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SU(N): platform for spin liquids

Enlarging SU(2) into SU(N) allows to

destabilize (semi)classical order (1d, 2d)
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what’s so nice ??

...anh introduction

V' decoupling of “nuclear spin I” from electronic states
= |z-independent scattering length

V' SU(N) (N=2I+1) symmetry (almost perfect...) Gorshkov et al | O

alkaline-earth cold atoms
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v 171vb (1=1/2,5U(2)), 173Yb (1=5/2, SU(6)), 87Sr (1=9/2, SU(10)) ,.... Takahashi group *10-1 2

DeSalvo et al.’1 0

v tunability: interactions, lattice, ....

v' Pomeranchuk cooling Zi Cai et al ’l3

1OP Publishing

Fermionic isotopes

Reports on Progress in Physics

Rep. Prog. Phys. 77 (2014) 124401 (20pp)

Report on Progress

Ultracold Fermi gases with emergent

SU(N) symmetry

Miguel A Cazalilla'> and Ana Maria Rey’

doi:10.1088/0034-4885/77/12/124401




PRL 105, 030402 (2010) PHYSICAL REVIEW LETTERS
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Degenerate Fermi Gas of 3’Sr
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Realization of a SU(2) X SU(6) System of Fermions in a Cold Atomic Gas
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Exotic phases: topological order

v Long-range entanglement >ee e.g. X-G. Wen's book

* genuine topological order allowed in (2+1)D, (3+1)D
* robust against any perturbation

* Ex: fractional quantum Hall effect, toric code...

v' Short-range entanglement

* without symmetry, all states are connected to a trivial product
state

* with protecting symmetries, various topological phases

Symmetry-protected topological (SPT) order
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Topological phases in 1d

v Only SPT is possible Verstraete et al ’05; Chen, Gu & Wen ‘10
* protecting symmetry is mandatory
* only short-range entanglement and no topological degeneracy

* Different SPT phases cannot be connected adiabatically

* SPT phases are teatureless in the bulk but exhibit various edge states

— Classification Chen et al.‘l | Duivenvoorden and Quella ’1 3

 Example: S=1 Heisenberg chain and its famous Haldane phase

11 11 Pollmann, Berg, Turner, Oshikawa ‘| 2

ik 1 Al Emergent S=1/2 edge states can be measured !

=l QMC: Miyashita & Yamamoto ‘93

20 40 60 80



1D SPT phase: the Haldane phase

Spin-1 AF Heisenberg spin chain: Haldane phase

AKLT wave function exact ground state: i
Hakrr=J Z

A~ 0.4104327.J

. .

S-S

1

3

Affleck, Kenneldy,_Lieb, Tasaki "88

Edge states (spin-1/2):

Non degenerate GS with PBC _(/”\/ \/"\/ \/”\/ \/"\77
4-fold degenerate GS with OBC GD 69 69 Gi)

SPT phase protected by T, parity, pi-rotations

Pollmann et al.‘| 2

Haldane phase S odd: SPT phase
Haldane phase S even: not a SPT phase

.")-

(5, 5.)




Quantum simulator: Fermi-Hubbard SU(2) ladder

a DMD-shaped potential

Tilted-edge ladder
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Spin-1/2 two-leg ladder
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Note that the edge state is a physical spin



Outline

1) How can we realize SU(N) SPT phases in 1d ?

2) How can we realize chiral SU(N) spin liquids in 2d ?

Disclaimer:

This talk will be about exact SU(N) microscopic models with equal
population per color

But it could be interesting to investigate imbalanced populations, SU(N)
symmetry breaking (e.g. in Lithium) etc.



‘Simple” SU(N) chains

O n e-d i m e n S i 0 n a I WO rI d INTERNATIONAL SERIES OF MONOGRAPHS ON PHYSICS ¢ 121

Quantum Physics
in One Dimension

THIERRY GIAMARCHI

OXFORD SCIENCE PUBLICATIONS

Field theory, bosonization, integrable models,

density-matrix renormalization group (DMRG) ....



SU(N) Hubbard model: Mott phase

SU(N) degree of freedom = « spin » = « color »

Filling 1 particle per site: fundamental representation of SU(N)

N?_-1

H = JZP¢,¢+1 Piit1 = ;f | Z S{S5

A=1

J = 2t /U

v Bethe-ansatz solution  sutherland 75

‘/ SU(N)l Wess-Zumino-Witten CFT Affleck 86 ‘88

v stable fixed point of generic SU(N) 1d gapless systems

v'In the Hubbard case, no exact solution but it seems that
there is a finite U BKT Mott transition .. .<.: o/ 9



SU(N) Hubbard model: Mott phase

Filling m particles per site: in the large-U regime, Mott phase

NZ—-1
H=J» » 88, antisymmetric
i A=1 m .
rep. at each site
‘/ CFT analysi S Affleck ‘88 Lecheminant & Tsvelik ‘15

v SU(N)1 Wess-Zumino-Witten CFT if gcd(m,N)=1
v if N=pm, SU(N)1 WZW or translation symmetry breaking
v'Numerics (variational Monte-Carlo) confirms this

Dufour, Nataf, Mila ‘15



Translation symmetry breaking

SU(4) m=2
——e 7
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Capponi, Lecheminant & Totsuka ‘16



SU(N) Hubbard: incommensurate filling

No Umklapp processes: gapless charge mode, metallic behavior

U>0 all modes are gapless: N-component Luttinger liquid

U<0 spin gap for the SU(N) degrees of freedom; gapless charge
= Luther-Emery phase
N>2: no singlet pairing is possible |

SU(N) singlet formed by N fermions: molecular superfluid

0

0.5F ':'
dominant /

molecular s

superfluid Capponi et al. ‘08

15



1d zigzag SU(N) chain

Herviou, Capponi, Lecheminant ‘23
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Take-home message: only trivial phases (no SPT)



1d modulated SU(N) chain

27T

Heisenberg couplings are 1+ dcos (T) eg. forN=3: 1+06,1-0/2,1-0/2

---------------------------------
~~~~~~~~
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5<0 @ —O— @ O—O—@ 5>0 @8 0—&-@-—e
Trivial phase SPT phase, breaks inversion sym
. .. trivial SPT: SPT:
What is the nature of the transitionat 0 = ( ? N~
] >
Symmetric 0 P-broken 5 ~m

What is the nature of the excitations ?
Bi, Lake, Senthil (2020)

PHYSICAL REVIEW B 111, L020404 (2025)

TensorKit.jl

Non-Landau quantum phase transition in modulated SU(/NV) Heisenberg spin chains

Sylvain Capponi ®@,' Lukas Devos ©®,? Philippe Lecheminant,® Keisuke Totsuka,* and Laurens Vanderstraeten ©°

N



SU(3) chain with modulation

Strong-coupling: it maps onto a 3 — 3 chain, known to be dimerized Afflect 90

Field-theory predicts opening of a spectral gap A ~ \5|N/(N+1)

Despite the Z2 inversion symmetry breaking, the phase transition is not Ising-like (c=1/2)

but belongs to the SU(N): universality class with central charge c=N-1

IDMRG results using SU(3)
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SU(3) chain: spectral functions

Using MPS excitation ansatz, one can compute the spectral functions

~+00
S(q, w) = / dre'™ (Wl e 'S4 ™SI W) Vanderstraeten, Verstraete et al.

0.0,

0.3 250

0.25 1 200

0.2
150

3 0.15

100
0.1

0.05

Compatible with a 2-spinon continuum (Small) Explicit symmetry breaking

5 > () Spinons are confined into bound states



Conclusion about 1d

Often, SU(N) models have nontopological groundstates
Some realistic microscopic SU(N) models can stabilize all SPT phases
Some SPT phases also break inversion symmetry breaking (chiral)

A simple modulated SU(N) chain exhibits a non-Landau quantum phase
transition

Perspective: guantum phase transition between a trivial phase and an SPT
Is conjectured to have central charge ¢ > 10g2 d

Verresen, Moessner, Pollmann (2017)



(Going to two dimensions

Quite fun | But challenging too...

E_::%:M—' -— =2
A ROMANCE “_.
OF MANY DIMENSIONS Z‘L uovizawo

By A Squareg' 55

i - s ’_ .
(Edwin A. Abbott) - ﬁ'— Threo Disearionstis B

SPACELAND

¥

PowerEdge 1950 7
/
-

“And therefore as a stranger grve it welcome.” 5

BASIL BLACKWELL - OXFORD
Price Seven Shillings and Sixpence net

3

21



Topological phases of matter

e Robustness of topological states
* Topological quantum computation (no error correction needed !)

e Quasiparticles are anyons (fractional statistics) i.e. not necessarily bosons or
fermions (spin statistics theorem breaks down in 2+1D)

e Excitations can be abelian or not

topological quantum field theory ~
(e.g. Chern-Simons), ~—_
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Chiral topological spin liquids

Chiral topological phase is found in the fractional quantum = A
Hall (FQH) effect o ,

5 _e
=——§

topological phases, exotic excitations
(abelian or not) |
unconventional superconductor when doped : S a—

Fla. 2. Composite view showing the Hall resistance R.. and longitudinal

S It possible to reach the same physics without Landau levels, on a lattice 7

/

Mimic an effective magnetic field, Look for lattice models with similar
flat bands etc. wavefunctions
Fractional Chern insulators




Chiral spin liquids (CSL)
= |attice analogue of FQH states

Low-energy physics described by 2+1 Chern-Simons theory

1 . .
v =5 FQH state [attice spin S=1/2 model
incompressible (gapped) in the bulk Same
charged e/2 fractional excitation H neutral s=1/2 fractional excitation
same

robust gapless chiral edge states

SU(2)1 CFT
triangular lattice: Kalmeyer-Laughlin, 1987



Abelian CSL in spin-1/2 SU(2) models on frustrated lattices  breaks T

AVAVAN

S=1/2 on triangular lattice  w=15Y5 53,

{i,]) (5, J))

PHYSICAL REVIEW B 96, 075116 (2017) PHYSICAL REVIEW B 95, 035141 (2017)

o o o ° o o l ° °
Global phase diagram and quantum spin liquids in a spin-; triangular antiferromagnet Chiral spin liquid and quantum criticality in extended § = % Heisenberg models

on the triangular lattice
Shou-Shu Gong,' W. Zhu,? J.-X. Zhu,>? D. N. Sheng,* and Kun Yang’ 5

Alexander Wietek™ and Andreas M. Liuchli
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S=1/2 on frustrated square lattice

PHYSICAL REVIEW B 96, 121118(R) (2017)

S=1/2 on kagome lattice

o“‘v‘a

Chiral spin liquid and emergent anyons
in a Kagome lattice Mott insulator

B. Bauer', L. Cincio?, B.P. Keller3, M. Dolfi* G. Vidal?, S. Trebst® & A.W.W. Ludwig3

?9 Investigation of the chiral antiferromagnetic Heisenberg model
?e using projected entangled pair states

Didier Poilblanc




SU(N) extension
H=J1 ) Pj+Jy Y Py

(9,5) ((k,1))

+Jr Y (Pyr + Poh) +idt Y (Pyr — Pt
Nijk Aijk

Square lattice, C4 symmetry

PHYSICAL REVIEW B 104, 235104 (2021)

Abelian SU(XN); chiral spin liquids on the square lattice

Ji-Yao Chen®,"? Jheng-Wei Li®,? Pierre Nataf,* Sylvain Capponi®,> Matthieu Mambrini ®,> Keisuke Totsuka,®
Hong-Hao Tu®,” Andreas Weichselbaum,® Jan von Delft,®> and Didier Poilblanc?

week ending

PRL 117, 167202 (2016) PHYSICAL REVIEW LETTERS 14 OCTOBER 201¢

Chiral Spin Liquids in Triangular-Lattice SU(N) Fermionic Mott Insulators

See also on the triangular lattice: with Arificial Gauge Fields

Pierpe Nataf,1 Miklés Lajk(’),2 Alexander Wietek,3 Karlo Penc,4’5 Frédéric Mila,1 and Andreas M. Liuchli’



Numerical methods for SU(N)

....an Introduction

Analytics: large-N, mean-field, parton wavefunctions

 Exact diagonalization (U(1)+lattice symmetries or SU(N) symmetry)

week ending

PHYSICAL REVIEW LETTERS 19 SEPTEMBER 2014

PRL 113, 127204 (2014)

using standard Young tableaux

(d) 1 2 3 1 2 4 (e) Al A A

Exact Diagonalization of Heisenberg SU(N) Models

using  SU(N)

N

o 3|9 B | B Pierre Nataf and Frédéric Mila
= I e 1”1

SU(N) n [f[k.,....k]‘ ("1"‘—1)! Eas

SU(5) |25 (tilted) [[701149020[2.5 x 103| —1.154324
SU(5) |25 (5 x 5) ||701149020[}2.5 x 1013|| —1.164712
SU (5) 20 1662804 ||1.5 x 101°] —1.215377
SU (8) 16 1430 || 5.1 x 10° || —=1.572223
SU(10) 20 16796 []1.2 x 10'*]| —1.589218

UJ(1) (N-1 Cartan)



Numerical methods for SU(N)

... an introduction
Analytics: large-N, mean-field, parton wavefunctions

* Exact diagonalization (U(1)+lattice symmetries or SU(N) symmetry)

* DMRG (U(1) or SU(N) symmetry) + parton wavefunction

Projected Fermi sea

has a tensor network representation %
MPO: D=2 RNty ||||||

UsIn O MPO-MPS com Press ion -> MPS PHYSICAL REVIEW LETTERS 124, 246401 (2020)

Tensor Network Representations of Parton Wave Functions

Ying-Hai Wu ,1 Lei Wang,z’3 and Hong-Hao Tu 4



Numerical methods for SU(N)

... an introduction
Analytics: large-N, mean-tield, parton wavefunctions

 Exact diagonalization (U(1)+lattice symmetries or SU(N) symmetry)
« DMRG (U(1) or SU(N) symmetry) + parton wavefunction

« PEPS using SU(N) symmetric tensors + lattice point-group symmetry

PHYSICAL REVIEW B 94, 205124 (2016)

°m?®; ¢%) Systematic construction of spin liquids on the square lattice from tensor
<

networks with SU(2) symmetry
B Ot h D M R G a n d P E PS C a n mlml; Q;> M ‘QQmQ; C]2> Matthieu Mambrini,'! Romén Orus,” and Didier Poilblanc!

use SU(N) symmetry, e.q. gt )
QSpace or TensorKit |ibraries i)

Andreas Weichselbaum et al. / Lukas Devos & Jutho Haegeman



Exact Diagonalization on torus

Predictions:
® |[f #sites = kN : singlet ground-state, degeneracy on a torus = N
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In 2d: generalization of Hastings-Oshikawa-Lieb-Schultz-Mattis theorem
forbids a non-degenerate gapped state

gapless or discrete symmetry breaking or topological




-xact Diagonalization on torus

Predictions:
o |f #sites = kN : singlet ground-state degeneracy on a torus = N

e | attice momenta can be obtained from a generalized Pauli principle

Haldane, Bernevig, Regnadult,....

e Quasi-hole counting: deg= #sites, 1 per momentum sector
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Exact Diagonalization on open cluster

e SU(N)1 chiral CFT counting (number of sites = Ns)
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D M R G W, Wang, Tu, PRL 124, 246401 (2020)

eParton construction is useful to boost DMRG convergence

[~ "mmm !!!!! B ~+ Spectrum on cylinder vs Ky
| O Exact zero-mode edge states
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PEPS

e . *j* e eSymmetric PEPS construction
/\&//\&( e virtual space: Vv=e&[ & @& N -1
A B
A -(Vn)® = F L. (Vn)®? — e
CSL breaks P and T but not PT A=Ap+id; =Y MNFAL+0Y MA
a=1 b=1

Tensor is a linear combination of point-group SU(N) symmetric ones

e Optimization is performed using CTMRG



PEPS: entanglement spectrum

N, bulk infinite PEPS cylinder

edge

pa = Trg|W)(¥| reduced density matrix b 08

Entanglement spectrum is identical to a CFT boundary spectrum
a.k.a. holographic bulk-edge correspondence

. 277t
e Basic formula: pa = Uo; U
< Nh, R / / L /
a o
= ey [ 2 isometry: maps 2D onto |D
5:.- e A N S i B I
IO A SR L' f _j I"E1 Jives” on the boundary
\ £-\ . ey U8 PHYSICAL REVIEW B 83, 245134 (2011)
d ) _\; m _\_‘cl Entanglement spectrum and boundary theories with projected entangled-pair states
l‘ A B \ \

J. Ignacio Cirac,' Didier Poilblanc,? Norbert Schuch,? and Frank Verstraete®



entanglement spectrum

PEPS
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SU(4), Ny=4, full SU(N) symmetry

X:

HE
(o B[V

e[S 1B
ﬁ+ x O Avy

+ 1 (D& sotpEpEHOR . + +

1 BB xR X BCK OH X XHH+ % +

+ 1 W O GOk O+ b + 4

1 BoOosPR S+ x b + -

37'('./ 2

-

K |[mod 27]

+ 1 (P& sotpEEHOR . + + -

O b~ O 1O <A

HEeRoH-E0ME < E + +1 o&F BowbeHOR  +x + +
PORKHH At XX+ OxKE { BB x@x K H x x+H+ o+
OB-H-EE RGHH ++ {1 & D CGIok O+ bt +
PO K5 ++ X 1 Posp® oxtt x +x + +

N ~~

® &)
b Rol-EIE < 4k + ~ + log sotvemecton 4x + ~— .
LO - LO -] O I~ © 1O F &M AN — O
— —

winaIjoads juoma[sue U]

N
| -
D
O
=
>
@) o0
mw o
' o s ()]
LLI R
an
(D) <
+~
C
Yy— -~
< 2

winijoads juomarsue U

/2

N

~—

1 B

am
15 %
&N
e
N

~—
e &
8

] O

(FRCIP

(LD + @D + QDE + ®)0T + (Dt

RO T AV TS 4 L.,

1§T

®

/3 27/3 ™ 4n/3 57/3

o0 (o) < A

12
0

wnIjoads jusussuRIuUd

o O



PEPS: correlation lengths
UES) SU

>U (4)
' vison ___ (1) — . ; ; 5 ‘ ‘ ‘
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<] parafermion(I) - -- ) . ii
> dimer ) 15 4250 4 4
+ parafermion (II) _€ 4), g =
4 .é 3
S 27
12
1 L
. % I R i 0 1 2 3 4 5 6
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distance x/D?
Correlations in the bulk Correlation length directly from transfer matrix

No saturation so presumably gapless state !

No-go theorem for a free-fermion PEPS to have a bulk gap Dubail & Read "15
Also true In the Interacting case  Li, Lin, McGreevy, Shi 25




Abelian CSL: spontaneous T-breaking

Topological CSL can also be found in the absence of explicit T-breaking

week endin

PRL 112, 137202 (2014) PHYSICAL REVIEW LETTERS 4 APRIL 2014

Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model

Q Yin-Chen He,1 D. N. Sheng,2 and Yan Chen'"

Qc\l/ (& Quantum Spin Liquid with Emergent Chiral Order in the Triangular-lattice Hubbard Model

Bin-Bin Chen,!? Ziyu Chen,! Shou-Shu Gong," * D. N. Sheng,® Wei Li,"** " and Andreas Weichselbaum> ?: *

An SU(4) chiral spin liquid and quantized dipole Hall effect in moiré bilayers

Q\ Ya-Hui Zhang!, D. N. Sheng?, and Ashvin Vishwanath!

PHYSICAL REVIEW B 92, 125122 (2015)

Nature of chiral spin liquids on the kagome lattice

Alexander Wietek,  Antoine Sterdyniak, and Andreas M. Lauchli

PHYSICAL REVIEW X 10, 021042 (2020)

Chiral Spin Liquid Phase of the Triangular Lattice Hubbard Model:
A Density Matrix Renormalization Group Study

Aaron Szasz ,1’2’3’* Johannes Motruk,l’2 Michael P. Zaletel,l’z’4 and Joel E. Moore'*



Non-abelian case: SU(2)

non abelian FQHS Moore-Read.
Read-Rezayi
incompressible (gapped) in the bulk Spin analogue ?

‘ ’ Parent Hamiltonian approach

Coupled wire construction

non abelian fractional excitation

gapless chiral edge states

SU(2)x CFT

These topological phases can host SU(2)x non-abelian anyons !



Moore-Read state corresponds to spin-1 lattice model

New Journal of Physics s QD DPG | cohe Physhalsche _ _
The open access journal at the forefront of phys ics {OF Institute of Physics gfess)lllsiit;aftandtheInstitute P rO p O S e d p a re n t H a m I ‘ tO n I a n
FASTTRACK COMMUNICATION iS rath er COm ‘ icated

Exact parent Hamiltonians of bosonic and fermionic Moore-Read p ’

states on lattices and local models ‘Oﬂg—l’ange

Ivan Glasser', J Ignacio Cirac', German Sierra”’ and Anne E B Nielsen'

iy

| | H=J1) Si-S;j+h Y S-S
truncated approximate spin-1 i o
+K1 Y (Si-S)*+ K2 Y (Sk-S)

model on the square lattice 2 P
+Ke ) [Si - (Sj x Si)+S; - (Sk X S)
L]

‘|‘Si ) (S] X Sm) _I_Sl ) (Sk X Sm)]a

iy

numerics needed



Combined ED/DMRG/PEPS study

PHYSICAL REVIEW B 98, 184409 (2018)

Non-Abelian chiral spin liquid in a quantum antiferromagnet revealed by an iPEPS study

Ji-Yao Chen,' Laurens Vanderstraeten,” Sylvain Capponi,' and Didier Poilblanc'?
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Conclusion and outlook

 Simple SU(N) spin models hosting topological chiral spin liquids

 |mportant to combine different numerical techniques to validate all
properties

 (Characterization of edge states and entanglement properties

* Also non-Abelian CSL with SU(2)2, SU(2)3, SU(3)2, etc... edges
physics T T

Ising anyons Fibonacci anyons

allows universal
computation

Luo, Huang, Sheng, Zhu ‘23



