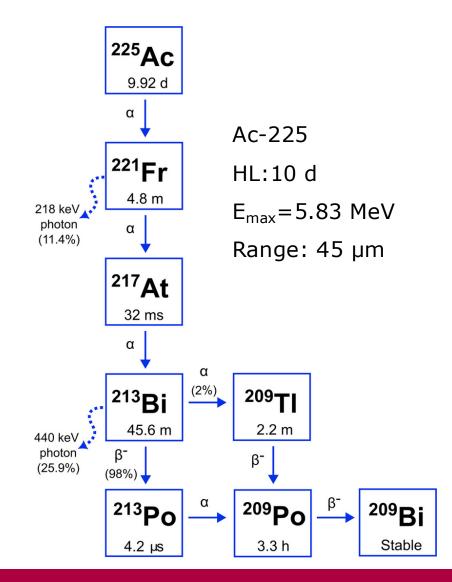
Intratherapeutic Imaging Bone Scan Ra-223 Scan Ra 223 11.43 d α 5.7162, 5.6067... γ 269, 154, 324...

L D R

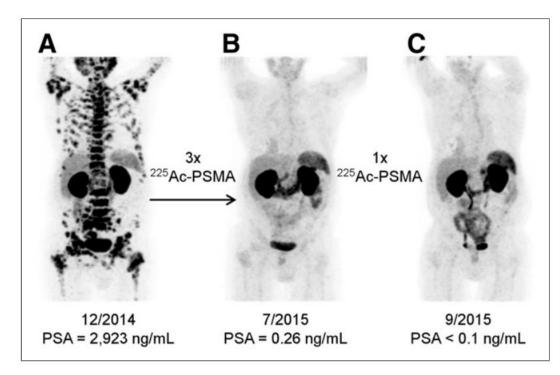
RVL

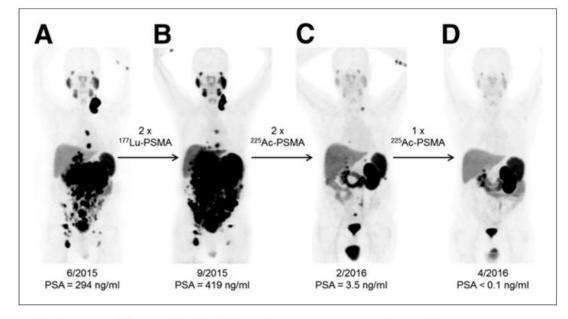

L D R

20 h p. i.

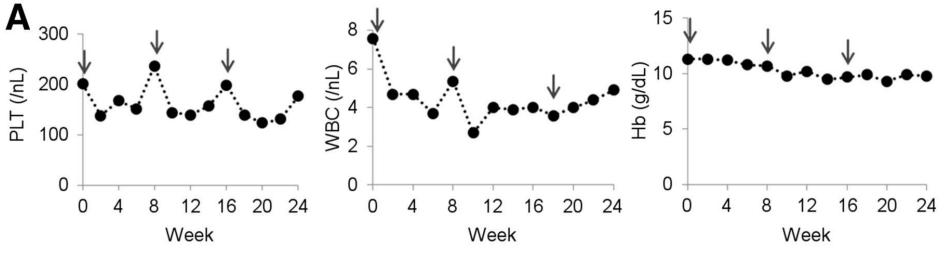

R V L

ACTINIUM-225


[²²⁵Ac]Ac-PSMA-617- for treatment of mCRPC


Kassis, A.I. 2008. Therapeutic Radionuclides: Biophysical and Radiobiological Principles. Seminars in Nuclear Medicine 38, 358-366

[²²⁵Ac]Ac-PSMA-617- therapy of mCRPC


FIGURE 1. ⁶⁸Ga-PSMA-11 PET/CT scans of patient A. Pretherapeutic tumor spread (A), restaging 2 mo after third cycle of ²²⁵Ac-PSMA-617 (B), and restaging 2 mo after one additional consolidation therapy (C).

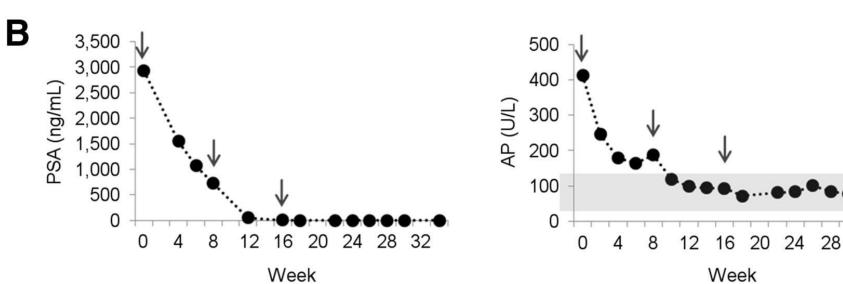
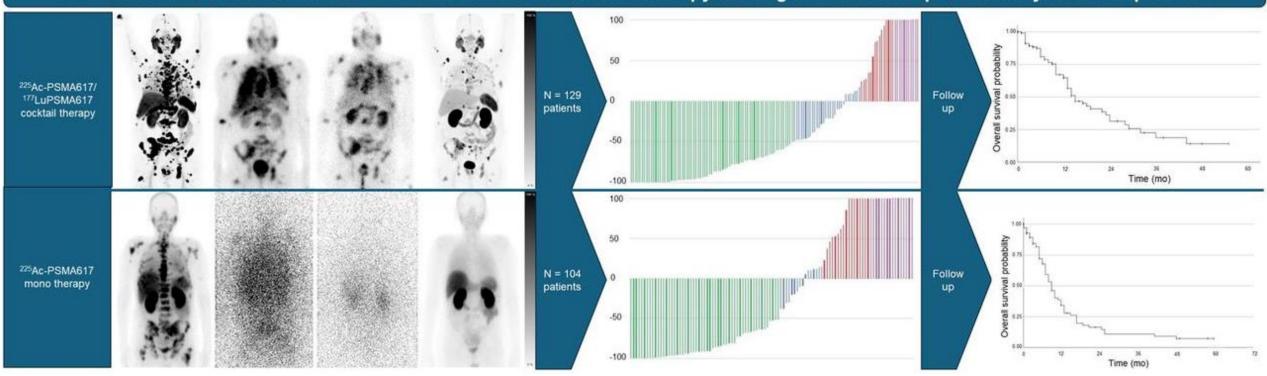


FIGURE 3. ⁶⁸Ga-PSMA-11 PET/CT scans of patient B. In comparison to initial tumor spread (A), restaging after 2 cycles of β -emitting ¹⁷⁷Lu-PSMA-617 presented progression (B). In contrast, restaging after second (C) and third (D) cycles of α -emitting ²²⁵Ac-PSMA-617 presented impressive response.

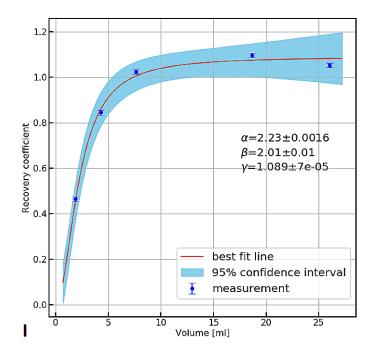
Kratochwil et al. J Ncl Med , 2016 vol. 57 no. 12 1941-1944

[²²⁵Ac]Ac-PSMA-617- therapy of mCRPC

Laboratory test follow-up of patient A. Arrows indicate administration of treatment cycles.


Clemens Kratochwil et al. J Nucl Med 2016;57:1941-1944

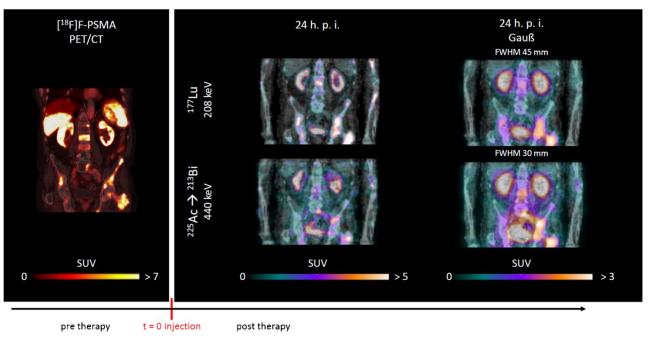
32


¹⁷⁷Lu/²²⁵Ac-PSMA-617 Cocktail Therapy

De-escalated ²²⁵Ac-PSMA-617 vs. ¹⁷⁷Lu/²²⁵Ac-PSMA-617 "cocktail therapy": a single center retrospective analysis of 233 patients.

Ac-225 – quant. SPECT-CT

Windows	Primary	Lower Scatter
II	217 keV, width 10%	5% width
III	444 keV, width 10%	5% width



Tulik, M. et al. Quantitative SPECT/CT imaging of actinium-225 for targeted alpha therapy of glioblastomas. EJNMMI Phys 11, 41 (2024).

Combined ¹⁷⁷Lu/ ²²⁵Ac imaging for dosimetry

¹⁷⁷Lu: 208 keV, 15% width ²²⁵Ac: 440 kev, 20% width

Scan Time ~ 1h per bed position

Delker A et al. Biodistribution and dosimetry for combined [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T therapy using multi-isotope quantitative SPECT imaging. Eur J Nucl Med Mol Imaging. 2023;50(5):1280-1290.

[225Ac]Ac-PSMA – Clinical Trials (selection)

- AcTION: A Phase I Study of [²²⁵Ac]Ac-PSMA-617 in Men With PSMA-positive Prostate Cancer With or Without Prior [¹⁷⁷Lu]Lu-PSMA-617 Radioligand Therapy (NCT04597411)
- LUTACT: Comparison of ¹⁷⁷Lu-PSMA-617 and ²²⁵Ac-PSMA-617 (NCT07054346)
- PAnTHA: First-in-human Study of ²²⁵Ac-PSMA-Trillium (BAY 3563254) in Participants
 With Advanced Metastatic Castration-resistant Prostate Cancer
- ²²⁵Ac-J591 (nonoclonal antibody)
 - Phase I dose-escalation trial of ²²⁵Ac-J591 in mCRPC patients (NCT03276572)
 - Pilot study of PSMA-targeted radionuclide therapy (TRT) re-treatment utilizing ²²⁵Ac-J591 (NCT04576871)

• ...

Production Routes of ²²⁵Ac

Limited availability constrains the more intensive use of ²²⁵Ac

- route for ²³³U decay is, at the moment, the only viable way to obtain ²²⁹Th, the parent of ²²⁵Ra and then of ²²⁵Ac
 - concerns in the use of fissile ²³³U (by-products and waste from its decay)
 - extensive purification is needed to get clinically relevant and pharma grade amounts of ²²⁵Ac

• Alternative: Cyclotron production of 225 Ac by proton bombardment of 226 Ra \rightarrow 226 Ra(p,2n) 225 Ac

Availability of ²²⁵Ac

- Oak Ridge National Laboratory has been supplying 25 ... 30 GBq per year of highpurity ²²⁵Ac
- similar quantity is reported to be available from the Institute of Physics and Power Engineering, in Obninsk, Russia
- Institute for Transuranium Elements in Karlsruhe, Germany (ITU) maintains a smaller ²²⁹Th source that is capable of producing 12 ... 15 GBq of ²²⁵Ac per year
- ITM, Eckert & Ziegler → new production facilities based on cyclotron production route

CURRENT AND FUTURE DEVELOPMENTS TO BE CONSIDERED

New Therapeutic Targets

Target	Full Name	Indications (Explored)	Radionuclides	Notes
FAPi	Fibroblast Activation Protein inhibitor	Many solid tumors (e.g., pancreatic, breast, lung, sarcoma)	¹⁷⁷ Lu, ²²⁵ Ac, ⁹⁰ Y	Targets tumor stroma (CAF-rich tumors); very high uptake and rapid clearance from non-tumor tissue.
GRPr	Gastrin-Releasing Peptide Receptor	Prostate cancer, breast cancer, small cell lung cancer	¹⁷⁷ Lu, ⁹⁰ Y	Mainly explored in prostate and breast cancers
CXCR4	C-X-C chemokine receptor type 4	Hematological malignancies (e.g., multiple myeloma, AML), some solid tumors	¹⁷⁷ Lu, ⁹⁰ Y	Important for aggressive and metastatic disease

Radionuclides used in Therapy + "new"

Radio- nuclide	Туре	Energy [MeV]	Gamma Energy used for Imaging [keV]	Half Live [d]
131		0,61; Mean: 0,2	364	8,0
¹⁷⁷ Lu		0,5; Mean: 0,1	113; 208	6,6
90 Y		2.3; Mean 0,9	Bremsstrahlung	2,7
¹⁶⁶ Ho	<i>0</i> -	1,8; Mean:	81	1,1
¹⁸⁸ Re	β-	2,1; Mean: 0,8	155	0,7
¹⁵³ Sm		0,8; Mean: 0,2	103	1,9
⁸⁹ Sr		1,5; Mean: 0,6	Bremsstrahlung	50,6
³² P		1,7 ; Mean: 0,7		14,3
²²³ Ra	α	57,5	82	11,4
²²⁵ Ac	α	5,8 8,4	441	10
¹⁶⁹ Er	<i>a</i> -	0.4; Mean: 1,0	Bremsstrahlung	9,4
¹⁸⁶ Re	β-	1,1; Mean: 0,4	137	3,7
²¹¹ At	α	5,8 7.5		0.29
¹⁶¹ Tb	β	0,59 ;Mean: 0,15 (Auger Electrons)	49; 75	6,96
²¹² Pb	β-, α	0,57 ;Mean: 0,14 (α: 2,2; 6,2)	²¹² Bi: 230, 247	0,43
⁶⁷ Cu	$eta^{\!\scriptscriptstyle -}$	0,56 ;Mean: 0,14	93, 185	2,6

"NEW RADIONUCLIDE" – TERBIUM-161

Targeted Radionuclide Therapy: 177Lu & 161Tb

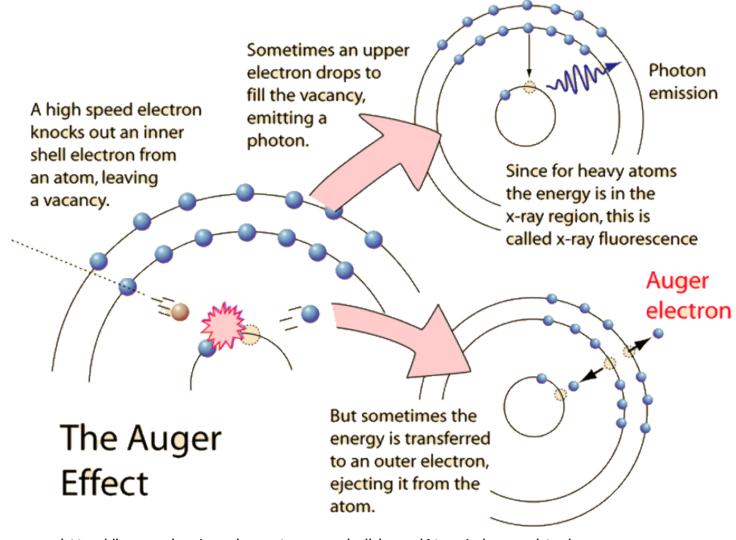
- Lu-177: Standard β^- emitter with gamma photons
 - → established clinical role
- Tb-161: Next-generation β⁻ emitter + conversion/Auger electrons
 - → enhanced DNA-level damage potential
- Shared trait: Both chelate well with DOTA
 - → same ligands can be used (DOTATATE, PSMA, etc.)

Auger Emitters – Precision Tools for Targeted Radiotherapy

Mechanism

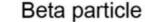
- Radionuclide decays
 → inner-shell vacancy
- Cascade of Auger electron emissions
- Energy deposition localized around the atom
 - → DNA damage if near nucleus

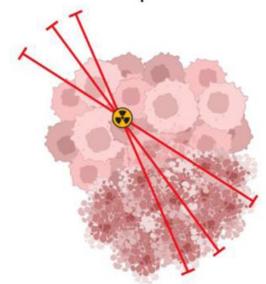
Physical Characteristics


Property Typical Value

Energy 20 eV – 25 keV

Range in tissue 1 – 10 nm


LET up to 30 keV/µm


Target scale DNA / nucleus

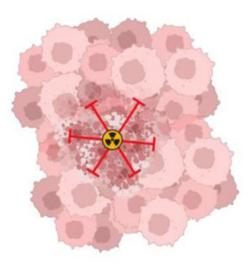
http://hyperphysics.phy-astr.gsu.edu/hbase/Atomic/auger.html

Therapeutic Radionuclides – A Question of Range

Scale tumors, tissues

Range 0.1-10 mm

LET


Example nuclides 177Lu, 90Y, 153Sm, 131I

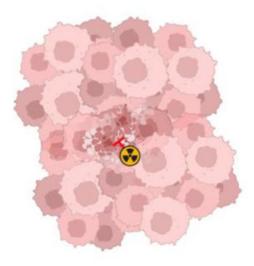
<1 keV/µm

Example agents [177Lu]Lu-dotatate (I

[¹⁷⁷Lu]Lu-dotatate (Lutathera®) [¹⁷⁷Lu]Lu-PSMA-617 (Pluvicto™)

Alpha particle

< 10 cells


< 100 µm

50 - 230 keV/μm

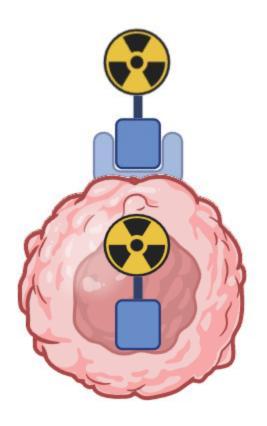
²²³Ra, ²²⁵Ac, ²¹²Pb

[223Ra]RaCl₂(Xofigo®)

Auger-Meitner electron

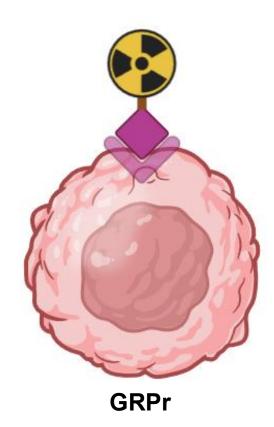
single cell

 $< 1 \mu m$

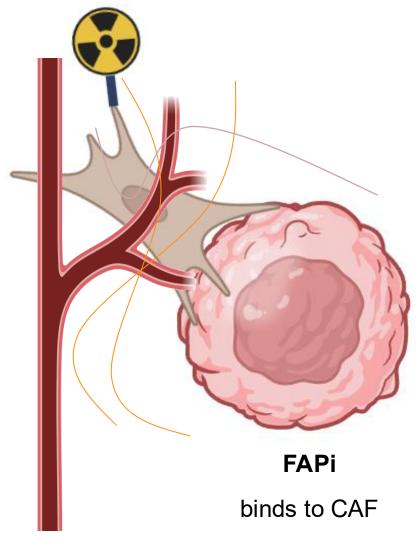

1 - 23 keV/µm

123 I, 111 In

¹⁶¹Tb - labelled pharmaceuticals


Salerno, Kilian E et al. "A Primer on Radiopharmaceutical Therapy." *International journal of radiation oncology, biology, physics* vol. 115,1 (2023): 48-59.

Therapeutic Radionuclides - Therapeutic Relevance - Localisation

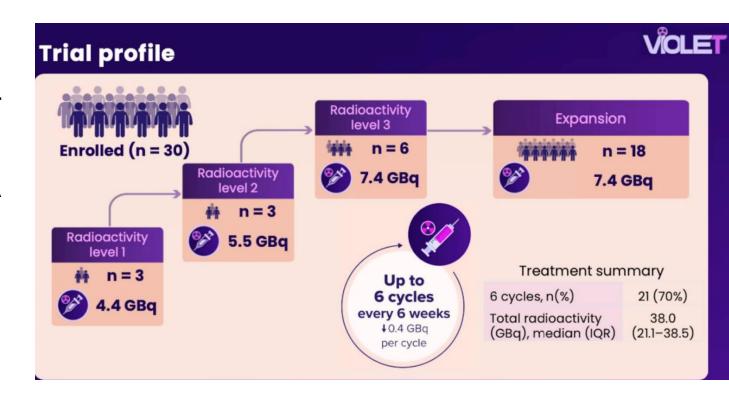


PSMA

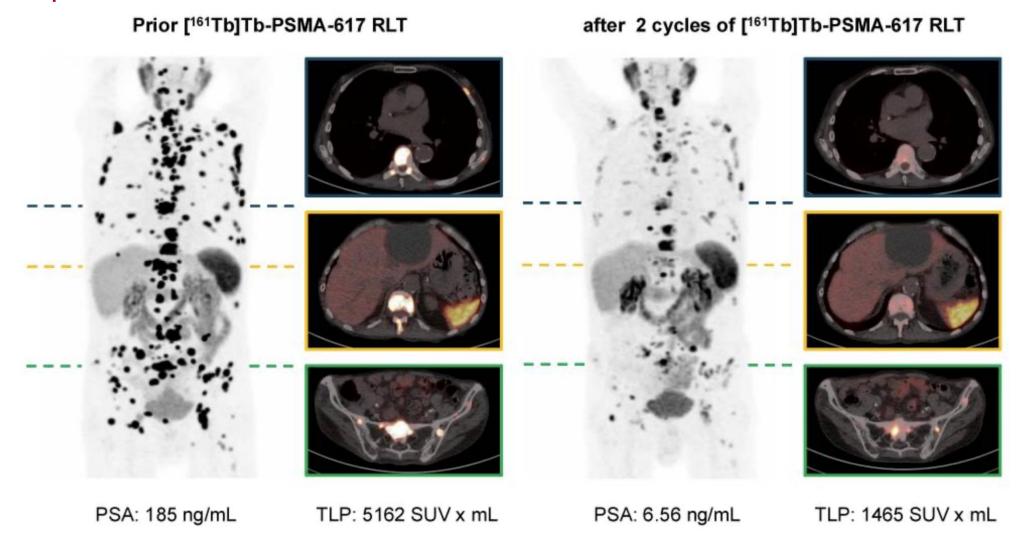
Internalisation

Antagonists/
Transmembrane Binding

Lu-177 vs Tb-161


Property	Lu-177	Tb-161	Key Takeaway
Half-life	~6.65 days	~6.89 days	Nearly identical → same logistics
β ⁻ energy	Emax ~0.497 MeV (mean ~0.133 MeV)	Emax ~0.593 MeV (mean ~0.154 MeV)	Very similar tissue penetration (~1-2 mm)
Additional radiation	Minimal Auger/IC	High yield of conversion & Auger e ⁻ (nm-µm range)	Extra DNA-level damage when ligand internalizes
Gamma emissions	113 keV (6.4%) 208 keV (11%)	49-103 keV (several low-energy γ lines)	Both allow SPECT imaging; Tb-161 lower energy
Chemistry	Lanthanide; stable DOTA chelation	Same; DOTA compatible	Ligands interchangeable (DOTATATE, PSMA, etc.)

Where They Are Used


- Lu-177 Today
 - Approved:
 - Neuroendocrine tumors → Lu-177-DOTATATE (PRRT)
 - Prostate cancer (PSMA+ mCRPC) → Lu-177-PSMA-617 (Pluvicto)
 - Proven OS and PFS improvements in pivotal trials.
- Tb-161 Tomorrow
 - Still investigational, early trials in NETs and prostate cancer
 - Strong preclinical evidence of higher tumor kill, especially micrometastases
 - First-in-human studies (PSMA-I&T) show feasibility and safety.

VIOLET trial

- VIOLET trial (led by P. Mac CC) uses [161Tb]Tb-PSMA-I&T to treat patients with metastatic castration-resistant prostate cancer
- Initial results from the phase I/II study have shown great promise:
 - 70% of patients had their PSA levels decline by 50% or more
 - 40% of patients experienced an even more significant PSA decline of 90% or more
 - treatment was well-tolerated with low rates of side effects

Response

Rosar F et al. "Pilot experience of [161Tb]Tb-PSMA-617 RLT in mCRPC patients after conventional PSMA RLT within a prospective registry." *Theranostics* vol. 15,17 9019-9028. 16 Aug. 2025, doi:10.7150/thno.115831

Jens Kurth, PhD (EE)

Rostock University Medical Center, Germany Department of Nuclear Medicine

jens.kurth@med.uni-rostock.de