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SU(N): platform for spin liquids
Read, Sachdev ’89 … 

Enlarging SU(2) into SU(N) allows to 

destabilize (semi)classical order (1d, 2d)

A. Auerbach

Illustration by Richard Codor



   alkaline-earth cold atoms  
... an introduction

what’s so nice ??

✓  decoupling of “nuclear spin I” from electronic states  
➡ Iz-independent scattering length 

✓  SU(N) (N=2I+1) symmetry (almost perfect...) Gorshkov et al ’10 

✓  171Yb (I=1/2, SU(2)), 173Yb (I=5/2, SU(6)), 87Sr (I=9/2, SU(10)) ,.... Takahashi group ’10-’12    
DeSalvo et al. ’10 

✓  tunability: interactions, lattice, .... 

      ✓  Pomeranchuk cooling

Fermionic isotopes

J=0, nuclear spins is decoupled  
from the electronic spins:  
   SU(2I+1) large symmetry 

Electronic)structure)

Decoupled from other degrees of freedom 
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1. Introduction

Prior to the late 20th century, matter was primarily something to 
be probed, dissected and understood. Now matter is something 
to be synthesized, organized and exploited for broader purposes, 
both at the level of basic research and for numerous technologi-
cal applications. One emerging area of research is to implement 
Richard Feynman’s pioneering ideas of quantum simulation [1] 
and quantum information [2]. We want to design arti!cial, fully 
controllable quantum systems and use them to model many-
body systems to solve otherwise intractable problems in materi-
als physics and other branches of modern quantum science.

Recent advances in the cooling and trapping of alkali 
atoms have brought us closer to realizing Feynman’s dreams. 

The simple electronic structure of alkalai atoms, which pos-
sess a single valence electron, has allowed us to character-
ize their hyper!ne levels, greatly facilitating the development 
of effective trapping and quantum control techniques. Using 
these atoms, experimental physicists have achieved major 
breakthroughs such as a detailed understanding of the Bose–
Einstein Condensate (BEC) to Bardeen–Cooper–Shrieffer 
(BCS) crossover [3, 4] and the implementation of both the 
Fermi and Bose Hubbard models [4–8].

Nevertheless, the inherent ‘simplicity’ of alkali atoms intro-
duces major limitations to the phenomena that can be explored 
with them. For example, the observation of quantum magnetism 
in Fermi/Bose Hubbard models has been hindered by the low 
entropy requirements set by the energy scales of their effective 
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We review recent experimental and theoretical progress on ultracold alkaline-earth Fermi 
gases with emergent SU(N) symmetry. Emphasis is placed on describing the ground-breaking 
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A one-dimensional liquid of fermions with
tunable spin
Guido Pagano1,2, Marco Mancini1,3, Giacomo Cappellini1, Pietro Lombardi1,3, Florian Schäfer1,
Hui Hu4, Xia-Ji Liu4, Jacopo Catani1,5, Carlo Sias1,5, Massimo Inguscio1,3,5 and Leonardo Fallani1,3,5*
Correlations in systems with spin degree of freedom are at the
heart of fundamental phenomena, ranging from magnetism to
superconductivity. The e�ects of correlations depend strongly
on dimensionality, a striking example being one-dimensional
(1D) electronic systems, extensively studied theoretically over
the past fifty years1–7. However, the experimental investigation
of the role of spin multiplicity in 1D fermions—and especially
for more than two spin components—is still lacking. Here
we report on the realization of 1D, strongly correlated liquids
of ultracold fermions interacting repulsively within SU(N)
symmetry, with a tunable number N of spin components. We
observe that static and dynamic properties of the system
deviate from those of ideal fermions and, forN>2, from those
of a spin-1/2 Luttinger liquid. In the large-N limit, the system
exhibits properties of a bosonic spinless liquid. Our results
provide a testing ground for many-body theories and may lead
to the observation of fundamental 1D e�ects8.

One-dimensional quantum systems show specific, sometimes
counterintuitive behaviours that are absent in the 3D world. These
behaviours, predicted by many-body models of interacting bosons9
and fermions2–4, include the ‘fermionization’ of bosons10 and
the separation of spin and density (most commonly referred to
as ‘charge’) branches in the excitation spectrum of interacting
fermions. The last phenomenon is predicted within the celebrated
Luttinger liquid model5, which describes the low-energy excitations
of interacting spin-1/2 fermions. Although the Luttinger approach
describes qualitatively the physics of a number of 1D systems11,12,
the problem of how to extend it to a more detailed description
of real systems has puzzled physicists over the years7. In this
exploration the physics of spin has played a key role.

Ultracold atoms have proved to be a precious resource to study
1D physics, as they a�ord exceptional control over experimental
parameters. Most of the experiments so far have been performed
with spinless bosons, which for instance led to the realization
of a Tonks–Girardeau gas13,14. On the other hand, 1D ultracold
fermions are a promising system to observe a number of elusive
phenomena, such as Stoner’s itinerant ferromagnetism15 and the
physics of spin-incoherent Luttinger liquids6. However, only a
few pioneering works, dealing with spin-1/2 particles16–18, have
been reported so far.

In parallel, ultracold two-electron atoms have been recently
proposed for the realization of large-spin systems with SU(N )
interaction symmetry19,20, and the first experimental investigations
have been reported21. This novel platform enables the simulation of

1D systems with a high degree of complexity, including spin–orbit-
coupled materials22 or SU(N ) Heisenberg and Hubbard chains23,24.
Moreover, the investigation of these multi-component fermions
is relevant for the simulation of field theories with extended
SU(N ) symmetries25.

In this Letter we report on the realization of 1D quantum wires
of repulsive fermions with a tunable number of spin components,
which are created by tightly trapping ultracold 173Yb atoms in a
2D optical lattice (Fig. 1a). The purely nuclear spin I = 5/2 of
173Yb results both in the independence of the interaction strength
from the nuclear spin state and in the absence of spin-changing
collisions. The latter feature is particularly important for our
experiments, as it implies the stability of any spin mixture. The
atoms experience an axial harmonic confinement with (angular)
frequency !x ⇡ 2⇡ ⇥ 80Hz and a strong radial confinement with
!? =2⇡ ⇥25kHz, resulting in the occupation of the radial ground
state. We use optical spin manipulation and detection techniques
(see Supplementary Information) to prepare the system in an
arbitrary number N 2I +1=6 of spin components (Fig. 1b), thus
realizing di�erent SU(N ) symmetries. We directly compare systems
with di�erent N , keeping the atom number per spin component
Nat ' 6,000 (⇡20 atoms per spin component in the central wire)
and all the other parameters constant. This approach enables us
to examine how the physics of a strongly-interacting 1D fermionic
system changes as a function of N .

Momentum distribution
We investigate the correlations in the 1D wires by observing the
momentum distribution n(k) (k is the momentum divided by
the reduced Planck’s constant h̄). We measure this quantity by
extinguishing the trapping light and imaging the atomic cloud after
a ballistic expansion, as done in previous works to measure n(k) of a
Tonks–Girardeu gas13. A typical image is reported in Fig. 2c, where
x̂ denotes the wire axis. Integration over ŷ results in the n(k) curves
plotted in Fig. 2a for di�erent N (the curves are normalized to
have the same unit area). In the non-interacting case N =1 the data
(solid blue) are very well accounted for by the theory of a trapped
ideal Fermi gas (dashed blue, see Supplementary Information).
Increasing N , we observe a clear monotonic broadening of n(k),
with a reduction of the weight at low k and a slower decay
of the large-k tails.

The observed n(k) broadening arises from a pure e�ect of
correlations that goes beyond standard mean-field physics. To
give a qualitative understanding of this phenomenon, we consider

1LENS European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino 50019, Italy, 2Scuola Normale Superiore di Pisa, Pisa 56126, Italy, 3Department of
Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy, 4Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of
Technology, Melbourne 3122, Australia, 5INO-CNR Istituto Nazionale di Ottica del CNR, Sezione di Sesto Fiorentino, Sesto Fiorentino 50019, Italy.
*e-mail: fallani@lens.unifi.it
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Figure 1 | Ultracold 1D fermionic liquids with tunable spin. a, A 2D optical
lattice is used to create an array of independent quantum wires of ultracold
173Yb with six possible nuclear spin orientations. b, The nuclear spin of the
atoms can be manipulated with optical pumping techniques, resulting in a
tunable number of spin components, and analysed with optical
Stern–Gerlach detection (see Supplementary Information).

spin-1/2 fermions with infinite repulsion. In this limit, the
density–density correlation function G"#(d) = hn̂"(x + d)n̂#(x)i
(where n̂"(x) and n̂#(x) are the density operators for the two
spin components) falls to zero for d ! 0 as G""(d) does in the
case of a spin-polarized gas, thus mimicking the e�ects of Pauli
repulsion between distinguishable particles. This ‘fermionization’,
restricting the e�ective space which is available to the particles,
causes them to populate states with larger momentum26,27. We note
that an opposite behaviour would be predicted by a mean-field
treatment of interactions neglecting correlations between trapped
fermions: the e�ectively weaker confinement along x̂ induced by the
atom-atom repulsion would lead to more extended single-particle
wavefunctions, hence to a decreased width of n(k) (Fig. 2b). For
N = 2 the interaction regime of our 1D samples is described
by the parameters � ' 4.8 and K ' 0.73 (see Supplementary
Information), lying in the strongly-correlated regime between
the ideal Fermi gas (� = 0, K = 1) and a fully fermionized
gas (� =1, K =0.5).

The details of n(k) depend nontrivially on the temperature, ow-
ing to the thermal population of spin excitations. The temperature
regime for our experiments, T ' 0.3 TF (where TF is the Fermi
temperature), is slightly below the predicted temperature scale
TS ' 0.4TF for spin excitations (see Supplementary Information),
in the crossover between the spin-ordered regime for T ⌧TS and
that of a spin-incoherent Luttinger liquid for T � TS (ref. 6).
Figure 2b shows the theoretical n(k) forN =2 and infinite repulsion
in the limiting regimes T = 0 and T � TS (light and dark solid
curves, derived from refs 26 and 27, respectively). Although both
curves show an evident n(k) broadening, in accordance with our
observations, their shape is di�erent and can be explained in terms

Figure 2 | Momentum distribution of the 1D fermions. a, Solid lines:
momentum distribution n(k) measured with time-of-flight absorption
imaging for di�erent N and the same atom number Nat per spin component
(each curve results from the average of 30–50 experimental images, after
integration along the ŷ axis and normalization to unity area, i.e.R
n(k)dk= 1). Dashed line: theoretical curve for N= 1 based on the ideal

trapped Fermi gas theory, after averaging over the inhomogeneous
distribution of atoms in the di�erent wires. b, Theoretical n(k) for the N=2
system derived from di�erent models (see Supplementary Information):
ideal Fermi gas at T=0 (dashed), mean-field treatment of finite
interactions at T=0 (dotted), full many-body problem for infinite
interactions both for T=0 (light solid, from ref. 26) and TS⌧T⌧TF (dark
solid, from ref. 27). Whereas the mean-field curve shows a di�erent
behaviour from the one observed in the experiment, the many-body curves
account for the observed broadening. c, Averaged absorption image (the
x̂ axis denotes the direction of the wires).

of a modified e�ective Fermi momentum28. Exact calculations for
finite interactions and finite temperatures are challenging, thus
making our system a profitable quantum simulation resource for
the fundamental problem of 1D interacting fermions.

Probing excitations
A distinctive feature of 1D fermions is the existence of a
well-resolved excitation spectrum at small momenta h̄q ⌧ h̄kF
(where kF is the Fermi wave vector). Number-conserving excitations

NATURE PHYSICS | VOL 10 | MARCH 2014 | www.nature.com/naturephysics 199



Exotic phases: topological order ?
✓  Long-range entanglement 

• genuine topological order allowed in (2+1)D, (3+1)D

• robust against any perturbation

• Ex: fractional quantum Hall effect, toric code…

✓  Short-range entanglement 

• without symmetry, all states are connected to a trivial product 
state

• with protecting symmetries, various topological phases

Symmetry-protected topological (SPT) order

See e.g. X.-G. Wen’s book 



Topological phases in 1d
Verstraete et al ’05; Chen, Gu & Wen ‘10 ✓  Only SPT  is possible

• protecting symmetry is mandatory

• only short-range entanglement and no topological degeneracy

• Different SPT phases cannot be connected adiabatically

• SPT phases are featureless in the bulk but exhibit various edge states 
Classification

• Example: S=1 Heisenberg chain and its famous Haldane phase
Chen et al. ‘11 Duivenvoorden and Quella ’13 

Pollmann, Berg, Turner, Oshikawa ‘12 
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TABLE III. The square of the staggered magnetization.

13(12) 25(24) 33(32) 65(64)

A

D

EX5
EX4
EX3
EX5
EX4
EX3
EX5
EX4
EX3
EX5
EX4
EX3
EX5
EX4
EX3

27.08
27.01
27.15
41 ~ 38
41.29
41.20
40.95
40.94
40.77
39.94
39.88
40.39
21.02
20.95
20.77

48.80
48.60
48.46
24.33
24.18
24. 16
25.38
25.27
25.07
66.25
66.03
65.14
25.28
25.25
24.98

68.60
68.72
68.43
97.47
99.47
100.78
89.12
90.30
88.41
97.06
99.17
100.12
61.54
61.73
61.73

101.18
102.50
102.54
65.25
65.86
66.55
67.74
67.41
66.50
131.22
131.68
129.45
63.56
63.91
62.34

98.81
97.65
97.84
135.20
133.72
134.71
120.30
121.42
120.41
127.53
128.58
134.92
91.22
91.21
89.81

135.50
136.65
138.94
94.25
94.92
95.67
98.01
98.19
97.46
165.02
173.37
174.49
94.82
93.23
90.64

220.35
215.50
221.10
253.68
254.04
251.65
243.16
239.03
252.54
254.35
258.24
266.21
216.10
209.62
206.18

265.21
257.41
279.65
216.11
217.20
213.14
221.07
219.65
222.82
295.06
296.65
304.28
217.74
216.10
214.12

1 . Q
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L=33
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1

r

10 20 30

M, =+l. In Fig. 2(a) the magnetizations ( S )
(i = I, . . . ,L) in the ground state with M, = I are plotted
for L =13, 25, and 33. The longer the chain length, the
faster the staggered magnetization decays. Data for
L =65 and 97 are also given in Fig. 2(b), where we find
that the end magnetizations decay almost in the same
way. Here we can clearly see that one half of the total
magnetization (M, =l) is localized in each end as has
been known in the AKLT model. The data are also plot-
ted in logarithmic scale in Fig. 3. In long chains the mo-

ments decay exponentially

(S') ~eJ (9)

Here we have estimated g-6, which is consistent with
the value estimated in the periodic chains. However, it
should be noted that the minimum moment (S ) is about
0.10 even for L =33, which is rather large.
If we fit the present data taking into account the finite-

size effect, namely in the form, (S') ~ e
+e ' ~' ~, we find that g-6 is consistent even for
L = 13, although its slope in Fig. 3 looks much gentler.
Next, we fix a spin at an end. In Fig. 4(a), data for

L = 13, 25, 33, and 65 are plotted, where we find that the
staggered moments on the side with the fixed spin are
enhanced but no effect is seen on the other side. If we fix
a spin at an end in even chains, the magnetizations are in-
duced but they show a complicated profile. In Fig. 4(b)
data for L =12, 24, and 32 are plotted. We find again
that the magnetization decays exponentially with the
same correlation length.
With these observations, we conclude as follows. The

finite-size effect is significant for L ~25. On the other
hand, in longer chains the effect of edge decays exponen-
tially and the correlation length is the same as that in the

0. 8—
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FICx. 2. (a) The staggered magnetic moments (S ) in chains
with free boundaries at both ends in the cases of L = 13, 25, and
33. (b) The staggered magnetic moments (S ) in chains with
free boundaries at both ends in the cases of L =65 and 97.

Q
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FIG. 3. Logarithmic plot of the staggered magnetic moments
shown in Fig. 2.

QMC: Miyashita & Yamamoto ‘93 

Emergent S=1/2 edge states can be measured !



1D SPT phase: the Haldane phase
Spin-1 AF Heisenberg spin chain:    Haldane phase

AKLT wave function exact ground state:

   Edge states (spin-1/2): 
Non degenerate GS with PBC

4-fold degenerate GS with OBC

SPT phase protected by T, parity, pi-rotations

Haldane phase S odd: SPT phase
Haldane phase S even: not a SPT phase

Pollmann et al. ‘12

Affleck, Kennedy, Lieb, Tasaki ’88 



Quantum simulator: Fermi-Hubbard SU(2) ladder
Group of I. Bloch, Nature (2022)
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details), density fluctuations are suppressed and the spin ladder realizes 
the Heisenberg model28 with Hamiltonian:

∑ ∑H J JSS SS SS SSˆ = ˆ ⋅ ˆ + ˆ ⋅ ˆ
(1)x L

y A B

x y x y
x L

x A x B
∈[0, )

= ,

, +1, $
∈[0, )

, ,

with positive leg and rung couplings, J t U= 4 /,$ ,$
2

∥ ∥  and the spin-1/2 
operators Ŝx y,  at site (x, y), with A, B denoting the two legs of the ladder.

The topological properties are most easily explained in the limit 
≫ ∥J J$ , where strong spin singlets form along the rungs and the system 

exhibits an energy gap of J$. The behaviour on the edges of the ladder 
then depends on how the system is terminated, and therefore on which 
unit cells have been chosen. For diagonal unit cells (Fig. 1b), two unpaired 
spin-1/2 particles remain and the many-body system has a fourfold degen-
eracy that is only weakly lifted by an edge-to-edge coupling, which van-
ishes exponentially with system size (Supplementary Information).  
In the trivial case of vertical unit cells (Fig. 1c), all spins pair into singlets 

and the ground state is unique. These descriptions remain valid even for 
weaker J J/$ ∥, where the singlet alignment may change between vertical 
and horizontal, but any line between two rungs cuts an even number of 
singlets29,30.

To make the analogy between the spin-1/2 ladder and the Haldane 
integer chain more apparent, we switch to a description in terms  
of total spin per kth unit cell, ˆ = ˆ + ˆk k k,A ,BS S S , where the indices (A, B) 
indicate the two spin-1/2 particles in the same unit cell, making an 
integer spin. In the diagonal unit cell such a system shows a high (≥80%) 
triplet fraction26 (Supplementary Information). We note that this spin 
ladder can be adiabatically connected to a spin-1 chain by including 
ferromagnetic couplings within the unit cell25. However, having a high 
triplet fraction is not essential for having a well-defined Haldane phase, 
as both systems share the same universal SPT features26.

The defining property of the Haldane SPT phase is that it is an integer-
spin chain with spin-1/2 edge modes: the bulk SO(3) symmetry is said 
to fractionalize into SU(2) symmetry at the edge. It has no spontaneous 

+1 +1 –1–1

–2 –1 0 1

En
er

gy
En

er
gy

2
Mz

–2 –1 0 1 2
Mz

0

Spin-1/2 two-leg ladder

Spin-1 chain

c Trivial configuration

a DMD-shaped potential Tilted-edge ladder

y

x

b Topological configuration

Spin-1/2 two-leg ladder

Spin-0 chain

J⊥

J⊥

J||

J||

Fig. 1 | Probing topological phases in spin-1/2 ladders of cold atoms.  
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without spin resolution. b, c, Connecting spin-1/2 ladders to integer-spin chains 
by grouping pairs of spins in unit cells. For diagonal unit cells (b) the AFM 
Heisenberg ladder adiabatically connects to the Haldane spin-1 chain showing 
spin-1/2 edge states and hidden long-range order (that is, AFM order 
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topologically trivial phase dominated by singlets on the rungs, forming a 
spin-0 chain. We adapt the edges of the system to match the respective unit 
cell, that is straight edges for vertical unit cells and tilted edges for diagonal 
unit cells, which we realize by blocking one site on each end. The energy spectra 
of the systems grouped by total magnetization Mz display gapped fourfold 
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configuration (rung unit cells), 

!
g d| ( )|Rz,  is well above zero, whereas g d| ( )|S z Rz,  is 

rapidly vanishing at d > 1. By contrast, for the topological configuration 
(diagonal unit cells), g d| ( )|S z Rz, , shows a long-range correlation, whereas  
g d| ( )|Rz,!  is close to zero. In both cases, the two-point spin–spin correlation C(d) 
decays rapidly to zero as a function of the distance d (insets). The correlators 

!
g g,Rz S z Rz, ,  and C(d) are evaluated for fixed total magnetization m z   = 0.  
c, Amplitudes of the rung- and inversion-averaged local magnetizations m x( )z  
plotted as a function of position x along the chains for different m z. In the 
unbalanced spin sector of the topological configuration (m z  = ±1), the result 
displays a localization of the excess spins at the edges, signalling the presence 
of edge states. All data were taken with ∥J J/ = 1.3(2)$ . Error bars denote one 
standard error of the mean (s.e.m.) and are smaller than their marker size if not 
visible.
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details), density fluctuations are suppressed and the spin ladder realizes 
the Heisenberg model28 with Hamiltonian:
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operators Ŝx y,  at site (x, y), with A, B denoting the two legs of the ladder.

The topological properties are most easily explained in the limit 
≫ ∥J J$ , where strong spin singlets form along the rungs and the system 

exhibits an energy gap of J$. The behaviour on the edges of the ladder 
then depends on how the system is terminated, and therefore on which 
unit cells have been chosen. For diagonal unit cells (Fig. 1b), two unpaired 
spin-1/2 particles remain and the many-body system has a fourfold degen-
eracy that is only weakly lifted by an edge-to-edge coupling, which van-
ishes exponentially with system size (Supplementary Information).  
In the trivial case of vertical unit cells (Fig. 1c), all spins pair into singlets 

and the ground state is unique. These descriptions remain valid even for 
weaker J J/$ ∥, where the singlet alignment may change between vertical 
and horizontal, but any line between two rungs cuts an even number of 
singlets29,30.

To make the analogy between the spin-1/2 ladder and the Haldane 
integer chain more apparent, we switch to a description in terms  
of total spin per kth unit cell, ˆ = ˆ + ˆk k k,A ,BS S S , where the indices (A, B) 
indicate the two spin-1/2 particles in the same unit cell, making an 
integer spin. In the diagonal unit cell such a system shows a high (≥80%) 
triplet fraction26 (Supplementary Information). We note that this spin 
ladder can be adiabatically connected to a spin-1 chain by including 
ferromagnetic couplings within the unit cell25. However, having a high 
triplet fraction is not essential for having a well-defined Haldane phase, 
as both systems share the same universal SPT features26.

The defining property of the Haldane SPT phase is that it is an integer-
spin chain with spin-1/2 edge modes: the bulk SO(3) symmetry is said 
to fractionalize into SU(2) symmetry at the edge. It has no spontaneous 
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Fig. 1 | Probing topological phases in spin-1/2 ladders of cold atoms.  
a, Realization of tailored spin-1/2 ladders in a single plane of a 3D optical lattice 
with a potential shaped by a DMD. The dilute wings of the potential are well 
separated from the homogeneous ladder systems. Using quantum gas 
microscopy, we obtain fully spin- and density-resolved images of the system. 
The inset shows a single-shot fluorescence image of the prepared ladder 
without spin resolution. b, c, Connecting spin-1/2 ladders to integer-spin chains 
by grouping pairs of spins in unit cells. For diagonal unit cells (b) the AFM 
Heisenberg ladder adiabatically connects to the Haldane spin-1 chain showing 
spin-1/2 edge states and hidden long-range order (that is, AFM order 
interspersed with Sz = 0 unit cells). For vertical unit cells (c), the system is in the 
topologically trivial phase dominated by singlets on the rungs, forming a 
spin-0 chain. We adapt the edges of the system to match the respective unit 
cell, that is straight edges for vertical unit cells and tilted edges for diagonal 
unit cells, which we realize by blocking one site on each end. The energy spectra 
of the systems grouped by total magnetization Mz display gapped fourfold 
near-degenerate ground states for the topological configuration and a single 
ground state for the trivial one. Sketch for L = 7.
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Fig. 2 | Trivial versus topological configurations. a, The atomic density 
distribution (n̂) of ladders with diagonal and vertical unit cells. b, The 
amplitudes of the spin-string correlator gS z Rz,  (green circles) and the 
string-only correlator g Rz,!  (grey squares) observed as a function of the spin 
distance over d unit cells. The cartoon illustrates the unit cells, the total spin Sz 
per unit cell and the string correlators for a subsystem with d = 3. In the trivial 
configuration (rung unit cells), 

!
g d| ( )|Rz,  is well above zero, whereas g d| ( )|S z Rz,  is 

rapidly vanishing at d > 1. By contrast, for the topological configuration 
(diagonal unit cells), g d| ( )|S z Rz, , shows a long-range correlation, whereas  
g d| ( )|Rz,!  is close to zero. In both cases, the two-point spin–spin correlation C(d) 
decays rapidly to zero as a function of the distance d (insets). The correlators 
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g g,Rz S z Rz, ,  and C(d) are evaluated for fixed total magnetization m z   = 0.  
c, Amplitudes of the rung- and inversion-averaged local magnetizations m x( )z  
plotted as a function of position x along the chains for different m z. In the 
unbalanced spin sector of the topological configuration (m z  = ±1), the result 
displays a localization of the excess spins at the edges, signalling the presence 
of edge states. All data were taken with ∥J J/ = 1.3(2)$ . Error bars denote one 
standard error of the mean (s.e.m.) and are smaller than their marker size if not 
visible.
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The model (18) is invariant under the global U(1) symmetry: c↵, i 7! e
i✓
c↵, i, which implies

the conservation of the total number of atoms. In the rest of this paper, we frequently use the
terminology ‘charge’ to denote the degree of freedom associated with this symmetry, although
we are dealing with neutral atoms without electric charge. All the parameters in the model (18)
are independent from the nuclear-spin states (↵ = 1, . . . , N ) and an extended SU(N ) symmetry
arises: c↵, i 7!

P
� U↵�c�, i, U being an SU(N ) matrix. The actual continuous symmetry group

of the Hamiltonian (18) is then U(N ) = U(1) ⇥ SU(N ) but the model HSU(N ) is often called
the SU(N ) Fermi-Hubbard model to put the emphasis on its non-trivial SU(N ) hyperfine-spin
rotational invariance.

2.2. Sutherland model and its low-energy physics
The model (18) describes alkaline-earth atoms in the g state (i.e., ground state 1

S0) loaded
into the lowest band of the optical lattice. The interaction parameter U is directly related to
the s-wave scattering length associated with the collision between two atoms in the g state [see
Eqs. (12) and (13)]. When N = 2, the model (18) is the usual SU(2) Hubbard chain which
is exactly solvable by means of the Bethe ansatz [59]. The physical properties of the model
have been discussed in great detail over the years and are reviewed in the book [60]. However,
for N > 2, the Hamiltonian (18) is not integrable for arbitrary U and filling n. Although it is
possible to formally generalize the Lieb-Wu Bethe ansatz equation [59] to fermions with internal
SU(N ) symmetry, it is believed that the corresponding model describes a non-local variant of
the SU(N ) Hubbard model [61]. In the absence of a lattice, the model is again integrable and its
properties have been described in a recent review [62].

The situation becomes much simpler in the limit of large repulsive U for a filling n = 1/N
with one atom per site which best avoids the three-body losses. In that case, the model (18)
reduces to the SU(N ) Heisenberg antiferromagnetic spin chain with the SU(N ) fundamental
representation (represented by the Young diagram ; for a pedagogical explanation of the repre-
sentation theory of SU(N ) and the Young diagrams, see, e.g., Ref. [63]) on each site (Sutherland
model [30]):

H = J

X

i

Pi,i+1, (19)

where J = 2t2/U is the antiferromagnetic spin exchange and Pi,i+1 is the operator which
permutes the SU(N ) hyperfine states on the sites i and i+1. For the fundamental representation
( ), Pi,i+1 is compactly written, in terms of the SU(N ) generators that are normalized to be
TrSA

i S
B
i = �

AB , as

Pi,i+1 =
1

N
+

N2�1X

A=1

S
A
i S

A
i+1 (20)

[SU(N ) generalization of the Dirac identity]. It is known that the ‘spin’ model (19) well describes
the low-energy sector of the original Hubbard model (18) for U/t & 12 [64].

In contrast to the original fermionic model (18), the large-U effective Hamiltonian (19) can
be solved exactly by the Bethe ansatz [30]. The low-energy spectrum is gapless with N � 1
relativistic modes with the same velocity vs = 2⇡J/N . The critical theory has been identified
by Affleck [31, 32] as described by the level-1 SU(N ) Wess-Zumino-Witten [SU(N )1 WZW]
conformal field theory (CFT) [65–67]. This CFT has a central charge c = N � 1 and the low-
temperature specific heat (per volume) scales as [68, 69]: C(T ) ' kB

2
N(N � 1)T/(6~J) (with
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and couple the charge and the spin degrees of freedom. As a consequence, fully gapped Mott-
insulating phases are formed which spontaneously break the one-site translation symmetry. In
particular, bond-ordered (dimerized, trimerized, or tetramerized) phases are found depending on
the filling [80]. For instance, a trimerized phase with a three-fold ground-state degeneracy can
be stabilized in the SU(6) Hubbard model with two particles per site (n = 1/3). In Fig. 4 we
provide complementary DMRG data showing the emergence of this phase.
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Figure 4: (Color online) Local density ni and kinetic bond energy for the fermionic SU(6) model with two particles per
site at U/t = 8 on a L = 72 chain computed by DMRG. There is a strong trimerization pattern with a three-periodicity.

For filling n = m/N (m = 1, . . . , N � 1), a Mott insulator with m atoms per site is formed
in the large-U limit. Then, one can perform a strong-coupling expansion to derive an effective
spin model for the remaining SU(N ) low-energy degrees of freedom. The resulting magnet takes
the form of the SU(N ) antiferromagnetic Heisenberg chain with the Hamiltonian [32]:

H = J

X

i

N2�1X

A=1

S
A
i S

A
i+1, (24)

where S
A
i is the SU(N ) spin operators at site i which transform in the antisymmetric m-tensor

representation of SU(N ):

m

8
><

>:
. (25)

For m = 1 (N -dimensional fundamental representation) and m = N � 1 (its conjugate), one
recovers the Sutherland model (19) with a gapless behavior described by SU(N )1 WZW CFT
[32]. The physical properties of the model (24) for other values of m have been investigated
by a CFT approach [32, 94] and variational QMC calculations [95]; when m and N have no
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Translation symmetry breaking

2.3.3. Half-filled case
We now consider the half-filled case with kF = ⇡/2a0 (N/2 fermions per site; n = 1/2).

For N = 2, it corresponds to the situation where we have one atom per site and reduces to the
case considered already in Sec. 2.2; the physics for U > 0 is governed by the Heisenberg model
with a gapless c = 1 behavior [corresponding to the level-1 SU(2) WZW CFT]. On the attractive
side U < 0, we can apply a transformation (Shiba transformation [86, 87]; See section 2.2.4 of
Ref. [60] for a detailed discussion of the Shiba transformation), that interchanges spin and charge
while flipping the sign of U , to show that now a gap opens in the spin sector while the charge
sector remains gapless (Luther-Emery liquid).

In contrast, when N > 2, all degrees of freedom are fully gapped for any values of U

(whether positive or negative) due to the absence of spin-charge separation in the low-energy
limit [45, 82]. The resulting fully gapped Mott-insulating phase is two-fold degenerate as the
result of the spontaneous breakdown of the one-site translation symmetry [45]. The physical
nature of the Mott-insulating phase depends crucially on the sign of U .

In the attractive case (U < 0), long-range ordering of period-2 CDW emerges [45, 88, 89].
In the strong-coupling region (|U | � t), the picture of the CDW formation is simple; SU(N )-
singlet molecules of N atoms (N -mers) are formed first and then the preformed N -mers organize
themselves into period-2 crystalline structures in such a way that they optimize the O(t2/|U |)
repulsive interaction generated by virtual hopping [88, 89]. To illustrate the crystalline pattern
of N -mers, we show, in the left panel of Fig. 2, the spatial profile of physical quantities (lo-
cal fermion density and kinetic-energy density) obtained by DMRG for the half-filled SU(4)
Hubbard model at U/t = �8. The local fermion density clearly shows period-two oscillation
indicative of CDW of tetramers (note that the maxima of the density is close to 4), while the
kinetic energy does not exhibit any special feature. A typical wave function of the CDW phase
is shown in Fig. 3(a).
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Figure 2: (Color online) Local density ni and kinetic bond energy for the fermionic SU(4) model with two particles per
site at U/t = �8 (left, data are only shown in the bulk) and U/t = 8 (right) on a L = 64 chain computed by DMRG.
Data strongly indicate CDW and SP phase respectively.

When U > 0, on the other hand, it has been shown that a gapful dimerized [or spin-Peierls
(SP)] phase with bond ordering [see Fig. 3(b) for an intuitive picture of the ground state] appears
upon switching on the weak repulsive interaction [45, 82]. In this respect, the situation is very
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and couple the charge and the spin degrees of freedom. As a consequence, fully gapped Mott-
insulating phases are formed which spontaneously break the one-site translation symmetry. In
particular, bond-ordered (dimerized, trimerized, or tetramerized) phases are found depending on
the filling [80]. For instance, a trimerized phase with a three-fold ground-state degeneracy can
be stabilized in the SU(6) Hubbard model with two particles per site (n = 1/3). In Fig. 4 we
provide complementary DMRG data showing the emergence of this phase.
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Figure 4: (Color online) Local density ni and kinetic bond energy for the fermionic SU(6) model with two particles per
site at U/t = 8 on a L = 72 chain computed by DMRG. There is a strong trimerization pattern with a three-periodicity.

For filling n = m/N (m = 1, . . . , N � 1), a Mott insulator with m atoms per site is formed
in the large-U limit. Then, one can perform a strong-coupling expansion to derive an effective
spin model for the remaining SU(N ) low-energy degrees of freedom. The resulting magnet takes
the form of the SU(N ) antiferromagnetic Heisenberg chain with the Hamiltonian [32]:

H = J

X

i

N2�1X

A=1

S
A
i S

A
i+1, (24)

where S
A
i is the SU(N ) spin operators at site i which transform in the antisymmetric m-tensor

representation of SU(N ):

m

8
><

>:
. (25)

For m = 1 (N -dimensional fundamental representation) and m = N � 1 (its conjugate), one
recovers the Sutherland model (19) with a gapless behavior described by SU(N )1 WZW CFT
[32]. The physical properties of the model (24) for other values of m have been investigated
by a CFT approach [32, 94] and variational QMC calculations [95]; when m and N have no
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different from the N = 2 case where, at half-filling (one atom per site), a Mott-insulating phase
with gapless spin excitations is stabilized when U > 0. It has been shown numerically (by means
of QMC and DMRG) for N = 4 that there is adiabatic continuity from weak to strong coupling
and that the SP phase occurs for all U > 0 [45, 90]. In the large-U limit, the existence of this SP
phase can be simply understood from the fact that the half-filled SU(4) Fermi-Hubbard model
reduces to the SU(4) Heisenberg spin chain in the antisymmetric self-conjugate representation
( ) of SU(4); the latter model is known to display, at zero-temperature, a dimerized phase with
two-fold ground-state degeneracy [91–93]. In the right panel of Fig. 2, we also present the plot
of the local fermion density and the kinetic-energy density for the SP phase obtained by direct
DMRG simulations of the SU(4) Hubbard model at U/t = 8. As can be clearly seen, there is
a period-two oscillation in the profile of the kinetic energy, whereas the local-density profile is
completely flat.5

(a)

(b)

Figure 3: (Color online) (a) Charge density wave (CDW) and (b) spin-Peierls (SP) phases of SU(4) Hubbard model. In
both SU(4)-singlet phases, translation symmetry is broken. In CDW [(a)], N -mers (N = 4, here), that are each SU(N )-
singlet, form (period-2) crystalline structures. In SP [(b)], a six-dimensional representation (6) is formed at each site and
then it is combined with another 6 on the adjacent site to form an SU(4)-singlet.

2.3.4. Others commensurate fillings
The nature of SU(N ) Mott-insulating phases for general commensurate fillings n = p/q

(p and q being relatively primes) has been investigated with combined use of bosonization and
DMRG simulations [80]. For N = 2, there is no Mott transition and the charge sector remains
gapless for any commensurate fillings other than half-filling [41] .

Again, for N > 2, the physics turns out to be much richer. If q > N , umklapp processes
are irrelevant and a metallic N -component Luttinger-liquid phase is stabilized, which has N

gapless degrees of freedom [1 for charge and N � 1 for SU(N ) spin] and hence the central
charge c = N . When q = N , spin-charge separation occurs and a charge gap opens for finite
U > 0; a gapless Mott-insulating phase emerges with N � 1 bosonic modes. The physics is
then quite similar to the one discussed above (Sec .2.2) for the Sutherland model for the 1/N -
filling (i.e., one atom per site). Last, when q < N , umklapp processes are strongly relevant

5 Clearly, this mechanism does not work in the case of N = odd where a simple uniform Mott insulator with N/2
particles at each site is impossible. However, preliminary DMRG simulations showed that we still have an SU(N )-singlet
dimerized phase with uniform charge distribution.
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by means of Bethe ansatz [35]. It displays a quantum crit-
ical behavior in the SU(N )1 Wess-Zumino-Novikov-Witten
(WZNW) universality class with central charge c = N −
1 [36,37]. The predictions of the exact solution and of the
conformal field theory (CFT) approach have been carefully
checked numerically by means of various methods [38–45].
The low-lying gapless excitations occur in pairs with individ-
ual dispersion relations covering a fraction of the Brillouin
zone [46]. The elementary excitations of the model are then
a generalization of the spinons of the spin-1/2 Heisenberg
chain and carry fractional quantum numbers. They transform
in the conjugate N̄ representation of the SU(N ) group, and, in
this respect, they may be viewed as an analog of antiquarks
in quantum chromodynamics [47,48]. It has been shown that
they display fractional statistics with angle θ = π/N [47–49].

What happens for these spinon excitations upon switching
on a nonzero J2 when N > 2 ? The lesson gained from the
N = 2 case leads us to expect that the natural instability of
the gapless phase with c = N − 1 is the formation of a singlet
cluster phase of N sites, a N-merized phase. The latter is the
natural generalization of the valence bond solid of N = 2,
since N is the minimum number of spins needed to form
an SU(N ) singlet for spins in the fundamental representation
of the SU(N ) group. The J1-J2 SU(3) spin chain model has
been investigated numerically by means of the density-matrix
renormalization group (DMRG) and exact diagonalizations
(EDs). A spontaneous trimerized phase, a singlet cluster
phase of three sites, has been revealed when 0.45 ! J2/J1 !
3.5 [50]. The phase is threefold degenerate and breaks
spontaneously Ta0 . The generalized spinons become massive
deconfined excitations which correspond to the domain walls
of the trimerized phase similarly to the N = 2 case [49,51,52].
Interestingly enough, it was found numerically that the trimer-
ized phase has a finite extent and does not extend to the
large J2 regime in stark contrast to the N = 2 case [50]. A
critical SU(3)1 phase with c = 2 is expected to show up with
deconfined critical spinons at sufficiently large J2.

In this paper, we map out the phase diagram of model (1) at
zero temperature by means of complementary CFT techniques
for N > 2 and numerical approaches ED and infinite size
DMRG (iDMRG) for N = 3, 4. At intermediate J2 for all N ,
we find the existence of a N-merized phase which is N-fold
degenerate and breaks spontaneously Ta0 . The domain-wall
excitations between consecutive degenerate ground states,
i.e., N-merization kinks, have fractional quantum numbers
and correspond to the deconfined gapped SU(N ) spinons
which transform in the N̄ representation of SU(N ). The
extension of the N-merized phase in the large J2 regime can
be investigated numerically for N = 3 and N = 4 as well as
by a field theory approach which exploits the existence of
a decoupling critical point when J2 → ∞. In this large J2
regime, the model is best visualized as a two-leg zigzag spin
ladder where the J1 bonds couple two SU(N ) Heisenberg spin
chains with spin exchange J2:

Hzigzag = J2

∑

i,A

(
SA

1,iS
A
1,i+1 + SA

2,iS
A
2,i+1

)

+ J1

∑

i,A

SA
2,i

(
SA

1,i + SA
1,i+1

)
, (2)

FIG. 1. Sketch of the diagrams of the J1-J2 antiferromagnetic
SU(N ) Heisenberg spin chain given in Eq. (1). At small J2, the
system is gapless, and a gap opens at intermediate J2 to a N-merized
phase. For even N , it survives at arbitrary large J2, while a gap-
less phase reopens for odd N . We conjecture the existence of a
commensurate-incommensurate transition within the gapped phase
for even N , as seen for N = 2 and N = 4.

where SA
1,i and SA

2,i (A = 1, . . . , N2 − 1) denote the SU(N )
spin operators on the ith site on the chains 1 and 2 which
transform in the fundamental representation N of the SU(N )
group. The field theory analysis of the two-leg SU(N ) zigzag
spin ladder (2) in the regime J1 $ J2 reveals that the extension
of the N-merized phase strongly depends on the parity of N .
In the odd N case, the existence of a massless renormalization
group (RG) flow from SU(N )2 to SU(N )1 CFTs leads to the
emergence of a gapless phase with SU(N )1 quantum criti-
cality when J1 $ J2. The N-merized phase has thus a finite
extent Jc,1

2 ! J2 ! Jc,2
2 , surrounded by two SU(N )1 gapless

phases when N is odd. The original spinons of the Sutherland
model experience a sequence of two transitions. A first one at
J2 = Jc,1

2 , where they become fully gapped deconfined excita-
tions in the N-merized phase and then at J2 = Jc,2

2 , where the
gap closes and the spinons again become gapless. In contrast,
the situation is very different in the even N case. We show
analytically and numerically for N = 4 that the tetramerized
phase smoothly interpolates to the strong-coupling large J2
regime. In addition, we find that this phase for J2 > 2J1
is characterized by an incommensurate behavior in the
spin-spin correlation function as in the N = 2 case [31,53]
whereas no such incommensuration is obtained for N = 3.
Our conjectured phase diagrams are summarized in Fig. 1.

The paper is organized as follows. The low-energy ap-
proach appropriate in the weak-coupling region J2 $ J1 and
in the strong-coupling one J1 $ J2 is presented in Sec. II.
The results of extensive ED and DMRG calculations in the
N = 3 and N = 4 cases are described in Sec. III. Finally, a
summary of the main results is given in Sec. IV together with
five technical Appendixes.

II. LOW-ENERGY DESCRIPTION

The phase diagram of model (1) is investigated by a low-
energy field theory approach using two different limits: the
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(WZNW) universality class with central charge c = N −
1 [36,37]. The predictions of the exact solution and of the
conformal field theory (CFT) approach have been carefully
checked numerically by means of various methods [38–45].
The low-lying gapless excitations occur in pairs with individ-
ual dispersion relations covering a fraction of the Brillouin
zone [46]. The elementary excitations of the model are then
a generalization of the spinons of the spin-1/2 Heisenberg
chain and carry fractional quantum numbers. They transform
in the conjugate N̄ representation of the SU(N ) group, and, in
this respect, they may be viewed as an analog of antiquarks
in quantum chromodynamics [47,48]. It has been shown that
they display fractional statistics with angle θ = π/N [47–49].

What happens for these spinon excitations upon switching
on a nonzero J2 when N > 2 ? The lesson gained from the
N = 2 case leads us to expect that the natural instability of
the gapless phase with c = N − 1 is the formation of a singlet
cluster phase of N sites, a N-merized phase. The latter is the
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since N is the minimum number of spins needed to form
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of the SU(N ) group. The J1-J2 SU(3) spin chain model has
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(EDs). A spontaneous trimerized phase, a singlet cluster
phase of three sites, has been revealed when 0.45 ! J2/J1 !
3.5 [50]. The phase is threefold degenerate and breaks
spontaneously Ta0 . The generalized spinons become massive
deconfined excitations which correspond to the domain walls
of the trimerized phase similarly to the N = 2 case [49,51,52].
Interestingly enough, it was found numerically that the trimer-
ized phase has a finite extent and does not extend to the
large J2 regime in stark contrast to the N = 2 case [50]. A
critical SU(3)1 phase with c = 2 is expected to show up with
deconfined critical spinons at sufficiently large J2.

In this paper, we map out the phase diagram of model (1) at
zero temperature by means of complementary CFT techniques
for N > 2 and numerical approaches ED and infinite size
DMRG (iDMRG) for N = 3, 4. At intermediate J2 for all N ,
we find the existence of a N-merized phase which is N-fold
degenerate and breaks spontaneously Ta0 . The domain-wall
excitations between consecutive degenerate ground states,
i.e., N-merization kinks, have fractional quantum numbers
and correspond to the deconfined gapped SU(N ) spinons
which transform in the N̄ representation of SU(N ). The
extension of the N-merized phase in the large J2 regime can
be investigated numerically for N = 3 and N = 4 as well as
by a field theory approach which exploits the existence of
a decoupling critical point when J2 → ∞. In this large J2
regime, the model is best visualized as a two-leg zigzag spin
ladder where the J1 bonds couple two SU(N ) Heisenberg spin
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FIG. 1. Sketch of the diagrams of the J1-J2 antiferromagnetic
SU(N ) Heisenberg spin chain given in Eq. (1). At small J2, the
system is gapless, and a gap opens at intermediate J2 to a N-merized
phase. For even N , it survives at arbitrary large J2, while a gap-
less phase reopens for odd N . We conjecture the existence of a
commensurate-incommensurate transition within the gapped phase
for even N , as seen for N = 2 and N = 4.
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2,i (A = 1, . . . , N2 − 1) denote the SU(N )
spin operators on the ith site on the chains 1 and 2 which
transform in the fundamental representation N of the SU(N )
group. The field theory analysis of the two-leg SU(N ) zigzag
spin ladder (2) in the regime J1 $ J2 reveals that the extension
of the N-merized phase strongly depends on the parity of N .
In the odd N case, the existence of a massless renormalization
group (RG) flow from SU(N )2 to SU(N )1 CFTs leads to the
emergence of a gapless phase with SU(N )1 quantum criti-
cality when J1 $ J2. The N-merized phase has thus a finite
extent Jc,1

2 ! J2 ! Jc,2
2 , surrounded by two SU(N )1 gapless

phases when N is odd. The original spinons of the Sutherland
model experience a sequence of two transitions. A first one at
J2 = Jc,1

2 , where they become fully gapped deconfined excita-
tions in the N-merized phase and then at J2 = Jc,2

2 , where the
gap closes and the spinons again become gapless. In contrast,
the situation is very different in the even N case. We show
analytically and numerically for N = 4 that the tetramerized
phase smoothly interpolates to the strong-coupling large J2
regime. In addition, we find that this phase for J2 > 2J1
is characterized by an incommensurate behavior in the
spin-spin correlation function as in the N = 2 case [31,53]
whereas no such incommensuration is obtained for N = 3.
Our conjectured phase diagrams are summarized in Fig. 1.

The paper is organized as follows. The low-energy ap-
proach appropriate in the weak-coupling region J2 $ J1 and
in the strong-coupling one J1 $ J2 is presented in Sec. II.
The results of extensive ED and DMRG calculations in the
N = 3 and N = 4 cases are described in Sec. III. Finally, a
summary of the main results is given in Sec. IV together with
five technical Appendixes.

II. LOW-ENERGY DESCRIPTION

The phase diagram of model (1) is investigated by a low-
energy field theory approach using two different limits: the
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FIG. 2. Low-energy spectrum vs J2 obtained by ED in the SU(3)
case on the L = 24 periodic chain, for some relevant momenta. Open
(respectively filled) symbols denote SU(3) singlet (respectively non-
singlet) states. Inset: finite-size scaling of the level crossing between
the lowest singlet or adjoint state at momentum k = 2π/3.

limit. In the inset of Fig. 2, we have attempted to extrapolate
the critical values using finite-size scaling: the first one nicely
converges to Jc,1

2 ≈ 0.48, while the other one has stronger
finite-size effects so that we have less accuracy Jc,2

2 = 2.1(1).
These values are in quantitative agreement with the previous
results [50], as Jc,2

2 is plagued by very strong finite-size ef-
fects. Note also that the first critical value has also been found
in Ref. [52].

We have then performed iDMRG simulations with a com-
patible unit cell of six sites for various bond dimensions χ . For
intermediate J2, there is a very clear trimerized pattern in the
bond amplitudes (see, e.g., inset of Fig. 3) so that we define
an order parameter as

Ti,3 =
〈

P̂i,i+1 − 1
3

2∑

k=0

P̂i+k,i+k+1

〉

which is measured in the ground state obtained at fixed χ .
Since the bond pattern can be shifted within our simulated
unit cell, we choose to measure on bonds showing a weak-
strong-strong pattern so that Ti,3 is positive and largest. Note
that iDMRG technically breaks translation invariance, even
after convergence, due to the initial edges. This effect, and the
tendency to converge to less entangled superpositions, allows
us to directly use the trimerization as an order parameter,
instead of a related correlation function. Data are shown in
Fig. 3 and confirm that the trimerized singlet phase has a
finite extent, in a range 0.5 ! J2 ! 3.8, larger than previously
reported [50]. To resolve this disagreement, we performed a
naive extrapolation in χ−1 of the trimerization using a second-
degree polynomial fit to evaluate the infinite χ behavior. In the
region 3.0 ! J2 ! 4.0, the trimerization strongly depends on
χ . For too small bond dimensions, we do not resolve the gap
and the matrix product states appear to belong to the large
J2 gapless phase, with a significant shift in the trimerization
when varying χ . This crossover prevents us from reliably
extrapolating any quantity for J2 ! 3.4. Because we observe

FIG. 3. Trimerization Ti,3 vs J2 obtained by iDMRG in the SU(3)
chain for various χ as well as its extrapolation to infinite bond dimen-
sion using a naive second-degree polynomial fit in the regime J2 "
3.6 where we can reliably perform this extrapolation. The trimerized
phase (see the inset) opens up at J2 ≈ 0.5 and extends, for the χ we
have access to, to J2 ≈ 3.8. Then crossovers with χ , visible as kinks
in the trimerization, prevent us to perform a reliable scaling. In the
inset we represent the numerically obtained bond energies 〈P̂i j〉 on
each link where P̂i j is defined in Eq. (37). The structure of the singlet
is directly visible.

this behavior at lower χ on well-converged system, we do not
expect that we underestimate the extent of the gapped phase.
The mismatch with the DMRG results of Ref. [50] is likely
due to finite-size effects in the finite DMRG computation.
This effect also prevents us to make a precise interpolation
of the transition toward a gapless phase. Nevertheless, our
numerical data do support a finite J2 range for the trimerized
phase.

The trimerization means that the SU(3) spins form singlets
over three consecutive sites. This can be immediately seen by
considering the entanglement spectrum and more precisely,
the degeneracy of its largest eigenvalue. We define here the
entanglement Hamiltonian at site n,

Hent (n) = − log Trs>n|#〉〈#|, (38)

where s counts sites to the right of n, and we denote εα, j its jth
eigenvalue in the irrep α. This is readily accessible for matrix
product states. In the gapless phase for J2 " 0.5, the dominant
eigenvalue is a singlet, with strict invariance by translation.
Conversely, in the trimerized phase, the dominant eigenvalue
forms a repeating pattern of a singlet at site n, then a triplet
(the fundamental or conjugate irrep) at site n + 1 and n + 2.
This is the expected structure for a simple product state made
of singlets on three consecutive sites. This pattern is a clear
marker of the trimerized phase, and, as seen in Fig. 4, where
we represent the gap between first and third entanglement
energies. It gives similar estimations for the phase boundaries.
Remarkably, close to the peak of trimerization, the states are
close to such a product state. At J2 = 1.2 and χ = 8192,
for the singlet cut, the largest eigenvalue of the density ma-
trix is about 0.745 (singlet state). The next ones are two
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FIG. 9. Tetramerization Ti,4 vs J2 obtained by iDMRG for the
SU(4) chain for various χ as well as its extrapolation to infi-
nite bond dimension using a naive second-degree polynomial fit.
The tetramerized phase opens at J2 ≈ 1 and remains nonzero up
to the largest J2 = 8.0 we considered. Small nonanalyticities are
nonetheless visible, revealing the finite χ and convergence problems
at large J2. In inset, we represent the numerically obtained bond
energies 〈P̂i j〉 for J2 = 2.0, revealing the appearance of the singlet
phase.

quite simpler than the exact one showing a perfectly tetramer-
ized VBS [83]. For even larger J2, the first excitation still
remains a singlet with a π momentum shift.

In order to fully characterize this symmetry breaking, we
have performed iDMRG simulations with a unit cell of 2N =
8 sites and various maximal bond dimensions χ . We define a
tetramerization order parameter as

Ti,4 =
〈

P̂i,i+1 − 1
4

3∑

k=0

P̂i+k,i+k+1

〉

measured in the ground state and choosing appropriate bonds
so that it is positive and largest. Data are shown in Fig. 9 and
are consistent with a critical value J2 % 1 for the transition
between a critical phase and a tetramerized one which extends
up to the large J2 regime in agreement with the field theory
prediction. Note that the apparent anomaly at J2 % 4 becomes
less pronounced when increasing the bond dimension χ . We
see no clear signs of the reopening of a uniform gapless phase
at large J2, with significantly better stability and convergence
than for SU(3). The J2 bonds pattern exhibits a π/2 modula-
tion (strong-strong-strong-weak); see, e.g., the corresponding
modulation in inset of Fig. 9. As in the SU(3) case, this
tetramerized phase appears to be adiabatically connected to
the limit of a tensor product of singlets over four consecutive
sites. The degeneracy of the largest eigenvalue of the entangle-
ment spectrum, defined in Eq. (38), supports this picture, with
a repeating pattern of 1 (trivial irrep), 4 (fundamental irrep),
6 (the fully antisymmetric self-conjugate irrep), and 4̄ (the
conjugate of the fundamental irrep). Similarly to the SU(3)
limit, for J2 = 2.0 and χ = 8192, the largest eigenvalue of the
reduced density matrix reaches about 0.811 in the singlet cut,
while the second eigenvalue has a total weight of 0.104 in the

FIG. 10. Top: The largest eigenvalue of the “midchain” reduced
density matrix on the weakest bond of the unit cell for SU(4), as
defined in Eq. (38). The opening of the tetramerized phase is charac-
terized by a large peak where the matrix product state becomes close
to a product state. Right: Gap between sixth and first entanglement
energies for various bond dimensions (different colors). The symbols
represent the position of the cut within the unit cell (after the first,
second, or third site). The degeneracy pattern 1-4-6-4 is character-
istic of a product state of consecutive SU(4) singlets. We observe a
breakdown of SU(4) at large J2 due to finite χ .

irrep 15 (adjoint irrep), revealing how close the system is from
the singlet product state. We represent in Fig. 10 the largest
weight in the entanglement pattern and the gap between fourth
and first entanglement energies.

At large J2 ! 5.0, we see a crossover towards a degeneracy
pattern of 1-2-4-2, which is also visible at lower J2 and χ , and
explains the small anomaly in the tetramerization for J2 ≈ 5.0.
Note that this pattern is not SU(4) invariant; it is therefore
a finite convergence and χ effect coming from the color
conservation. Note that the gapless phase for J2 " 1 is again
characterized by a single, nondegenerate largest eigenvalue.

The dominant correlation length comes from the adjoint
representation 15, shown in Fig. 11 and is of the order of the
unit cell close to the maximum of tetramerization. We use as
convergence parameters the gaps between the first and third
adjoint irreps and the gap ξ−1

10,1 − ξ−1
8,1 . Both lead to similar

205135-10

SU(4)

Take-home message: only trivial phases (no SPT)

1d zigzag SU(N) chain

The model (18) is invariant under the global U(1) symmetry: c↵, i 7! e
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the conservation of the total number of atoms. In the rest of this paper, we frequently use the
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P
� U↵�c�, i, U being an SU(N ) matrix. The actual continuous symmetry group

of the Hamiltonian (18) is then U(N ) = U(1) ⇥ SU(N ) but the model HSU(N ) is often called
the SU(N ) Fermi-Hubbard model to put the emphasis on its non-trivial SU(N ) hyperfine-spin
rotational invariance.

2.2. Sutherland model and its low-energy physics
The model (18) describes alkaline-earth atoms in the g state (i.e., ground state 1

S0) loaded
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is exactly solvable by means of the Bethe ansatz [59]. The physical properties of the model
have been discussed in great detail over the years and are reviewed in the book [60]. However,
for N > 2, the Hamiltonian (18) is not integrable for arbitrary U and filling n. Although it is
possible to formally generalize the Lieb-Wu Bethe ansatz equation [59] to fermions with internal
SU(N ) symmetry, it is believed that the corresponding model describes a non-local variant of
the SU(N ) Hubbard model [61]. In the absence of a lattice, the model is again integrable and its
properties have been described in a recent review [62].
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with one atom per site which best avoids the three-body losses. In that case, the model (18)
reduces to the SU(N ) Heisenberg antiferromagnetic spin chain with the SU(N ) fundamental
representation (represented by the Young diagram ; for a pedagogical explanation of the repre-
sentation theory of SU(N ) and the Young diagrams, see, e.g., Ref. [63]) on each site (Sutherland
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X
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Pi,i+1, (19)

where J = 2t2/U is the antiferromagnetic spin exchange and Pi,i+1 is the operator which
permutes the SU(N ) hyperfine states on the sites i and i+1. For the fundamental representation
( ), Pi,i+1 is compactly written, in terms of the SU(N ) generators that are normalized to be
TrSA

i S
B
i = �

AB , as

Pi,i+1 =
1

N
+

N2�1X

A=1

S
A
i S

A
i+1 (20)

[SU(N ) generalization of the Dirac identity]. It is known that the ‘spin’ model (19) well describes
the low-energy sector of the original Hubbard model (18) for U/t & 12 [64].

In contrast to the original fermionic model (18), the large-U effective Hamiltonian (19) can
be solved exactly by the Bethe ansatz [30]. The low-energy spectrum is gapless with N � 1
relativistic modes with the same velocity vs = 2⇡J/N . The critical theory has been identified
by Affleck [31, 32] as described by the level-1 SU(N ) Wess-Zumino-Witten [SU(N )1 WZW]
conformal field theory (CFT) [65–67]. This CFT has a central charge c = N � 1 and the low-
temperature specific heat (per volume) scales as [68, 69]: C(T ) ' kB
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FIG. 1. Cartoon pictures of the SU(3) ground states where
strong/weak antiferromagnetic couplings are depicted as
solid/dashed bonds, respectively. From top to bottom: (i) δ < 0
(connected to a trivial product of singlets); (ii) δ > 0 (two possible
ground states, related by inversion symmetry, are shown with
different dashed ovals); (iii) and (iv) two soliton excitations
(respectively 3̄ and 3) that can exist as domain walls between the
two possible ground states for δ > 0.

breaking, the transition is not an Ising transition described
by the fluctuations of a Z2 order parameter related to the in-
version symmetry breaking. In contrast, the SU(N )1 quantum
criticality of the transition stems from the delocalization of
the edge states of the two degenerate chiral SPT ground states
which are exchanged under the inversion symmetry.

Weak-coupling approach. The continuum limit of model
(1) is performed by exploiting the fact that the low-energy
properties of the uniform SU(N ) Heisenberg spin chain for
δ = 0 is described by an SU(N )1 conformal field theory (CFT)
[31–33]. In the low-energy limit, the lattice spin operators are
described by

SA
n /a0 ! JA

L + JA
R + iλ e

i2π
Na0

x Tr[g(x)T A] + H.c., (2)

where x = na0, a0 being the lattice spacing, and λ = Ceiθ0

(C > 0) is a nonuniversal complex constant. In Eq. (2), JA
R,L

are the chiral SU(N )1 currents which generate the SU(N )1
CFT, g is the SU(N )1 primary field with scaling dimension
(N − 1)/N , and T A are the SU(N ) generators in the funda-
mental representation of the SU(N ) group. Two important
discrete lattice symmetries are the one-step translation sym-
metry Ta0 which is explicitly broken when δ #= 0 and the
inversion symmetry I which is always a symmetry. Using the
correspondence (2), these two symmetries are implemented in
the low-energy approach by the identification

g
Ta0−→ ei 2π

N g,

g(x)
I−→ − e−2iθ0 e−i 2π

N g†(−x).
(3)

When |δ| % 1, a low-energy approach for the spin-chain
model can be derived by means of the identification (2). Its
Hamiltonian density reads as follows,

Hδ = H0 + Vδ + Hcc,

H0 = 2πv

N + 1

[
: JA

R JA
R : + : JA

L JA
L :

]
,

Vδ = δ̄
[
ei(θ0+ π

2 + π
N ) Tr(g) + H.c.

]
,

Hcc = λccJA
R JA

L , (4)

where a summation over repeated indices is implied and
δ̄ = CNδ (CN > 0); see Supplemental Material for more de-
tails (SM) [34]. A similar derivation has been obtained in
Ref. [35] in the N = 3 case. The leading contribution is Vδ

which is a strongly relevant perturbation with scaling dimen-
sion (N − 1)/N and Hcc is a marginal current-current interac-
tion. A spectral gap is opened for either sign of the modulation
δ with an energy gap, % ∼ |δ̄|N/(N+1)/(ln |δ̄|)(N−1)/N [34]. The
physical nature of the gapped phases strongly depends on the
sign of δ.

When δ < 0 (i.e., δ̄ < 0), the minimization of the strongly
relevant perturbation Vδ in Eq. (4) leads to a nondegenerate
solution for every N ,

gδ<0 = e−i(θ0+ π
2 + π

N )I, (5)

I being the N × N identity matrix. The solution is an SU(N )
matrix if eiNθ0 = −(−i)N , which fixes the phase θ0 of the
nonuniversal constant that appears in the continuous descrip-
tion of the spin operator (2). The ground state, described by
the solution (5), is invariant under the inversion symmetry.
The phase is a featureless fully gapped phase which is made
by a collection of singlet states of N sites [see Fig. 1(i) for
N = 3].

When N is odd and δ > 0, the minimization of the potential
Vδ in Eq. (4) gives a twofold degenerate solution:

g± = −e−i(θ0+ π
2 + π

N )±i π
N I. (6)

Under the inversion symmetry (3), we have g±
I−→ g∓. The

phase in the odd-N case is thus twofold degenerate and
spontaneously breaks the inversion symmetry. From the iden-
tification (3), we observe that the solutions (6) are obtained
from the trivial one (5) by a simple translation of (N ± 1)/2
sites. In an open geometry, the phase with δ < 0 has no edge
state whereas the two degenerate phases with δ > 0 enjoy
chiral edge states due to the translation of (N ± 1)/2 sites
with the left edge state being described by a Young tableau
with a single column and (N ± 1)/2 boxes and the right one in
the representation with a single column and (N ∓ 1)/2 boxes.
These edge states are exchanged by the inversion symmetry
and belong to conjugate representations. In the simplest N =
3 case, the edge states belong to the 3 and 3̄ representations
of the SU(3) group and define the PSU(3) chiral SPT phase
which was found in two-leg spin ladders with unequal spins
or other 1D SU(3) spin models in the adjoint representation
of the SU(3) group [36–41]. In the general odd-N case, the
twofold-degenerate ground state for δ > 0 corresponds to the
chiral (N±1)

2 -SPT phases with edge states with dimension d =
N!

[(N−1)/2]![(N+1)/2]! . The inversion symmetry is spontaneously
broken in the chiral SPT phase and remains unbroken in
the trivial phase. Despite this Z2 inversion broken symmetry,
the phase transition at δ = 0 between the trivial and chiral
SPT phases is not an Ising transition with central charge
c = 1/2 but belongs to the SU(N )1 universality class [32]
with a central charge c = N − 1. The transition satisfies the
bound c ! log2 d conjectured in Ref. [42] corresponding to a
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the trivial phase. Despite this Z2 inversion broken symmetry,
the phase transition at δ = 0 between the trivial and chiral
SPT phases is not an Ising transition with central charge
c = 1/2 but belongs to the SU(N )1 universality class [32]
with a central charge c = N − 1. The transition satisfies the
bound c ! log2 d conjectured in Ref. [42] corresponding to a
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SPT phase, breaks inversion sym

What is the nature of the transition at                 ?
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ω = 0

What is the nature of the excitations ?
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FIG. 5. 1d SU(3) spin chain with fundamental spin at each
site. The nearest neighbor spins interact with each other through
a Heisenberg Hamiltonian with interaction strength labeled in the
figure. For δ != 0, one unit cell contains three spins. For δ = 0 the
system has enlarged translational symmetry. The Hamiltonian has a
site-centered parity symmetry.

of P : E "→ −E . The relative topology we claimed above
between two states and the trivial state can be understood in
the following way. We can start from a system with θ = 0 and
adiabatically tune up θ to 3π . Correspondingly, the electric
field strength E will adiabatically increase to 3/2. To get to
the E = +1/2 state, a pair of ±1 charges must be nucleated
and sent to the boundaries of the system, while a pair of ±2
charges is required to get to the E = −1/2 state. Since the
only charge ±1,±2 objects of the system carry projective
representation of the PSU(3) symmetry, the E = ±1/2 states
differ from trivial state by an SPT state protected by PSU(3).
The E = 1/2 and E = −1/2 states themselves also differ by
a PSU(3) SPT, for the same reason.

The above argument can be made precise by an explicit
lattice model. Consider an SU(3) spin chain with fundamental
representation on each site. The Hamiltonian is written as
(also see Fig. 5)

Hspin = (J − δ)
∑

i

(Si,A · Si,B + Si,B · Si,C )

+ (J + δ)
∑

〈i, j〉
Si,C · S j,A, (D2)

FIG. 6. A schematic phase diagram for the continuous Landau-
forbidden transition in 3 + 1d .

where Si · S j is a short hand notation for Sβ
α (i)Sα

β ( j). The spin
model at δ = 0 realizes the SU(3)1 conformal field theory,
which is exactly the theory in Eq. (D1) at m = 0. Eq. (D1)
can be viewed as a parton mean field theory of the spin chain
[45,50,51]. One can show that the δ term in the spin chain
precisely maps to the fermion mass term in the parton theory,
namely, δ ∼ m. For δ < 0, the spin chain has a unique ground
state which is a tensor product of trimers formed between
spins on ABC sublattices within a unit cell. This corresponds
to the m < 0 phase in the parton theory. For δ > 0, there
are two degenerate trimerization patterns as shown in Fig. 5,
which corresponds to the two-fold ground states in the m > 0
phase of Eq. (D1). The two patterns, as shown in Fig. 5, leave
some boundary spins unpaired, similar to the boundary state
of AKLT chain. Therefore they are topologically distinct from
the δ < 0 state, and hence the critical theory does not describe
a conventional Landau ordering transition.

APPENDIX E: CONTINUOUS LANDAU-FORBIDDEN
TRANSITIONS IN 3 + 1 DIMENSIONS

Here we display a bosonic model that shows a continuous
phase transition with a deconfined critical point between two
Landau-allowed phases that break distinct symmetries. This
is thus a direct analog in 3 + 1-D of the phenomena discussed
previously [2–7] in 2 + 1-D. Consider SU(2) gauge theory at
θ = π coupled to Nb bosons in the fundamental representation
of the SU(2) gauge group:

L = 1
4g2

Tr f 2
µν + π

8π2
Tr ( f ∧ f )

+
∣∣(∂µ − iaI

µσ I/2
)
φ
∣∣2 − r|φ|2 − λ

2
|φ|4. (E1)

(The I index runs from 1 to 3). Here time reversal symmetry
acts as

T : φ(t, x) "→ φ∗(−t, x),

aI
0(t, x) "→ −aI

0(−t, x),

aI
j (t, x) "→ aI

j (−t, x). (E2)

The θ term can be viewed as arising from a distinct set
of heavy “spectator” bosons φH [also in the fundamental of
SU(2)] that form a boson SPT phase of the SU(2) group before
it is gauged. We will take φH to transform in the same way as
φ under time reversal but to be a flavor singlet. The global
symmetries of this theory are almost identical to the theory
with fermionic matter discussed in the main text but with one
difference. The presence of the flavor singlet spectator boson
φH implies that there are gauge-invariant operators φ

†
Hφ that

transform in the fundamental representation of Sp(Nb). Thus
the continuous global symmetry is Sp(Nb) and not PSp(Nb).
From a formal point of view, in the presence of the spectator
bosons, the SU(2) gauge bundle and the background Sp(Nb)
bundle are independent of each other [the condition in Eq. (4)
does not hold]. We also assume that the spectator bosons do
not contribute a nontrivial SPT of the global symmetry.

Since a Dirac fermion behaves like four bosons for the
purposes of computing the flow of the gauge coupling, the
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We investigate the nature of the quantum phase transition in modulated SU(N ) Heisenberg spin chains. In
the odd-N case, the transition separates a trivial nondegenerate phase to a doubly degenerate gapped chiral
PSU(N ) symmetry-protected topological (SPT) phase which breaks spontaneously the inversion symmetry. The
transition is not an Ising transition associated to the breaking of the Z2 inversion symmetry, but is governed by
the delocalization of the edge states of the SPT phase. In this respect, a modulated SU(N ) Heisenberg spin chain
provides a simple example in one dimension of a non-Landau phase transition which is described by the SU(N )1

conformal field theory. We show that the chiral SPT phase exhibits fractionalized spinon excitations, which can
be confined by slightly changing the model parameters.

DOI: 10.1103/PhysRevB.111.L020404

Introduction. The Landau-Ginzburg-Wilson (LGW)
paradigm provides the conceptual framework to describe
continuous phase transitions in modern condensed matter [1].
The central idea of the approach is that the universal properties
of a transition are fully characterized by the long-wavelength,
long-time fluctuations of a symmetry-breaking order
parameter. In the past three decades, however, many exotic
quantum phase transitions beyond the LGW paradigm have
been proposed. A prime example is the continuous phase
transition between two phases with the same symmetry
but with different topological orders [2,3]. The underlying
transition is not described by the fluctuations of a Landau
order parameter but stems from a drastic change in the
long-range quantum entanglement pattern of the underlying
topological orders of the phases [4].

A particularly striking example of a non-Landau transi-
tion arises in the concept of deconfined quantum criticality
(DQC), with a possible direct continuous transition between
two phases with incompatible spontaneous broken symme-
tries as for the Néel to valence-bond-solid transition of
two-dimensional competing spin-1/2 magnets [5–7]. The
transition is described by emergent deconfined gauge fields
coupled to fractionalized degrees of freedom, whereas they
are confined in the conventional phases on either side of the
transition [7]. This Landau-forbidden transition has attracted
much interest over the years and has recently become very
relevant with its possible experimental observation in a pres-
surized SrCu2(BO3)2 compound [8–11]. In one dimension
(1D), there are several examples of non-Landau continuous
phase transitions, some of them realizing a 1D version of a
DQC point [12–25]. These models are defined from discrete
or U(1) symmetries with a U(1) Luttinger criticality at the
transition [26].

In this Letter, we introduce a general class of 1D lattice
models with non-Abelian SU(N ) continuous symmetry which
display non-Landau quantum phase transitions. We consider
an SU(N ) Heisenberg spin chain with an explicit modulation
of the interactions with period N ,

Hδ = J
NL∑

i=1

N2−1∑

A=1

{
1 + δ cos

(
2π i
N

)}
SA

i SA
i+1, (1)

where SA
i are the SU(N ) spin operators on the ith site of

the chain which transform in the N-dimensional fundamental
representation of the SU(N ) group, normalized as Tr(SASB) =
δAB/2. In the simplest N = 2 case, the model corresponds to
the alternating spin-1/2 Heisenberg spin chain with explicit
dimerization which was introduced by Hida in Ref. [27] to
describe the main properties of the Haldane phase of the
spin-1 Heisenberg chain, the paradigmatic example of a 1D
interacting symmetry-protected topological (SPT) phase [28].

In this Letter, we map out the phase diagram of model
(1) for general odd N at zero temperature by means of
complementary non-Abelian bosonization and numerical ap-
proaches. The phase transition is always located at δ = 0
and belongs to the SU(N )1 universality class with central
charge c = N − 1. It is shown that the continuous transition
for odd N represents a simple example of a non-Landau
transition in 1D, similarly to the result that was obtained
for N = 3 in a related model in Ref. [29]. The quantum
critical point separates a trivial phase at δ < 0 from a twofold-
degenerate gapped phase at δ > 0. The latter exhibits two
chiral SPT ground states that are protected by the projective
unitary symmetry PSU(N ) = SU(N )/ZN [30], for which the
inversion symmetry I (SA

NL−n → SA
n+1) of the model is spon-

taneously broken—see Fig. 1 for an illustration of the ground
state in the simplest N = 3 case. Despite this symmetry
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SU(3) chain with modulation

Strong-coupling: it maps onto a                   chain, known to be dimerized 
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Field-theory predicts opening of a spectral gap  

Despite the Z2 inversion symmetry breaking, the phase transition is not Ising-like (c=1/2) 

but belongs to the SU(N)1 universality class with central charge c=N-1
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iDMRG results using SU(3)
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(i)

(ii)

(iii)

(iv)

FIG. 1. Cartoon pictures of the SU(3) ground states where
strong/weak antiferromagnetic couplings are depicted as
solid/dashed bonds, respectively. From top to bottom: (i) δ < 0
(connected to a trivial product of singlets); (ii) δ > 0 (two possible
ground states, related by inversion symmetry, are shown with
different dashed ovals); (iii) and (iv) two soliton excitations
(respectively 3̄ and 3) that can exist as domain walls between the
two possible ground states for δ > 0.

breaking, the transition is not an Ising transition described
by the fluctuations of a Z2 order parameter related to the in-
version symmetry breaking. In contrast, the SU(N )1 quantum
criticality of the transition stems from the delocalization of
the edge states of the two degenerate chiral SPT ground states
which are exchanged under the inversion symmetry.

Weak-coupling approach. The continuum limit of model
(1) is performed by exploiting the fact that the low-energy
properties of the uniform SU(N ) Heisenberg spin chain for
δ = 0 is described by an SU(N )1 conformal field theory (CFT)
[31–33]. In the low-energy limit, the lattice spin operators are
described by

SA
n /a0 ! JA

L + JA
R + iλ e

i2π
Na0

x Tr[g(x)T A] + H.c., (2)

where x = na0, a0 being the lattice spacing, and λ = Ceiθ0

(C > 0) is a nonuniversal complex constant. In Eq. (2), JA
R,L

are the chiral SU(N )1 currents which generate the SU(N )1
CFT, g is the SU(N )1 primary field with scaling dimension
(N − 1)/N , and T A are the SU(N ) generators in the funda-
mental representation of the SU(N ) group. Two important
discrete lattice symmetries are the one-step translation sym-
metry Ta0 which is explicitly broken when δ #= 0 and the
inversion symmetry I which is always a symmetry. Using the
correspondence (2), these two symmetries are implemented in
the low-energy approach by the identification

g
Ta0−→ ei 2π

N g,

g(x)
I−→ − e−2iθ0 e−i 2π

N g†(−x).
(3)

When |δ| % 1, a low-energy approach for the spin-chain
model can be derived by means of the identification (2). Its
Hamiltonian density reads as follows,

Hδ = H0 + Vδ + Hcc,

H0 = 2πv

N + 1

[
: JA

R JA
R : + : JA

L JA
L :

]
,

Vδ = δ̄
[
ei(θ0+ π

2 + π
N ) Tr(g) + H.c.

]
,

Hcc = λccJA
R JA

L , (4)

where a summation over repeated indices is implied and
δ̄ = CNδ (CN > 0); see Supplemental Material for more de-
tails (SM) [34]. A similar derivation has been obtained in
Ref. [35] in the N = 3 case. The leading contribution is Vδ

which is a strongly relevant perturbation with scaling dimen-
sion (N − 1)/N and Hcc is a marginal current-current interac-
tion. A spectral gap is opened for either sign of the modulation
δ with an energy gap, % ∼ |δ̄|N/(N+1)/(ln |δ̄|)(N−1)/N [34]. The
physical nature of the gapped phases strongly depends on the
sign of δ.

When δ < 0 (i.e., δ̄ < 0), the minimization of the strongly
relevant perturbation Vδ in Eq. (4) leads to a nondegenerate
solution for every N ,

gδ<0 = e−i(θ0+ π
2 + π

N )I, (5)

I being the N × N identity matrix. The solution is an SU(N )
matrix if eiNθ0 = −(−i)N , which fixes the phase θ0 of the
nonuniversal constant that appears in the continuous descrip-
tion of the spin operator (2). The ground state, described by
the solution (5), is invariant under the inversion symmetry.
The phase is a featureless fully gapped phase which is made
by a collection of singlet states of N sites [see Fig. 1(i) for
N = 3].

When N is odd and δ > 0, the minimization of the potential
Vδ in Eq. (4) gives a twofold degenerate solution:

g± = −e−i(θ0+ π
2 + π

N )±i π
N I. (6)

Under the inversion symmetry (3), we have g±
I−→ g∓. The

phase in the odd-N case is thus twofold degenerate and
spontaneously breaks the inversion symmetry. From the iden-
tification (3), we observe that the solutions (6) are obtained
from the trivial one (5) by a simple translation of (N ± 1)/2
sites. In an open geometry, the phase with δ < 0 has no edge
state whereas the two degenerate phases with δ > 0 enjoy
chiral edge states due to the translation of (N ± 1)/2 sites
with the left edge state being described by a Young tableau
with a single column and (N ± 1)/2 boxes and the right one in
the representation with a single column and (N ∓ 1)/2 boxes.
These edge states are exchanged by the inversion symmetry
and belong to conjugate representations. In the simplest N =
3 case, the edge states belong to the 3 and 3̄ representations
of the SU(3) group and define the PSU(3) chiral SPT phase
which was found in two-leg spin ladders with unequal spins
or other 1D SU(3) spin models in the adjoint representation
of the SU(3) group [36–41]. In the general odd-N case, the
twofold-degenerate ground state for δ > 0 corresponds to the
chiral (N±1)

2 -SPT phases with edge states with dimension d =
N!

[(N−1)/2]![(N+1)/2]! . The inversion symmetry is spontaneously
broken in the chiral SPT phase and remains unbroken in
the trivial phase. Despite this Z2 inversion broken symmetry,
the phase transition at δ = 0 between the trivial and chiral
SPT phases is not an Ising transition with central charge
c = 1/2 but belongs to the SU(N )1 universality class [32]
with a central charge c = N − 1. The transition satisfies the
bound c ! log2 d conjectured in Ref. [42] corresponding to a
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SU(3) chain: spectral functions
Using MPS excitation ansatz, one can compute the spectral functions

Vanderstraeten, Verstraete et al.
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FIG. 4. The spectral function S(q, ω) of the SU(3) chain with δ = 1.7 and φ = 0 (left) and φ = π/100 (right), with the lower and upper
edges of the two-spinon continuum in green. This was computed by variational MPS time evolution with total bond dimension D ≈ 3000
and total evolution time T = 100, and we have applied a Gaussian broadening with σω ≈ 0.03. The edges of the continuum were obtained
numerically from the single-spinon dispersion. We have set J = 1.

The dispersion of these fractional spinon excitations can
be calculated numerically using the MPS excitation ansatz,
a variational approach for capturing excitations on top of an
MPS ground state directly in the thermodynamic limit [59,60].
In this way, we obtain a spinon dispersion with a small gap
& ≈ 0.003J , in agreement with the quite large correlation
length in this regime. Then, using the single-spinon dispersion
relation, we can simply compute the lower and upper edges
of the s-s̄ continuum. Next, we determine to what extent the
full excitation spectrum can be reconstructed from these ele-
mentary spinon states. To that effect, we compute the spectral
function

S(q,ω) =
∫ +∞

−∞
dteiωt 〈'0| e−iHt SA

−qeiHt SA
q |'0〉 , (7)

where SA
q is the momentum-space spin operator. This spectral

function therefore probes the excitations in the 8 (adjoint)
sector. We can compute S(q,ω) by acting with Sα

j on an
MPS ground state, performing variational real-time evolution
[61,62], and transforming the correlation function to momen-
tum and frequency space. Results are shown in the left panel
of Fig. 4, as well as the lower and upper edges of the s-s̄
continuum. We observe that all the dominant features of the
spectral function are nicely contained within the continuum,
confirming that the spinons are the only fundamental excita-
tions.

As a final application we perturb the modulated SU(3) spin
chain slightly by an extra phase factor φ,

H = J
∑

i

[
1 + δ cos

(
2π i
N

+ φ

)]
SA

i SA
i+1. (8)

Such perturbation breaks the inversion symmetry explicitly,
hence lifting the degeneracy of the two ground states. As a re-
sult, the spinons can no longer exist as independent particles,
but are confined into bound states. This effect is well -known
for (deformed) SU(2) Heisenberg or Ising chains [63,64] and
has been observed in inelastic neutron scattering experiments
[65–67] or after a real-time quench in a quantum simulator
[68]. In S(q,ω), this results in the continuum being replaced
by isolated lines, which is shown explicitly in the right panel
of Fig. 4. The enthusiastic reader can interpret our current

SU(3) example as a 1D spin chain analog of the confinement
of quarks into mesonic bound states.

Summary and experimental realization. In this Letter, we
have have shown that the modulated SU(N ) spin chain ex-
hibits a non-Landau quantum phase transition, both from a
low-energy field theory approach and from numerical MPS
simulations. For odd N , the transition is between a trivial
phase and a chiral SPT phase with a twofold degenerate
ground state. In the latter, the excitations are deconfined
spinon excitations with fractional SU(N ) charge, which can
be confined by adding a small phase in the modulation of the
coupling strengths.

Given these exotic phenomena, it would be very interesting
to engineer this system in a quantum simulation experiment.
There are several ways to realize an SU(N )-symmetric spin
model using alkaline-earth ultracold atoms such as Yb or
Sr [69]. For simplicity, we consider only the N = 3 case, in
which we can start from an optical lattice made of a set of
three laser beams with the wavelengths 2), ), and )/3:

Vlat(x) = V1 cos2
(

2π

2)
x
)

+ V2 cos2
(

2π

)
x
)

+V3 cos2
(

2π

2)/3
x
)

. (9)

For appropriate choices of the beam strengths V1,2,3, we obtain
a lattice with three minima within a period ) separated by
large potential barriers. Now we load fermionic atoms into
the lattice and carry out the second-order perturbation in the
hopping to arrive at an SU(3) Heisenberg chain with modu-
lated interactions. We can realize the model (1) with δ < 0 by
choosing large enough V2 (>0) and setting V1 = rV2 (r > 1),
and V3 = V2/[4(r − 1)]. The last condition for J3 (triple-well
condition) is necessary for the three minima to have equal
depths. On the other hand, to simulate the model with δ > 0,
we use large enough V2 (<0) and V1 = rV2 (<0), and tune
the third beam as V3 = |V2|/[4(1 − r)] (0 < r < 1). We can
effectively flip the signs of V1 and V2 by introducing phase
shifts in the corresponding beams.
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Compatible with a 2-spinon continuum
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ω > 0
(Small) Explicit symmetry breaking	

Spinons are confined into bound states 



• Often, SU(N) models have nontopological groundstates  

• Some realistic microscopic SU(N) models can stabilize all SPT phases


• Some SPT phases also break inversion symmetry breaking (chiral)


• A simple modulated SU(N) chain exhibits a non-Landau quantum phase 
transition


• Perspective: quantum phase transition between a trivial phase and an SPT 
is conjectured to have central charge 


Conclusion about 1d
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Going to two dimensions
Quite fun ! But challenging too…



• Robustness of topological states 

                   Topological quantum computation (no error correction needed !) 

• Quasiparticles are anyons (fractional statistics) i.e. not necessarily bosons or 
fermions (spin statistics theorem breaks down in 2+1D) 

topological quantum field theory  
(e.g. Chern-Simons),  
braid group, fusion rules…

• Excitations can be abelian or not

Topological phases of matter
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Chiral topological phase is found in the fractional quantum 
Hall (FQH) effect

topological phases, exotic excitations 
(abelian or not) 

unconventional superconductor when doped

Is it possible to reach the same physics without Landau levels, on a lattice ?

Look for lattice models with similar 
wavefunctions

Mimic an effective magnetic field,  
flat bands etc.

Fractional Chern insulators

Chiral topological spin liquids



Chiral spin liquids (CSL) 
= lattice analogue of FQH states
 Low-energy physics described by 2+1 Chern-Simons theory

⌫ =
1

2

charged e/2 fractional excitation

robust gapless chiral edge states

incompressible (gapped) in the bulk

FQH state

SU(2)1 CFT
Kalmeyer-Laughlin, 1987triangular lattice:

neutral s=1/2 fractional excitation

same

same

lattice spin S=1/2 model
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The Complete Quantum Hall Trio

PHYSICS

Seongshik Oh

Observation of a quantized resistance state 

in the absence of an external magnetic fi eld 

completes a trio of quantum Hall related effects.

        W
hen an electric current I flows 
through a slab of conductor placed 
in an external magnetic f ield 

H perpendicular to the flow direction, the 
magnetic fi eld defl ects the current-carrying 
charge particles toward the edge of the con-
ductor and a transverse voltage VT develops 
across the sample. This effect, discovered 
by Edwin Hall in 1879 ( 1), is called the Hall 
effect. Because the transverse resistance (or 
Hall resistance) defined as VT/I is propor-
tional to H/n, where n is the sheet carrier den-
sity of the sample, the Hall effect has been 
widely used to quantify the carrier type (elec-
tron or hole), density, and mobilities of elec-
tronic materials. However, in the 1980s it was 
found that when the charge carriers are con-
fi ned to a two-dimensional system (or sheet), 
the Hall resistance becomes 
exactly quantized at h/(νe

2), 
where h is the Planck con-
stant, e is the electron charge, 
and ν is a positive integer, 
whenever H/n approaches 
specifi c values ( 2). This phe-
nomenon, called the quantum 
Hall effect (QHE), always 
requires an external magnetic 
fi eld. On page 167 this issue 
( 3), Chang et al. have discov-
ered that such exact quanti-
zation in the transverse resis-
tance can occur even without 
an external magnetic fi eld on 
a thin ferromagnetic topologi-

cal insulator; the result confi rms the long-
awaited quantum anomalous Hall effect 
(QAHE), the fi nal member of the quantum 
Hall trio (see the fi gure).

Soon after the discovery of the QHE, it 
was realized that the quantization occurs 
when dissipationless (or lossless) one-
dimensional channels form around the 
edges of the sheet while the rest of the sam-
ple remains insulating and that the num-
ber of these edge channels determines the 
integer value ν. In such a case, electrons 
flowing on one side cannot be scattered 
backward because the backward channels 
exist only on the other side of the sample, 
which is separated by the insulating bulk in 
between, and whenever quantization occurs 
in the transverse resistance, the longitudi-

nal resistance of the sample reduces to zero.
As understanding of the QHE matured, 

questions arose as to whether such loss-
less edge channels could exist even in the 
absence of an external magnetic field. In 
1988, it was shown theoretically that such an 
edge channel can exist on a two-dimensional 
lattice ( 4). Then, almost 20 years later, exper-
imental demonstration of the presence of 
lossless edge channels in a HgTe/CdTe quan-
tum well in the absence of an external mag-
netic fi eld was reported ( 5). However, due to 
the absence of a magnetic fi eld forcing the 
current to fl ow one way or the other, there 
existed both clockwise and counter-clock-
wise edge channels, whose direction was 
determined by the spin orientation (either up 
or down) of the occupying electrons, forced 
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Quantum Hall trio. Numbers in parentheses indicate the years of each discovery. H is the external magnetic fi eld, and M is 
the magnetization. For all three quantum Hall effects, electrons fl ow through the lossless edge channels, with the rest of the 
system insulating. When there is a net forward fl ow of electrons for Hall resistance measurement, (left) those extra electrons 
occupy only the left edge channels in the quantum Hall system regardless of their spins, (center) opposite-spin electrons occupy 
opposite sides in the quantum spin Hall system, and (right) only spin-down electrons fl ow through the left edge in the quantum 
anomalous Hall system. The locking schemes between spin and fl ow direction, and the number of edge channels depend on the 
material details, and only the simplest cases are illustrated here.

tecting groups or other synthetic manipu-
lations), which helps reduce the number of 
synthetic steps.

The synthesis developed by Malinowski 
et al. provides access to pactamycin in only 
15 chemical steps (versus 32 steps previ-
ously) and 1.9% overall yield. Notably, sev-
eral late-stage intermediates used in the syn-
thesis represent suitable precursors for the 
preparation of analogs. Future investigations 
of the biological effects of such analogs could 

lead to the development of therapeutic agents 
with attenuated toxicity in mammalian cells. 
Just as the synthesis reported by Malinowski 
et al. will likely prove to be an enabling devel-
opment in the story of pactamycin, it also 
highlights the enabling power of symmetry as 
a design element in rendering complex mol-
ecules synthetically practical. 
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(in the odd sector) is big (!T ∼ 0.3J1) [64,65], seemingly
consistent with a gapped spin liquid [70,71]. Nonetheless,
the even and odd sectors show some distinct features in
finite-size DMRG calculations. While the odd sector shows
a short correlation length that could be consistent with the
large gap, the even sector exhibits a much larger one [65,66],
which may suggest a smaller gap in the even sector. The
low-lying entanglement spectrum in the even sector shows a
Dirac-node-like structure, which is suggested as an implication
of gapless spinon excitations [66]. The different DMRG
results in the two sectors reasonably imply that either the
putative gapped spin liquid is not yet well developed due
to the strong finite-size effects in numerical calculations, or
a gapless spin liquid is possible. In the variational study,
a U(1) Dirac gapless spin liquid indeed possesses the best
variational energy [67]. The nature of this spin liquid remains
an open question. To shed more light on this spin liquid phase,
the modified J1-J2 triangular models have been investigated
[72–75]. Interestingly, the variational [73] and ED calculations
[74] suggest a possible CSL at the neighbor of the J1-J2 spin
liquid, which seems to be similar to the situation in the kagome
model and deserves more studies. Besides, the quantum phase
transition between the two spin liquid phases is also far from
clear.

In this article, we study the spin-1/2 J1-J2 Heisenberg
model on the triangular lattice with additional time-reversal
symmetry (TRS) breaking chiral interaction Jχ using DMRG
simulations. The model Hamiltonian is given as

H = J1

∑

⟨i,j⟩
S⃗i · S⃗j + J2

∑

⟨⟨i,j⟩⟩
S⃗i · S⃗j + Jχ

∑

△/▽
(S⃗i × S⃗j ) · S⃗k,

where J1 and J2 denote the NN and the NNN interactions,
respectively. The scalar chiral interaction Jχ has the same
magnitude for all the up (△) and down (▽) triangles, and the
three sites i,j,k for Jχ follow the clockwise order in all the
triangles as shown in Fig. 1(a). Physically, the scalar chiral
interaction Jχ term can be induced in the Hubbard model with
large U in a magnetic field [76,77]. Starting from the Hubbard
model, a t/U (t and U are the hopping and interaction,
respectively) expansion to the second order at half-filling
gives the effective chiral interaction Jχ (S⃗i × S⃗j ) · S⃗k with
Jχ ∼ #t3/U 2, where # is the magnetic flux enclosed by the
triangle. We take J1 = 1.0 as the energy scale. Using DMRG
simulation, we obtain a quantum phase diagram as shown
in Fig. 1(d). Besides the 120◦ Néel phase, the stripe phase,
and the time-reversal invariant spin liquid in the J1-J2 model
(here we denote it as J1-J2 SL), we find a large regime of
the noncoplanar tetrahedral order for large Jχ , whose spin
configuration is shown in Fig. 1(c). Below the tetrahedral
phase for J2 ! 0.25, we identify a CSL as the ν = 1/2 bosonic
fractional quantum Hall state by observing the gapless chiral
edge mode. The strong nematic order of bond energy suggests
a possible spontaneous lattice rotational symmetry breaking
and implies an emergent nematic CSL. By studying the spin
triplet gap and entanglement spectrum, we observe a transition
from the J1-J2 SL to the CSL at small chiral interaction. While
we find a large spin triplet gap above the overall ground state
(in the odd sector) in the CSL phase, the small triplet gap in
the even sector suggests that on our studied system size the
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FIG. 1. Model Hamiltonian and quantum phase diagram of the
spin-1/2 J1-J2-Jχ Heisenberg model on the triangular lattice. (a) and
(b) are the schematic figures of the 120◦ and the stripe magnetic
order on the XC and YC cylinders. The triangular model has the
nearest-neighbor J1, next-nearest-neighbor J2, and three-spin scalar
chiral Jχ interactions. For all the triangles, the chiral interactions have
the same chirality direction. (c) Tetrahedral magnetic order on the
triangular lattice. This order has four sublattices with spins pointing
toward the corners of a tetrahedron. (d) Quantum phase diagram of the
model with growing J2 and Jχ . The model shows the 120◦ magnetic
order, J1-J2 spin liquid (J1-J2 SL), stripe magnetic order, chiral spin
liquid (CSL), and tetrahedral phases. The phase boundaries (dashed
lines) are obtained by measuring the magnetic order parameter and
spin correlation function. The dot-dashed line is the classical phase
boundary between the 120◦ magnetic order and the tetrahedral order.

topological nature in the even sector may not have been fully
developed. A possible reason is that this CSL regime generated
by increasing Jχ is near the phase boundaries from the CSL
to the neighboring phases. In the J1-J2 triangular model, the
triplet gap in the even sector seems to be vanished, which
could be consistent with the larger correlation length found
in DMRG calculations [65,66] and may suggest a possible
gapless spin liquid [67], which deserves more studies.

We study the system with cylindrical geometry using
DMRG [78] with spin rotational SU(2) symmetry [79]. We
choose two geometries that have one lattice direction parallel to
either the x axis (XC) or the y axis (YC), as shown in Figs. 1(a)
and 1(b). These cylinders are denoted as XC(YC)Ly-Lx , where
Ly and Lx are the numbers of sites along the two directions.
To study the phase diagram and characterize the CSL phase,
we perform calculations on the systems with Ly up to 8 and
10. We keep up to 4000 SU(2) states to obtain accurate results
with the truncation error less than 10−5 in most calculations.

II. TETRAHEDRAL ORDER AND 120◦ ORDER

For J2 = 0.0, the triangular model has a coplanar 120◦

magnetic order at Jχ = 0.0 [46,47,80,81]. In the large Jχ

limit, a classical spin analysis finds a tetrahedral magnetic
state with the spins of the four sublattices pointing toward
the corners of a tetrahedron [82] [see Fig. 1(b)]. In the

075116-2

S=1/2 on triangular lattice

breaks T

PHYSICAL REVIEW B 96, 075116 (2017)

Global phase diagram and quantum spin liquids in a spin-1
2 triangular antiferromagnet

Shou-Shu Gong,1 W. Zhu,2 J.-X. Zhu,2,3 D. N. Sheng,4 and Kun Yang5

1National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
2Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
4Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

5National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
(Received 8 May 2017; published 9 August 2017)

We study the spin-1/2 Heisenberg model on the triangular lattice with the nearest-neighbor J1 > 0, the
next-nearest-neighobr J2 > 0 Heisenberg interactions, and the additional scalar chiral interaction Jχ (S⃗i × S⃗j ) · S⃗k

for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder
geometry. With increasing J2 (J2/J1 ! 0.3) and Jχ (Jχ/J1 ! 1.0) interactions, we establish a quantum phase
diagram with the magnetically ordered 120◦, stripe, and noncoplanar tetrahedral phase. In between these magnetic
order phases, we find a chiral spin liquid (CSL) phase, which is identified as a ν = 1/2 bosonic fractional quantum
Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we
find that the previously identified spin liquid in the J1-J2 triangular model (0.08 " J2/J1 " 0.15) shows a phase
transition to the CSL phase at very small Jχ . We also compute the spin triplet gap in both spin liquid phases, and
our finite-size results suggest a large gap in the odd topological sector but a small or vanishing gap in the even
sector. We discuss the implications of our results on the nature of the spin liquid phases.

DOI: 10.1103/PhysRevB.96.075116

I. INTRODUCTION

Quantum spin liquid (QSL) is a kind of a long-range
entangled state with fractionalized quasiparticles [1]. Since
the proposal by P. W. Anderson, the concept of QSL has been
playing an important role for understanding strongly correlated
materials and unconventional superconductors [2]. Although
QSLs have been pursued for more than two decades [3–9],
only recently such novel states have been found in realistic spin
models [10–23], in which geometric frustration and competing
interactions play important roles for developing spin liquid
states.

One of the most promising spin liquid candidates is
the antiferromagnet on the corner-sharing kagome lattice.
Experimentally, spin-liquid-like behaviors have been observed
in several kagome materials such as herbertsmithite [24–28].
Theoretically, the most extensively studied kagome model
is the spin-1/2 kagome Heisenberg model with the nearest-
neighbor (NN) interaction. Thanks to recent large-scale
density matrix renormalization group (DMRG) simulations
[29,30], conventional orders have been excluded, leading to a
QSL ground state. However, the nature of this spin liquid is still
in debate. DMRG calculations suggest a gapped spin liquid
[29–31], seemingly consistent with a Z2 topological order
[30,31]. Recent tensor network state simulations identify the
Z2 topological order of the obtained variational wave function
[32], but, so far, the four degenerate ground states of the
putative Z2 QSL have not been found in exact diagonalization
(ED) [33,34] and DMRG calculations, leaving this problem
open. On the other hand, variational studies based on the
fermionic parton wave functions find a gapless U(1) Dirac
spin liquid rather than a gapped Z2 spin liquid with an
optimized variational energy [35–37]. Very recently, tensor
renormalization group [38,39] and DMRG [40] calculations
also suggest the gapless spin liquid as a strong candi-
date. Interestingly, studies on the modified kagome models
[14–16,41–43] find that the kagome spin liquid emerges near

the phase boundaries of several ordered phases, suggesting
possible strong competition of the different physical mecha-
nisms in the kagome spin liquid regime. In particular, a fully
gapped chiral spin liquid (CSL) [44,45] is found by switching
on small further-neighbor [15,16] or chiral interactions [14]
on the NN kagome model.

Another promising spin liquid candidate is the antifer-
romagnet on the edge-sharing triangular lattice. Although
frustration is present in the spin-1/2 NN triangular model,
it turns out to still exhibit a 120◦ antiferromagnetic order
[46,47]. In recent experiments on triangular organic Mott in-
sulators such as κ-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2
[48–52], spin-liquid-like behavior has been found. Theoret-
ically, multispin exchange interactions, which can lead to a
gapless spin Bose metal with a large spinon Fermi surface
[53–55] and a gapless spin liquid with a quadratic band
touching [56,57] depending on the strength of interaction, and
the space anisotropic interaction [58–61] have been suggested
to help us understand the spin-liquid behavior in triangular
materials.

Recently, a new spin liquid phase is found in the spin-1/2
triangular Heisenberg model with the NN J1 and the next-
nearest-neighbor (NNN) J2 interactions for 0.08 " J2/J1 "
0.15, which is sandwiched by a 120◦ magnetic phase and
a stripe magnetic order phase [56,62–67]. This frustrating
J2 interaction is considered as a possible mechanism to
understand the spin-liquid behavior of the newly synthesized
triangular materials YbMgGaO4 [68] and Ba3InIr2O9 [69].
For this J1-J2 model, DMRG calculations on a cylindrical
system find evidence of a spin liquid including the two
near-degenerate ground states in the even and odd topological
sectors whose energy difference decays rapidly with growing
cylinder width, and the fractionalized spin-1/2 quasiparticle
revealed by inserting a flux simulation and entanglement
spectrum (ES) [64–66]. On the finite-size DMRG calculations,
the spin triplet gap measured above the overall ground state
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(in the odd sector) is big (!T ∼ 0.3J1) [64,65], seemingly
consistent with a gapped spin liquid [70,71]. Nonetheless,
the even and odd sectors show some distinct features in
finite-size DMRG calculations. While the odd sector shows
a short correlation length that could be consistent with the
large gap, the even sector exhibits a much larger one [65,66],
which may suggest a smaller gap in the even sector. The
low-lying entanglement spectrum in the even sector shows a
Dirac-node-like structure, which is suggested as an implication
of gapless spinon excitations [66]. The different DMRG
results in the two sectors reasonably imply that either the
putative gapped spin liquid is not yet well developed due
to the strong finite-size effects in numerical calculations, or
a gapless spin liquid is possible. In the variational study,
a U(1) Dirac gapless spin liquid indeed possesses the best
variational energy [67]. The nature of this spin liquid remains
an open question. To shed more light on this spin liquid phase,
the modified J1-J2 triangular models have been investigated
[72–75]. Interestingly, the variational [73] and ED calculations
[74] suggest a possible CSL at the neighbor of the J1-J2 spin
liquid, which seems to be similar to the situation in the kagome
model and deserves more studies. Besides, the quantum phase
transition between the two spin liquid phases is also far from
clear.

In this article, we study the spin-1/2 J1-J2 Heisenberg
model on the triangular lattice with additional time-reversal
symmetry (TRS) breaking chiral interaction Jχ using DMRG
simulations. The model Hamiltonian is given as

H = J1

∑

⟨i,j⟩
S⃗i · S⃗j + J2

∑

⟨⟨i,j⟩⟩
S⃗i · S⃗j + Jχ

∑

△/▽
(S⃗i × S⃗j ) · S⃗k,

where J1 and J2 denote the NN and the NNN interactions,
respectively. The scalar chiral interaction Jχ has the same
magnitude for all the up (△) and down (▽) triangles, and the
three sites i,j,k for Jχ follow the clockwise order in all the
triangles as shown in Fig. 1(a). Physically, the scalar chiral
interaction Jχ term can be induced in the Hubbard model with
large U in a magnetic field [76,77]. Starting from the Hubbard
model, a t/U (t and U are the hopping and interaction,
respectively) expansion to the second order at half-filling
gives the effective chiral interaction Jχ (S⃗i × S⃗j ) · S⃗k with
Jχ ∼ #t3/U 2, where # is the magnetic flux enclosed by the
triangle. We take J1 = 1.0 as the energy scale. Using DMRG
simulation, we obtain a quantum phase diagram as shown
in Fig. 1(d). Besides the 120◦ Néel phase, the stripe phase,
and the time-reversal invariant spin liquid in the J1-J2 model
(here we denote it as J1-J2 SL), we find a large regime of
the noncoplanar tetrahedral order for large Jχ , whose spin
configuration is shown in Fig. 1(c). Below the tetrahedral
phase for J2 ! 0.25, we identify a CSL as the ν = 1/2 bosonic
fractional quantum Hall state by observing the gapless chiral
edge mode. The strong nematic order of bond energy suggests
a possible spontaneous lattice rotational symmetry breaking
and implies an emergent nematic CSL. By studying the spin
triplet gap and entanglement spectrum, we observe a transition
from the J1-J2 SL to the CSL at small chiral interaction. While
we find a large spin triplet gap above the overall ground state
(in the odd sector) in the CSL phase, the small triplet gap in
the even sector suggests that on our studied system size the
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FIG. 1. Model Hamiltonian and quantum phase diagram of the
spin-1/2 J1-J2-Jχ Heisenberg model on the triangular lattice. (a) and
(b) are the schematic figures of the 120◦ and the stripe magnetic
order on the XC and YC cylinders. The triangular model has the
nearest-neighbor J1, next-nearest-neighbor J2, and three-spin scalar
chiral Jχ interactions. For all the triangles, the chiral interactions have
the same chirality direction. (c) Tetrahedral magnetic order on the
triangular lattice. This order has four sublattices with spins pointing
toward the corners of a tetrahedron. (d) Quantum phase diagram of the
model with growing J2 and Jχ . The model shows the 120◦ magnetic
order, J1-J2 spin liquid (J1-J2 SL), stripe magnetic order, chiral spin
liquid (CSL), and tetrahedral phases. The phase boundaries (dashed
lines) are obtained by measuring the magnetic order parameter and
spin correlation function. The dot-dashed line is the classical phase
boundary between the 120◦ magnetic order and the tetrahedral order.

topological nature in the even sector may not have been fully
developed. A possible reason is that this CSL regime generated
by increasing Jχ is near the phase boundaries from the CSL
to the neighboring phases. In the J1-J2 triangular model, the
triplet gap in the even sector seems to be vanished, which
could be consistent with the larger correlation length found
in DMRG calculations [65,66] and may suggest a possible
gapless spin liquid [67], which deserves more studies.

We study the system with cylindrical geometry using
DMRG [78] with spin rotational SU(2) symmetry [79]. We
choose two geometries that have one lattice direction parallel to
either the x axis (XC) or the y axis (YC), as shown in Figs. 1(a)
and 1(b). These cylinders are denoted as XC(YC)Ly-Lx , where
Ly and Lx are the numbers of sites along the two directions.
To study the phase diagram and characterize the CSL phase,
we perform calculations on the systems with Ly up to 8 and
10. We keep up to 4000 SU(2) states to obtain accurate results
with the truncation error less than 10−5 in most calculations.

II. TETRAHEDRAL ORDER AND 120◦ ORDER

For J2 = 0.0, the triangular model has a coplanar 120◦

magnetic order at Jχ = 0.0 [46,47,80,81]. In the large Jχ

limit, a classical spin analysis finds a tetrahedral magnetic
state with the spins of the four sublattices pointing toward
the corners of a tetrahedron [82] [see Fig. 1(b)]. In the
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We investigate the J1-J2 Heisenberg model on the triangular lattice with an additional scalar chirality term
and show that a chiral spin liquid is stabilized in a sizable region of the phase diagram. This topological phase is
situated in between a coplanar 120◦ Néel ordered and a noncoplanar tetrahedrally ordered phase. Furthermore we
discuss the nature of the spin-disordered intermediate phase in the J1-J2 model. We compare the ground states
from exact diagonalization with a Dirac spin liquid wave function and propose a scenario where this wave function
describes the quantum critical point between the 120◦ magnetically ordered phase and a putative Z2 spin liquid.
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I. INTRODUCTION

The emergence of quantum spin liquids in frustrated
quantum magnetism is an exciting phenomenon in contem-
porary condensed matter physics [1]. These states of matter
exhibit fascinating properties such as long-range ground-state
entanglement [2,3] or anyonic braiding statistics of quasipar-
ticle excitations, relevant for a potential implementation of
topological quantum computation [4]. Only very recently have
such phases been found to be stabilized in realistic local spin
models [5–19].

Triangular lattice Heisenberg models are a paradigm of
frustrated magnetism. Although the Heisenberg model with
only nearest-neighbor interaction is known to stabilize a
regular 120◦ Néel order [20–23], adding further interac-
tion terms may increase frustration and induce magnetic
disorder to the system. Experimentally, several materials
with triangular lattice geometry do not exhibit any sign of
magnetic ordering down to lowest temperatures [24–27].
These include, for example, the organic Mott insulators like
κ-(BEDT-TTF)2Cu2(CN)3 [24,25] or EtMe3Sb[Pd(dmit)2]2
[26,27] and are thus candidates realizing spin liquid physics.

Historically Kalmeyer and Laughlin [28] introduced the
chiral spin liquid (CSL) state on the triangular lattice. This
state is closely related to the celebrated Laughlin wave function
of the fractional quantum Hall effect and has recently been
shown to be the ground state of several extended Heisenberg
models on the kagomé lattice [5–7,9]. The question arises
whether a CSL can indeed be realized on the triangular
lattice as originally proposed. In a recent study [10] this
was shown for SU(N ) models for N ! 3. In this paper we
provide conclusive evidence that indeed the CSL is stabilized
in a spin-1/2 Heisenberg model upon adding a further scalar
chirality term Jχ S⃗i · (S⃗j × S⃗k), similar to Refs. [6–8,10]. Such
a term can be realized as a lowest order effective Heisenberg
Hamiltonian of the Hubbard model upon adding # flux through
the elementary plaquettes [6,29,30], either via a magnetic field
or by introducing artificial gauge fields in possible cold-atom
experiments [31,32]. The coupling constants then relate to
the Hubbard model parameters t and U as J1 ∼ t2/U and

*alexander.wietek@uibk.ac.at

Jχ ∼ #t3/U 2 where J1 (resp. Jχ ) is the nearest-neighbor
Heisenberg (resp., scalar chirality) coupling.

Another open question in frustrated magnetism of the
triangular lattice is the nature of the intermediate phase in the
phase diagram of the S = 1/2 Heisenberg model with added
next-nearest-neighbor couplings around J2/J1 ≈ 1/8. Several
authors [20,33,34] found a spin disordered state. Recently
several numerical studies [35–40] proposed that a topological
spin liquid state of some kind might be realized in this regime.
The exact nature of this phase yet remains unclear. In this paper
we advocate the presence of a O(4)∗ quantum critical point
[41–44] separating the 120◦ Néel order from a putative Z2
spin liquid. The diverging correlation length at this quantum
critical point and the neighboring first-order phase transition
into the stripy collinear magnetic ordered phase render the
unambiguous identification of the intermediate spin liquid
phase challenging, however.

II. MODEL

We investigate the Heisenberg model with nearest- and
next-nearest-neighbor interactions with an additional uniform

FIG. 1. Approximate T = 0 phase diagram of the J1-J2-Jχ model
on the triangular lattice, cf. Eq. (1). The extent of phases is inferred
from excitation spectra from ED on a periodic 36-site triangular
simulation cluster; see main text for details. Orange: S = 1 K .A1
(120◦ Néel); light blue: S = 0 $.E2b (CSL); green: S = 0 $.E2a,
$.E2b degenerate (Dirac/Z2 spin liquid); dark blue: S = 0 $.A1,
$.E2a, $.E2b degenerate (stripy magnetic order); dark red / light red:
S = 1 M .A / S = 0 $.E2a (tetrahedral magnetic order).
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and show that a chiral spin liquid is stabilized in a sizable region of the phase diagram. This topological phase is
situated in between a coplanar 120◦ Néel ordered and a noncoplanar tetrahedrally ordered phase. Furthermore we
discuss the nature of the spin-disordered intermediate phase in the J1-J2 model. We compare the ground states
from exact diagonalization with a Dirac spin liquid wave function and propose a scenario where this wave function
describes the quantum critical point between the 120◦ magnetically ordered phase and a putative Z2 spin liquid.
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I. INTRODUCTION

The emergence of quantum spin liquids in frustrated
quantum magnetism is an exciting phenomenon in contem-
porary condensed matter physics [1]. These states of matter
exhibit fascinating properties such as long-range ground-state
entanglement [2,3] or anyonic braiding statistics of quasipar-
ticle excitations, relevant for a potential implementation of
topological quantum computation [4]. Only very recently have
such phases been found to be stabilized in realistic local spin
models [5–19].

Triangular lattice Heisenberg models are a paradigm of
frustrated magnetism. Although the Heisenberg model with
only nearest-neighbor interaction is known to stabilize a
regular 120◦ Néel order [20–23], adding further interac-
tion terms may increase frustration and induce magnetic
disorder to the system. Experimentally, several materials
with triangular lattice geometry do not exhibit any sign of
magnetic ordering down to lowest temperatures [24–27].
These include, for example, the organic Mott insulators like
κ-(BEDT-TTF)2Cu2(CN)3 [24,25] or EtMe3Sb[Pd(dmit)2]2
[26,27] and are thus candidates realizing spin liquid physics.

Historically Kalmeyer and Laughlin [28] introduced the
chiral spin liquid (CSL) state on the triangular lattice. This
state is closely related to the celebrated Laughlin wave function
of the fractional quantum Hall effect and has recently been
shown to be the ground state of several extended Heisenberg
models on the kagomé lattice [5–7,9]. The question arises
whether a CSL can indeed be realized on the triangular
lattice as originally proposed. In a recent study [10] this
was shown for SU(N ) models for N ! 3. In this paper we
provide conclusive evidence that indeed the CSL is stabilized
in a spin-1/2 Heisenberg model upon adding a further scalar
chirality term Jχ S⃗i · (S⃗j × S⃗k), similar to Refs. [6–8,10]. Such
a term can be realized as a lowest order effective Heisenberg
Hamiltonian of the Hubbard model upon adding # flux through
the elementary plaquettes [6,29,30], either via a magnetic field
or by introducing artificial gauge fields in possible cold-atom
experiments [31,32]. The coupling constants then relate to
the Hubbard model parameters t and U as J1 ∼ t2/U and
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Jχ ∼ #t3/U 2 where J1 (resp. Jχ ) is the nearest-neighbor
Heisenberg (resp., scalar chirality) coupling.

Another open question in frustrated magnetism of the
triangular lattice is the nature of the intermediate phase in the
phase diagram of the S = 1/2 Heisenberg model with added
next-nearest-neighbor couplings around J2/J1 ≈ 1/8. Several
authors [20,33,34] found a spin disordered state. Recently
several numerical studies [35–40] proposed that a topological
spin liquid state of some kind might be realized in this regime.
The exact nature of this phase yet remains unclear. In this paper
we advocate the presence of a O(4)∗ quantum critical point
[41–44] separating the 120◦ Néel order from a putative Z2
spin liquid. The diverging correlation length at this quantum
critical point and the neighboring first-order phase transition
into the stripy collinear magnetic ordered phase render the
unambiguous identification of the intermediate spin liquid
phase challenging, however.

II. MODEL

We investigate the Heisenberg model with nearest- and
next-nearest-neighbor interactions with an additional uniform

FIG. 1. Approximate T = 0 phase diagram of the J1-J2-Jχ model
on the triangular lattice, cf. Eq. (1). The extent of phases is inferred
from excitation spectra from ED on a periodic 36-site triangular
simulation cluster; see main text for details. Orange: S = 1 K .A1
(120◦ Néel); light blue: S = 0 $.E2b (CSL); green: S = 0 $.E2a,
$.E2b degenerate (Dirac/Z2 spin liquid); dark blue: S = 0 $.A1,
$.E2a, $.E2b degenerate (stripy magnetic order); dark red / light red:
S = 1 M .A / S = 0 $.E2a (tetrahedral magnetic order).
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Topological phases in frustrated quantum spin systems have fascinated researchers for

decades. One of the earliest proposals for such a phase was the chiral spin liquid, a bosonic

analogue of the fractional quantum Hall effect, put forward by Kalmeyer and Laughlin in 1987.

Elusive for many years, recent times have finally seen this phase realized in various models,

which, however, remain somewhat artificial. Here we take an important step towards the goal

of finding a chiral spin liquid in nature by examining a physically motivated model for a Mott

insulator on the Kagome lattice with broken time-reversal symmetry. We discuss the

emergent phase from a network model perspective and present an unambiguous numerical
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A simple spin- 1
2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral

plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013)] to
host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin,
Phys. Rev. Lett. 59, 2095 (1987)]. Here, we construct generic families of chiral projected entangled pair states
(chiral PEPS) with low bond dimension (D = 3,4,5) which, upon optimization, provide better variational energies
than the KL Ansatz. The optimal D = 3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten
SU(2)1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state,
the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the
spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.
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Introduction. Topological order (TO) has been rationalized
in the last few decades [1,2] as a new type of order in two
dimensions (2D), beyond the well-known Ginzburg-Landau
paradigm. Importantly, it is at the heart of the rapidly
expanding field of quantum computing [3]. The fractional
quantum Hall (FQH) state of the 2D electron gas [4] is the
first topological ordered state discovered. The simple Laughlin
wave function provides a beautiful qualitative understanding
of the physics of the Abelian FQH state at filling fraction ν =
1/m as an incompressible fluid [5], while more involved wave
functions can also describe non-Abelian FQH states [6–8]. It
revealed the emergence of fractional excitations, the anyons,
a key feature of TO [1]. Anyons carry fractional charge [5] as
well as Abelian [9] or non-Abelian statistics [6,10]. An impor-
tant feature of FQH states is the existence of a bulk gap and
chiral modes providing unidirectional transport on the edge
[11,12]. More precisely, their edge physics can be described by
chiral SU(2)k Wess-Zumino-Witten (WZW) conformal field
theory (CFT) [13]. Recently, a matrix product state (MPS) rep-
resentation of the FQH states [14,15] enabled one to probe their
physical properties with unprecedented numerical accuracy.

In a pioneering work [16], Kalmeyer and Laughlin (KL)
have extended the notion of the FQH state to the lattice. When
localized on the lattice, the bosonic ν = 1

b
Laughlin state gives

rise to a spin- 1
2 chiral spin liquid (CSL) [17], closely related to

the resonating valence bond (RVB) state of high-Tc supercon-
ductivity [18]. Recently, fractional Chern insulators [19–21]
have set up a new route to realize FQH physics on the lattice.

Whether simple local lattice Hamiltonians can host chiral
spin liquid ground states [17] is one of the key issues that
determine whether or not such topological phases could be
realized experimentally. The original innovative proposal by
KL that the ground state (GS) of the frustrated triangular spin- 1

2
antiferromagnetic Heisenberg model (AFHM) is a CSL turned
out not to be correct, the GS of this model being magnetically
ordered. However, Bauer et al. [23] showed recently that, on
the kagome lattice (2D lattice of corner-sharing triangles), the
GS of the Hamiltonian H =

∑
△(ijk) Si · (Sj × Sk), the sum of

the chiral spin interaction over all triangles △(ijk), has the
universal properties of the ν = 1

2 Laughlin state. This CSL
was shown to be exceptionally robust under the addition of an

extra nearest-neighbor Heisenberg-like interaction (defining a
generic “chiral AFHM”), even of large magnitude.

Another alternative approach has been pursued, trying to
construct “parent Hamiltonians” for the Abelian [24,25] and
non-Abelian [26,27] CSL. Using a rewriting of the wave
function as a correlator of a 1 + 1 chiral CFT [28,29], the
simplest spin- 1

2 parent Hamiltonian on the square lattice
obtained by Nielsen et al. [22] consists of interactions between
all pairs and triplets of spins in the system. Since long-range
interactions might be hard to achieve experimentally in, e.g.,
cold atom systems [30], the authors argue that a similar
(Abelian) CSL phase is also hosted in a simplified local
Hamiltonian where all the long-range parts of the interaction
have been set to zero [22]. We shall adopt here their local chiral
AFHM which, introducing a slightly different parametrization,
reads

H = J1

∑

⟨i,j⟩
Si · Sj + J2

∑

⟨⟨k,l⟩⟩
Sk · Sl

+ λc

∑

!(ijkl)

i
(
Pijkl − P −1

ijkl

)
, (1)

where the first (second) sum is taken over nearest-neighbor
(next-nearest-neighbor) bonds and the last sum over all pla-
quettes of the square lattice. Pijkl makes a cyclic permutation
of the four spins of every plaquette in, e.g., the clockwise
direction. H breaks time reversal symmetry but preserves the
global spin SU(2) symmetry. It is the analog for the square
lattice of the chiral AFHM on the kagome lattice studied by
Bauer et al. [23]: The chiral interaction Si · (Sj × Sk) on the
triangle is replaced here by its generalization on the plaquette
and magnetic frustration is introduced via competing J1 and
J2 antiferromagnetic couplings. A schematic phase diagram
showing the (approximate) extension of the KL chiral spin
liquid is provided for convenience in Fig. 1. We shall here
focus on the two special points studied by Nielsen et al. [22]
and located in Fig. 1, supposedly in the CSL phase: J1 = 2,
J2 = 0, λc = 1, and J1 = 2 cos (0.06π ) cos (0.14π ) ≃ 1.78,
J2 = 2 cos (0.06π ) sin (0.14π ) ≃ 0.84, λc = 2 sin (0.06π ) ≃
0.375. Hereafter, we refer to the latter as the “J1-λc model”
and the “J1-J2-λc model,” respectively.

2469-9950/2017/96(12)/121118(6) 121118-1 ©2017 American Physical Society

PEPS

Abelian CSL in spin-1/2 SU(2) models on frustrated lattices



SU(N) extension

2

of freedom transforming according to the fundamental repre-
sentation of SU(N ), for arbitrary integer N � 2, it is then nat-
ural to speculate that such SU(N ) models may host SU(N)1
CSL. In order to investigate such a possibility, we have stud-
ied these models using ED on closed and open clusters up to
N = 10. The nature of the CSL is revealed from the con-
tent of the edge modes: their quantum numbers are shown
to be fully consistent with SU(N)1 WZW CFT. Density Ma-
trix renormalization Group (DMRG) on long cylinders and on
open strips provide complementary results. Finaly, for N = 4,
a chiral PEPS ansatz is also constructed providing a good vari-
ational energy and enabling to connect the edge spectra to the
bulk anyonic correlations.

We then start by generalizing the Hamiltonian of Ref. [28]
defined on a square lattice by placing, on every lattice site, a
N-dimensional spin degree of freedom, which transforms as
the fundamental representation of SU(N ). As for N = 3,
we consider the most general SU(N)-symmetric short-range
three-site interaction:

H = J1

X

hi,ji

Pij + J2

X

hhk,lii

Pkl

+ JR

X

4ijk

(Pijk + P
�1
ijk

) + iJI

X

4ijk

(Pijk � P
�1
ijk

),
(1)

where the first (second) term corresponds to two-site permu-
tations over all (next-)nearest-neighbor bonds, and the third
and fourth terms are three-site (clockwise) permutations on all
triangles of every plaquette. To restrict the number of param-
eters we have chosen J2 = J1/2. In that case, the two-body
part (J1 and J2) on the interacting triangular units becomes
S3 symmetric, hence mimicking the corresponding Hamil-
tonian on the triangular lattice [31]. We then use the same
parametrization as in Ref. [28]:

J1 = 2J2 =
4

3
cos ✓ sin�,

JR = cos ✓ cos�, (2)
JI = sin ✓.

For N = 2, various forms of the Hamiltonian (1) can
be found in the literature [29, 30]. In the original formula-
tion [29], a chiral interaction 4J3 Si · (Sj ⇥ Sk) on all tri-
angular units 4(ijk) is introduced, corresponding to the 3-
site cyclic permutations of (1) with amplitudes JR = 0 and
JI = J3. Note that the 2-site exchange interactions are intro-
duced here as spin-1/2 Heisenberg couplings, which is equiv-
alent from the identity 2Si · Sj = Pij �

1
2 . An Hamiltonian

including a (pure-imaginary) cyclic permutation i�c(Pijkl �

P
�1

ijkl
) on each plaquette ⇤(ijkl) was also introduced [30].

In fact, the plaquette cyclic permutation i(Pijkl � h.c) can
be rewritten as i

2 (Pijk + Pjkl + Pkli + Plij � h.c.) so that
this model corresponds also to JR = 0 and we can identify
JI = J3 = �c/2. An optimum choice of parameters for the
stability of the SU(2)CSL phase is found to be (in our nota-
tions) J2/J1 ' 0.47 and JI/J1 ' 0.21 [29]. Furthermore, ev-
idence is provided that the CSL survives in a rather extended
zone of parameter space around this point. Also, a SU(2)-
symmetric PEPS ansatz [25] provides an accurate representa-

tion of the GS at the optimum values of the parameters [30],
and of its edge modes [32] following a SU(2)1 WZW CFT.

For N = 3, from ED, DMRG and iPEPS simulations, clear
evidence of a gapped CSL is found for J2 = J1/2 and an-
gles like ✓ = � = ⇡/4 corresponding to JR/J1 = 0.75
and JI/J1 ' 1.06 [28], and around these values in a rather
extended parameter range (see Supplemental Materials of
Ref. [[28]]). In addition, edge modes are found now to closely
follow the predictions of the SU(3)1 CFT.

In the following, we will investigate model (1) using com-
plementary ED and DMRG techniques providing overwhelm-
ing evidence of a stable topological CSL phase. The topolog-
ical nature of this CSL phase is precisely established from (i)
the N -fold GS degeneracy on a torus geometry (periodic clus-
ters) and (ii) the existence of chiral edge modes – observed
both on open systems and in the entanglement spectra of in-
finite cylinders – whose content follows exactly the predic-
tion of the SU(N)1 WZW CFT theory. In a second step, we
will move to a description of this SU(N)1 CSL phase using
PEPS whose physical spin degrees of freedom transform ac-
cording to the fundamental irrep of SU(N ), hereafter named
spin- chiral PEPS. Following the prescription for N = 2

and N = 3, we shall focus on the N = 4 case. Common
features observed for these three values of N allow us to draw
heuristic rules and conclusions for general N .

Ns t1 t2 eccentricity point group
11 (1, 3) (3,�2) 1.25 C2

12 (1, 3) (4, 0) 1 C2

13 (2,�3) (3, 2) 1 C4

14 (1, 4) (3,�2) 1 C2

15 (1, 4) (4, 1) 1 C2v

16 (4, 0) (0, 4) 1 C4v

18 (3, 3) (3,�3) 1 C4v

19 (1, 4) (4,�3) 1.2 C2

20 (4, 2) (�2, 4) 1 C4

21 (1, 4) (5,�1) 1.2 C2

TABLE I. List of periodic clusters used here in ED: number of sites
Ns, the two unit vectors, eccentricity, and point-group symmetry.

II. EXACT DIAGONALIZATIONS

A. Exact diagonalizations in the U(1) basis and in the standard
Young tableaux basis

We start this section by a brief review of the two distincts
and complementary exact diagonalisation methods used in
this work.

First, for periodic clusters (see Table I), we can imple-
ment the spatial symmetries (and in particular the translations)
which allows us to both reduce the size of the matrix to diag-
onalize by a factor typically equal to Ns (where Ns is the size
of the cluster) and to directly obtain the momenta associated
to each eigenenergy.

However, as N increases, EDs performed this way are

Square lattice, C4 symmetry
imaginary 3-site permutation  

explicitly breaks T and P

2

of freedom transforming according to the fundamental repre-
sentation of SU(N ), for arbitrary integer N � 2, it is then nat-
ural to speculate that such SU(N ) models may host SU(N)1
CSL. In order to investigate such a possibility, we have stud-
ied these models using ED on closed and open clusters up to
N = 10. The nature of the CSL is revealed from the con-
tent of the edge modes: their quantum numbers are shown
to be fully consistent with SU(N)1 WZW CFT. Density Ma-
trix renormalization Group (DMRG) on long cylinders and on
open strips provide complementary results. Finaly, for N = 4,
a chiral PEPS ansatz is also constructed providing a good vari-
ational energy and enabling to connect the edge spectra to the
bulk anyonic correlations.

We then start by generalizing the Hamiltonian of Ref. [28]
defined on a square lattice by placing, on every lattice site, a
N-dimensional spin degree of freedom, which transforms as
the fundamental representation of SU(N ). As for N = 3,
we consider the most general SU(N)-symmetric short-range
three-site interaction:

H = J1

X

hi,ji

Pij + J2

X

hhk,lii

Pkl

+ JR

X

4ijk

(Pijk + P
�1
ijk

) + iJI

X

4ijk

(Pijk � P
�1
ijk

),
(1)

where the first (second) term corresponds to two-site permu-
tations over all (next-)nearest-neighbor bonds, and the third
and fourth terms are three-site (clockwise) permutations on all
triangles of every plaquette. To restrict the number of param-
eters we have chosen J2 = J1/2. In that case, the two-body
part (J1 and J2) on the interacting triangular units becomes
S3 symmetric, hence mimicking the corresponding Hamil-
tonian on the triangular lattice [31]. We then use the same
parametrization as in Ref. [28]:

J1 = 2J2 =
4

3
cos ✓ sin�,

JR = cos ✓ cos�, (2)
JI = sin ✓.

For N = 2, various forms of the Hamiltonian (1) can
be found in the literature [29, 30]. In the original formula-
tion [29], a chiral interaction 4J3 Si · (Sj ⇥ Sk) on all tri-
angular units 4(ijk) is introduced, corresponding to the 3-
site cyclic permutations of (1) with amplitudes JR = 0 and
JI = J3. Note that the 2-site exchange interactions are intro-
duced here as spin-1/2 Heisenberg couplings, which is equiv-
alent from the identity 2Si · Sj = Pij �

1
2 . An Hamiltonian

including a (pure-imaginary) cyclic permutation i�c(Pijkl �

P
�1

ijkl
) on each plaquette ⇤(ijkl) was also introduced [30].

In fact, the plaquette cyclic permutation i(Pijkl � h.c) can
be rewritten as i

2 (Pijk + Pjkl + Pkli + Plij � h.c.) so that
this model corresponds also to JR = 0 and we can identify
JI = J3 = �c/2. An optimum choice of parameters for the
stability of the SU(2)CSL phase is found to be (in our nota-
tions) J2/J1 ' 0.47 and JI/J1 ' 0.21 [29]. Furthermore, ev-
idence is provided that the CSL survives in a rather extended
zone of parameter space around this point. Also, a SU(2)-
symmetric PEPS ansatz [25] provides an accurate representa-

tion of the GS at the optimum values of the parameters [30],
and of its edge modes [32] following a SU(2)1 WZW CFT.

For N = 3, from ED, DMRG and iPEPS simulations, clear
evidence of a gapped CSL is found for J2 = J1/2 and an-
gles like ✓ = � = ⇡/4 corresponding to JR/J1 = 0.75
and JI/J1 ' 1.06 [28], and around these values in a rather
extended parameter range (see Supplemental Materials of
Ref. [[28]]). In addition, edge modes are found now to closely
follow the predictions of the SU(3)1 CFT.

In the following, we will investigate model (1) using com-
plementary ED and DMRG techniques providing overwhelm-
ing evidence of a stable topological CSL phase. The topolog-
ical nature of this CSL phase is precisely established from (i)
the N -fold GS degeneracy on a torus geometry (periodic clus-
ters) and (ii) the existence of chiral edge modes – observed
both on open systems and in the entanglement spectra of in-
finite cylinders – whose content follows exactly the predic-
tion of the SU(N)1 WZW CFT theory. In a second step, we
will move to a description of this SU(N)1 CSL phase using
PEPS whose physical spin degrees of freedom transform ac-
cording to the fundamental irrep of SU(N ), hereafter named
spin- chiral PEPS. Following the prescription for N = 2

and N = 3, we shall focus on the N = 4 case. Common
features observed for these three values of N allow us to draw
heuristic rules and conclusions for general N .

Ns t1 t2 eccentricity point group
11 (1, 3) (3,�2) 1.25 C2

12 (1, 3) (4, 0) 1 C2

13 (2,�3) (3, 2) 1 C4

14 (1, 4) (3,�2) 1 C2

15 (1, 4) (4, 1) 1 C2v

16 (4, 0) (0, 4) 1 C4v

18 (3, 3) (3,�3) 1 C4v

19 (1, 4) (4,�3) 1.2 C2

20 (4, 2) (�2, 4) 1 C4

21 (1, 4) (5,�1) 1.2 C2

TABLE I. List of periodic clusters used here in ED: number of sites
Ns, the two unit vectors, eccentricity, and point-group symmetry.

II. EXACT DIAGONALIZATIONS

A. Exact diagonalizations in the U(1) basis and in the standard
Young tableaux basis

We start this section by a brief review of the two distincts
and complementary exact diagonalisation methods used in
this work.

First, for periodic clusters (see Table I), we can imple-
ment the spatial symmetries (and in particular the translations)
which allows us to both reduce the size of the matrix to diag-
onalize by a factor typically equal to Ns (where Ns is the size
of the cluster) and to directly obtain the momenta associated
to each eigenenergy.

However, as N increases, EDs performed this way are
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of freedom transforming according to the fundamental repre-
sentation of SU(N ), for arbitrary integer N � 2, it is then nat-
ural to speculate that such SU(N ) models may host SU(N)1
CSL. In order to investigate such a possibility, we have stud-
ied these models using ED on closed and open clusters up to
N = 10. The nature of the CSL is revealed from the con-
tent of the edge modes: their quantum numbers are shown
to be fully consistent with SU(N)1 WZW CFT. Density Ma-
trix renormalization Group (DMRG) on long cylinders and on
open strips provide complementary results. Finaly, for N = 4,
a chiral PEPS ansatz is also constructed providing a good vari-
ational energy and enabling to connect the edge spectra to the
bulk anyonic correlations.

We then start by generalizing the Hamiltonian of Ref. [28]
defined on a square lattice by placing, on every lattice site, a
N-dimensional spin degree of freedom, which transforms as
the fundamental representation of SU(N ). As for N = 3,
we consider the most general SU(N)-symmetric short-range
three-site interaction:

H = J1

X

hi,ji

Pij + J2

X

hhk,lii

Pkl

+ JR

X

4ijk

(Pijk + P
�1
ijk

) + iJI

X

4ijk

(Pijk � P
�1
ijk

),
(1)

where the first (second) term corresponds to two-site permu-
tations over all (next-)nearest-neighbor bonds, and the third
and fourth terms are three-site (clockwise) permutations on all
triangles of every plaquette. To restrict the number of param-
eters we have chosen J2 = J1/2. In that case, the two-body
part (J1 and J2) on the interacting triangular units becomes
S3 symmetric, hence mimicking the corresponding Hamil-
tonian on the triangular lattice [31]. We then use the same
parametrization as in Ref. [28]:

J1 = 2J2 =
4

3
cos ✓ sin�,

JR = cos ✓ cos�, (2)
JI = sin ✓.

For N = 2, various forms of the Hamiltonian (1) can
be found in the literature [29, 30]. In the original formula-
tion [29], a chiral interaction 4J3 Si · (Sj ⇥ Sk) on all tri-
angular units 4(ijk) is introduced, corresponding to the 3-
site cyclic permutations of (1) with amplitudes JR = 0 and
JI = J3. Note that the 2-site exchange interactions are intro-
duced here as spin-1/2 Heisenberg couplings, which is equiv-
alent from the identity 2Si · Sj = Pij �

1
2 . An Hamiltonian

including a (pure-imaginary) cyclic permutation i�c(Pijkl �

P
�1

ijkl
) on each plaquette ⇤(ijkl) was also introduced [30].

In fact, the plaquette cyclic permutation i(Pijkl � h.c) can
be rewritten as i

2 (Pijk + Pjkl + Pkli + Plij � h.c.) so that
this model corresponds also to JR = 0 and we can identify
JI = J3 = �c/2. An optimum choice of parameters for the
stability of the SU(2)CSL phase is found to be (in our nota-
tions) J2/J1 ' 0.47 and JI/J1 ' 0.21 [29]. Furthermore, ev-
idence is provided that the CSL survives in a rather extended
zone of parameter space around this point. Also, a SU(2)-
symmetric PEPS ansatz [25] provides an accurate representa-

tion of the GS at the optimum values of the parameters [30],
and of its edge modes [32] following a SU(2)1 WZW CFT.

For N = 3, from ED, DMRG and iPEPS simulations, clear
evidence of a gapped CSL is found for J2 = J1/2 and an-
gles like ✓ = � = ⇡/4 corresponding to JR/J1 = 0.75
and JI/J1 ' 1.06 [28], and around these values in a rather
extended parameter range (see Supplemental Materials of
Ref. [[28]]). In addition, edge modes are found now to closely
follow the predictions of the SU(3)1 CFT.

In the following, we will investigate model (1) using com-
plementary ED and DMRG techniques providing overwhelm-
ing evidence of a stable topological CSL phase. The topolog-
ical nature of this CSL phase is precisely established from (i)
the N -fold GS degeneracy on a torus geometry (periodic clus-
ters) and (ii) the existence of chiral edge modes – observed
both on open systems and in the entanglement spectra of in-
finite cylinders – whose content follows exactly the predic-
tion of the SU(N)1 WZW CFT theory. In a second step, we
will move to a description of this SU(N)1 CSL phase using
PEPS whose physical spin degrees of freedom transform ac-
cording to the fundamental irrep of SU(N ), hereafter named
spin- chiral PEPS. Following the prescription for N = 2

and N = 3, we shall focus on the N = 4 case. Common
features observed for these three values of N allow us to draw
heuristic rules and conclusions for general N .

Ns t1 t2 eccentricity point group
11 (1, 3) (3,�2) 1.25 C2

12 (1, 3) (4, 0) 1 C2

13 (2,�3) (3, 2) 1 C4

14 (1, 4) (3,�2) 1 C2

15 (1, 4) (4, 1) 1 C2v

16 (4, 0) (0, 4) 1 C4v

18 (3, 3) (3,�3) 1 C4v

19 (1, 4) (4,�3) 1.2 C2

20 (4, 2) (�2, 4) 1 C4

21 (1, 4) (5,�1) 1.2 C2

TABLE I. List of periodic clusters used here in ED: number of sites
Ns, the two unit vectors, eccentricity, and point-group symmetry.

II. EXACT DIAGONALIZATIONS

A. Exact diagonalizations in the U(1) basis and in the standard
Young tableaux basis

We start this section by a brief review of the two distincts
and complementary exact diagonalisation methods used in
this work.

First, for periodic clusters (see Table I), we can imple-
ment the spatial symmetries (and in particular the translations)
which allows us to both reduce the size of the matrix to diag-
onalize by a factor typically equal to Ns (where Ns is the size
of the cluster) and to directly obtain the momenta associated
to each eigenenergy.

However, as N increases, EDs performed this way are
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Chiral Spin Liquids in Triangular-Lattice SUðNÞ Fermionic Mott Insulators
with Artificial Gauge Fields
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We show that, in the presence of a π=2 artificial gauge field per plaquette, Mott insulating phases of
ultracold fermions with SUðNÞ symmetry and one particle per site generically possess an extended chiral
phase with intrinsic topological order characterized by an approximate ground space of N low-lying
singlets for periodic boundary conditions, and by chiral edge states described by the SUðNÞ1 Wess-
Zumino-Novikov-Witten conformal field theory for open boundary conditions. This has been achieved by
extensive exact diagonalizations for N between 3 and 9, and by a parton construction based on a set of N
Gutzwiller projected fermionic wave functions with flux π=N per triangular plaquette. Experimental
implications are briefly discussed.
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The search for unconventional quantum states of matter
in realistic models of strongly correlated systems has been
an extremely active field of research over the last 25 years.
Mott insulating phases in which charge degrees of freedom
are gapped have been argued to potentially host several
families of quantum spin liquids ranging from resonating
valence bond Z2 quantum spin liquids [1–3] to U(1)
algebraic spin liquids [4–6] and chiral spin liquids (CSLs)
[7–15]. The topological properties of these phases have
attracted a lot of attention due to their potential impact on
the implementation of quantum computers [16].
Cold atoms open new perspectives in that respect. In

particular, alkaline rare earths allow one to realize SUðNÞ
Mott phases with N as large as 10 [17–24], and if a chiral
phase can be stabilized, its low-energy theory is expected
to be the SUðNÞ level k ¼ 1 Chern-Simons theory. The
possibility to destroy long-range order in SUðNÞ general-
izations of the SU(2) antiferromagnet on bipartite lattices
has long been known [4,25], but the first proposal of a
chiral phase in the context of SUðNÞ models of cold atoms
goes back to the work of Hermele et al. [26,27], who
showed that a mean-field approach leads to the stabilization
of chiral phases on the square lattice in the limit of large N
and a large number of particles per sitemwith N=m integer
and ≥ 5. The same mean field applied to SUð6Þ on the
honeycomb lattice with one particle per site has also led to
the prediction of a chiral state, with a competing plaquette
state very close in energy [28]. More recently, Ref. [29]
suggested the stabilization of SUðNÞ CSLs on the square
lattice using static synthetic gauge fields, based on a slave-
rotor mean-field approach. In all theses cases, the results

call for further investigation with methods that go beyond
mean-field theory.
In this Letter, we show that the ground state of the Mott

phase of N-color fermions on the triangular lattice with one
particle per site is a SUðNÞ CSL in a large parameter range
if the system is subject to a static artificial gauge field with
flux π=2 per triangular plaquette. The starting point is the
SUðNÞ Hubbard Hamiltonian

H ¼ −t
X

hi;ji

XN

α¼1

ðeϕijc†i;αcj;α þ H:c:Þ þ U
X

i;α<β

ni;αniβ : ð1Þ

If the phases ϕij are chosen in a such a way that the (gauge-
invariant) flux through each triangular plaquette is equal
to Φ, then, at a filling of one particle per site, and for large
enough U=t, the effective model is an SUðNÞ Heisenberg
model with local spins in the fundamental representation
of SUðNÞ endowed with real pairwise permutations and
complex three-site permutations. The Hamiltonian is a
generalization of the SU(2) model with scalar chirality
[30,31] and is defined by

H ¼ J
X

hi;ji
Pij þ K3

X

ði;j;kÞ
ðeiΦPijk þ H:c:Þ; ð2Þ

where the sum over ði; j; kÞ runs over all triangular
plaquettes, and Pij and Pijk are circular permutation
operators. To second order, the amplitude of the pairwise
permutation is simply given by J ¼ 2t2=U, while the 3-site
permutation appears at third order in perturbation theory
with K3 ¼ 6t3=U2. The cases Φ ¼ 0 and Φ ¼ π with
purely real positive [32] and negative [33] three-site
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In the physics of the fractional quantum Hall (FQH) effect, a zoo of Abelian topological phases can be obtained
by varying the magnetic field. Aiming to reach the same phenomenology in spin like systems, we propose a
family of SU(N)-symmetric models in the fundamental representation, on the square lattice with short-range
interactions restricted to triangular units, a natural generalization for arbitrary N of an SU(3) model studied
previously where time-reversal symmetry is broken explicitly. Guided by the recent discovery of SU(2)1 and
SU(3)1 chiral spin liquids (CSL) on similar models we search for topological SU(N )1 CSL in some range of the
Hamiltonian parameters via a combination of complementary numerical methods such as exact diagonalizations
(ED), infinite density matrix renormalization group (iDMRG) and infinite Projected Entangled Pair State
(iPEPS). Extensive ED on small (periodic and open) clusters up to N = 10 and an innovative SU(N)-symmetric
version of iDMRG to compute entanglement spectra on (infinitely long) cylinders in all topological sectors
provide unambiguous signatures of the SU(N )1 character of the chiral liquids. An SU(4)-symmetric chiral
PEPS, constructed in a manner similar to its SU(2) and SU(3) analogs, is shown to give a good variational
ansatz of the N = 4 ground state, with chiral edge modes originating from the PEPS holographic bulk-edge
correspondence. Finally, we discuss the possible observation of such Abelian CSL in ultracold atom setups where
the possibility of varying N provides a tuning parameter similar to the magnetic field in the physics of the FQH
effect.

DOI: 10.1103/PhysRevB.104.235104

I. INTRODUCTION

Quantum spin liquids are states of matter of two-
dimensional electronic spin systems not showing any sign of
spontaneous symmetry breaking down to zero temperature
[1–3]. Spin liquids with long-range entanglement may also
exhibit topological order [4] such as the spin-1/2 resonating
valence bond (RVB) state on the kagome lattice [5]. Among
the broad family of spin liquids, chiral spin liquids (CSL)
[6–10] form a very special and interesting class [11] ex-
hibiting broken time-reversal symmetry and chiral topological
order [4]. Intimately related to FQH states [12], CSL are
incompressible quantum fluids (i.e., with a bulk gap) and host
both (Abelian or non-Abelian) anyonic quasiparticles in the
bulk [13] and chiral gapless modes on the edge [14]. After
the original papers, the Kalmeyer-Laughlin CSL lay dormant
for many years until an explicit parent Hamiltonian was con-
structed [15,16] using Laughlin’s idea [8]. Later somewhat
simpler Hamiltonians were found using different methods
[17,18]. An important step towards the goal of finding a chiral
spin liquid in realistic systems was taken by examining a

physically motivated model for a Mott insulator (Hubbard
model) with broken time-reversal symmetry [19,20]. Then, an
Abelian CSL was identified in the (chiral) spin-1/2 Heisen-
berg model on the triangular lattice [21,22]. Note that CSL
hosting non-Abelian excitations (useful for topological quan-
tum computing [23]) have also been introduced in different
contexts [24–26].

It was early suggested that, in systems with enhanced
SU(N ) symmetry, realizable with ultracold alkaline earth
atoms loaded in optical lattices [27], CSL can naturally appear
[28], although this original proposal on the square lattice
remained controversial. Later on, an Abelian CSL was indeed
identified on the triangular lattice in SU(N) Heisenberg mod-
els with N > 2 [29]. The presence of a chiral spin interaction,
achievable experimentally via a synthetic gauge field, seems
to be a key feature to stabilize SU(N) CSL [30]. Neverthe-
less, the T and P violation required for a CSL could emerge
spontaneously in T-invariant models, as found for N = 2 in a
spin-1/2 Kagome Heisenberg model [31–33] or, for N = 3,
in the Mott phase of a Hubbard model on the triangular
lattice [34]. Note also that, using optical pumping, it is now

2469-9950/2021/104(23)/235104(33) 235104-1 ©2021 American Physical Society
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Building on advanced results on permutations, we show that it is possible to construct, for each
irreducible representation of SUðNÞ, an orthonormal basis labeled by the set of standard Young tableaux
in which the matrix of the Heisenberg SUðNÞ model (the quantum permutation of N-color objects) takes
an explicit and extremely simple form. Since the relative dimension of the full Hilbert space to that of
the singlet space on n sites increases very fast with N, this formulation allows us to extend exact
diagonalizations of finite clusters to much larger values of N than accessible so far. Using this method,
we show that, on the square lattice, there is long-range color order for SU(5), spontaneous dimerization for
SU(8), and evidence in favor of a quantum liquid for SU(10).

DOI: 10.1103/PhysRevLett.113.127204 PACS numbers: 75.10.Jm, 02.70.-c, 67.85.-d, 71.10.Fd

There is currently considerable experimental activity on
ultracold multicomponent fermions [1–3]. When loaded
in an optical lattice, these systems are expected to be, for
integer number of particles per site and sufficiently large
on-site repulsion, in a Mott insulating phase described by
the SUðNÞ Heisenberg model [4–7]. This effective model
is a generalization of the familiar SU(2) model, and in the
case of one particle per site, it takes the general form of a
quantum permutation Hamiltonian:

H ¼
X

ði;jÞ
Jij

X

μ;γ¼A;B;C;…

jμiγjihγiμjj ¼
X

ði;jÞ
JijPij; ð1Þ

where the sum
P

ði;jÞ runs over all pairs of interacting sites
(Jij being the coupling constant). The permutation operator
Pij simply switches the states between sites i and j, and the
local Hilbert space is of dimension N.
In the context of condensedmatter physics, twocases have

been mainly studied: SU(3), which describes spins 1 with a
biquadratic interaction equal to the bilinear one [8–10], and
SU(4), the symmetric version of the Kugel-Khomskii spin-
orbital model [11–14]. Apart from one dimension, where
there is a Bethe ansatz solution [15] and minus sign free
quantum Monte Carlo simulations [16,17], reliable infor-
mation could only be obtained by combining approximate
analytical and numerical approaches such as flavor-wave
theory [8,18], exact diagonalizations (EDs) of finite clusters
[9,19–21], variational Monte Carlo [20–22], or tensor
network algorithms [19,20,23].
With cold atoms, one can implement larger values of N,

up to 10, allowing one to realize new types of quantum
phases [7]. In particular, it has been predicted by mean-field
theory that chiral phasesmight be stabilized for large enough
N [24–26]. However, for large N, most of the methods
employed encounter specific difficulties: flavor-wave
theory is limited to phases with long-range color order, the
performance of tensor-network algorithms significantly

decreases when the dimension of the local Hilbert space
increases, and EDs are severely limited by the size of the
available clusters. Alternatives are clearly called for.
In this Letter, we introduce a simple method to perform

EDs of any quantum permutation Hamiltonian separately in
each irreducible representation (irrep) of SUðNÞ. Since the
dimension of the irreps relevant at low energy (for instance
the singlet, to which the ground state belongs) is much
smaller than that of the sector used in traditional ED, this
approach allows one to perform ED on essentially the same
cluster sizes for large N as for small N. The power of the
method is illustrated by the first and only ED investigation
so far of SU(5), SU(8), and SU(10) on the square lattice.
Let us first recall some standard results about the irreps

of SUðNÞ. For a lattice of n sites, each irrep can be
associated to a Young tableau with n boxes and at most N
rows (see Fig. 1). The shape of a Young tableau can be
described by an array α ¼ ½α1; α2;…;αk% (1 ≤ k ≤ N)
where the lengths of the rows αj satisfy α1 ≥ α2 ≥ …
≥ αk ≥ 1. In the full Hilbert space □

⊗n, where □ is the
fundamental irrep or equivalently the Hilbert space for one
site, the multiplicity fα of an irrep, i.e., the number of times
it appears, is given by fα ¼ n!=ð

Qn
i¼1 liÞ, where the hook

length li of a box is defined as the number of boxes on
the same row at the right plus the number of boxes in the
same column below plus the box itself (see Fig. 1). The
multiplicity is equal to the number of standard Young
tableaux, i.e., Young tableaux filled up with numbers from
1 to n in ascending order from left to right in any row, and
from top to bottom in any column. The standard Young
tableaux can be ranked from 1 to fα through the last letter
sequence: two standard tableaux Sr and Ss are such that Sr <
Ss if the number n appears in Sr in a row below the one in
which it appears in Ss. If those rows are the same, one looks
at the rows of n − 1, etc. (see Fig. 1). The dimension dαN of
an irrep can also be calculated very simply from the shape α
asdαN ¼

Qn
i¼1ðdi;N=liÞ, wheredi;N ¼ N þ γi, where γi is the
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algebraic distance from the ith box to the main diagonal,
counted positively (resp. negatively) for a box above (below)
the diagonal (see Fig. 1). The full Hilbert space can be
decomposed as □

⊗n ¼ ⊕αVα, where Vα is the Hilbert
space associated to irrep α, and, if dαN > 1, Vα can itself
be decomposed into dαN equivalent subsectors Vα

i as
Vα ¼ ⊕iVα

i , with dimðVα
i Þ ¼ fα, dimðVαÞ ¼ fαdαN and

dimð□⊗nÞ ¼ Nn ¼
P

αf
αdαN [27].

For our purpose, the key property is that, since it has
SUðNÞ symmetry, the quantum permutation HamiltonianH
can be diagonalized independently in each subsector Vα

i ,
whose size (in particular that of the singlet) becomes much
smaller than that of the Hilbert space used in standard ED
when N increases (see examples in the table of Fig. 2 and
Supplemental Material [28]). To diagonalizeH directly in a
subsector Vα

i , one should construct an orthonormal basis of
this sector, and write the matrix of H in this basis. In
principle, one can construct a basis recursively using SUðNÞ
Clebsch-Gordan coefficients [30]. However, since the
multiplicity of an irrep is equal to the number of standard
Young tableaux, a natural alternative is to try and associate
directly a basis state to each standard Young tableau. This
can be achieved by using the Young symmetrization
operator, the product of antisymmetrizers on the columns
followed by symmetrizers on the rows [31]. Indeed, one can
get a set of fα linearly independent states that all belong
to irrep α by applying the Young symmetrization operator
associated with a standard tableau Sr, in which the sites
involved in the symmetrizers and antisymmetrizers are
chosen according to the numbering of Sr, to the product
state: jΦα

r i ¼ jσ1i ⊗ … ⊗ jσni, with jσii ¼ A if i belongs
to the first line of Sr, B if it belongs to its second line, etc.
[28]. However, this construction does not lead to a simple
method to perform ED of the SUðNÞ Heisenberg model for
two reasons. First, these states are not orthogonal. Besides,
the Hamiltonian does not take a simple form.
In his substitutional analysis, Young also realized that the

Young symmetrization operators (called natural units in his
original work [32]) were not convenient to solve algebraic

problems [33]. So, he further developed the theory of the
permutation group to come up with more powerful oper-
ators than the simple products of symmetrizers and anti-
symmetrizers. More specifically, he constructed linear
superpositions of permutations of the symmetric group
Sn that he called orthogonal units which, when interpreted
as operators in the Hilbert space of the SUðNÞ Heisenberg
model, will enable us to construct an orthonormal basis in
which the quantum permutation Hamiltonian takes a very
simple form. For a fixed shape α, there are ðfαÞ2 orthogonal
units foαrsgr;s¼1.:fα , where the indices r and s refer to two
standard tableaux of shape α. They can be constructed
recursively as nested products of symmetrizers and anti-
symmetrizers associated to standard tableaux of smaller
size [28,34]. The resulting expressions are rather compli-
cated. For instance, for the shape ½2; 1% (n ¼ 3), for which
there are two standard tableaux, the first orthogonal unit
reads o½2;1%11 ¼ ð1=12Þðϵþ τ1;2Þ2ðϵ − τ1;3Þðϵþ τ1;2Þ where

FIG. 1. (a) Example of a Young tableau: α ¼ ½3; 2; 2%;
(b) Integers di;N that enter the numerator of the dimension
of α; (c) Hook lengths li; (d) Examples of standard tableaux
ranked according to the last letter sequence. (e) Normal product
state jΦ½3;2;2%

1 i ¼ jAAABBCCi.

FIG. 2 (color online). Real-space correlations hP0ji − 1=N for
various SUðNÞmodels and cluster sizes on the square lattice with
periodic boundary conditions: SU(5) (tilted 25 and 20 site cluster),
SU(8) (16 sites), and SU(10) (20 sites). The black dot is the
reference site 0. Positive (negative) correlations are depicted as
blue (red) disks with an area proportional to the absolute value of
the correlation. The correlations for SU(5) on the (5 × 5) 25-site
cluster are shown and discussed in the SupplementalMaterial [28].
Table: dimension f½n=N;…;n=N% of the singlet subspace in which the
permutation Hamiltonian has been diagonalized, approximate
dimension ðn − 1Þ!=ðn=NÞ!N of the Hilbert space used in standard
ED [29], ground states energies per site EGS.
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Table: dimension f½n=N;…;n=N% of the singlet subspace in which the
permutation Hamiltonian has been diagonalized, approximate
dimension ðn − 1Þ!=ðn=NÞ!N of the Hilbert space used in standard
ED [29], ground states energies per site EGS.
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• Exact diagonalization (U(1)+lattice symmetries or SU(N) symmetry) 

• DMRG (U(1) or SU(N) symmetry) + parton wavefunction 

Analytics: large-N, mean-field, parton wavefunctions

straightforward manner. The explicit representations of
projected Fermi sea and projected fermionic or bosonic
paired states correspond to sequential operations of matrix
product operators (MPO) on simple product states. These
tensor networks can be compressed into matrix product
states (MPS) and various physical quantities can be
evaluated efficiently. For the project Fermi sea, an opti-
mized basis transformation using maximally localized
Wannier orbitals is proposed, which greatly reduces the
amount of entanglement in intermediate steps and helps to
achieve high fidelity compressions. One can reach very
high precision when computing physical quantities and
directly access certain measures of quantum entanglement
using the tensor network representations of parton wave
functions. The numerical results clearly suggest that our
method has the potential to surpass conventional
Monte Carlo methods in many cases.
Tensor network representation.—The method proposed

here can be applied to any spin, bosonic, or fermionic
systems, but we shall use spin-1=2 lattice models as
illustrations [see Fig. 1(a)]. The lattice sites are labeled
by j ∈ ½1; N" and the spin operators are Saj (a ¼ x, y, z).
The Abrikosov fermion representation is Saj ¼
1
2

P
αβ c

†
jατ

a
αβcjβ, where c†jα (cjα) are fermionic creation

(annihilation) operators at j, α ¼ ↑;↓ is the spin index, and
τa are Pauli matrices. This is an overcomplete representa-
tion with unphysical states (empty and doubly occupied)
that need to be removed by the single-occupancy constraintP

α c
†
jαcjα ¼ 1. The Schwinger boson representation is

very similar, where the fermionic operators are replaced
by their bosonic counterparts.
One popular class of trial wave functions for spin models

is the projected Fermi sea

jΨi ¼ PG

YN

m¼1

d†mj0i; ð1Þ

where j0i is the vacuum, the d†m are single-particle orbitals
of the partons, PG ¼

QN
j¼1 Pj is a product of projectors that

impose the single-occupancy constraints on each site. In
general, the single-particle orbitals can be written as d†m ¼
PN

j¼1

P
α¼↑;↓ Am;jαc

†
jα ¼

P
2N
l¼1 Amlc

†
l with l ¼ ðj;αÞ. The

states labeled by l are placed on a one-dimensional chain
under some physically motivated guidelines [41]. This is in
sharp contrast to previous works that construct (possibly
nonlocal) tensor networks for parton wave functions [42] or
their norms [43] on the original lattice. The N × 2N matrix
Aml that parametrizes the occupied orbitals is usually
obtained by solving some “mean-field” Hamiltonians that
are quadratic in the parton operators.
The central result of this paper is that Eq. (1) has a very

natural tensor network representation. More importantly, it
can be compressed into MPS with moderate bond dimen-
sions, which allows for efficient computation of variational
energy, correlation functions, and entanglement measures.
The key observation that leads to our result is that the
single-particle orbital d†m can be converted to an MPO with
bond dimension D ¼ 2 as [41]

d†m ¼
!
0 1

"#Y2N

l¼1

!
1 0

Amlc
†
l 1

"$!
1

0

"
: ð2Þ

One dummy column and one dummy row are appended to
ensure that all MPOs in the product have the same form. If
the dummy vectors are multiplied with their neighbors, we
recover a usual MPOwith an open boundary condition. It is
then straightforward to find the tensor network representa-
tion of Eq. (1) as depicted in Fig. 1(b): (1) apply the N
MPOs corresponding to the d†m to the fermionic vacuum;
(2) apply the projector PG to the Fermi sea with each term
Pj acting on two neighboring sites. In the same spirit,
tensor network representations of projected fermionic or
bosonic paired states can be obtained using MPOs that
create fermionic or bosonic pairs [41,44].
Compressing into MPS.—Although the representation

derived above is exact, physical quantities cannot be
computed simply. In fact, it is well known that the exact
contraction of a two-dimensional tensor network with
closed loops is exponentially difficult [2,5]. This makes
it imperative to develop an approximation scheme that
would enable actual calculations. An obvious choice is to
sequentially act the MPOs on the MPS (with fermionic
vacuum as the initial input) to generate another MPS.
However, the bond dimension of the MPS increases
exponentially with the number of MPOs, so it is impossible
to carry out the procedure for more than ∼12MPOs. To this
end, we need to truncate the MPS at intermediate steps such
that its bond dimensionD never exceeds some fixed values.
The simplest truncation method is the singular value
decomposition, where one converts the MPS into the
so-called mixed canonical form and discards small sin-
gular values [3,41]. Its efficiency is determined by the

(a) (b)

FIG. 1. (a) Schematics of parton construction for spin-1=2
lattice models. (b) Schematics of the tensor network representa-
tion of the projected Fermi sea in Eq. (1).
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Introduction.—The complexity of quantum many-body
systems has posed considerable challenges for physicists
since the dawn of quantum mechanics. One fundamental
curse is that the Hilbert space of a composite system grows
exponentially with the number of its constituents. While
perturbative methods have been very successful in studying
weak interactions, the vast arena of strongly correlated
quantum matter remain elusive in many aspects. Analytical
and numerical progresses have been made along various
directions. The subjects of this Letter are tensor network
states [1–6] and parton wave functions [7–10], which share
the common feature of trying to encode quantum many-
body states using a moderate amount of resources.

Tensor network states are designed to capture special
quantum entanglement patterns in the low-energy eigen-
states of physical Hamiltonians. The wave functions are
expressed as contraction of tensors (i.e., multi-index
number arrays). If a system is divided into two subsystems,
the entanglement entropy of one subsystem is bounded by
the number of virtual indices on the boundary. In many
cases, the number of parameters stays constant or grows
polynomially, so the approximation is very useful. This
approach begins with the invention of the density-matrix
renormalization group (DMRG) algorithm [11] and has
produced very impressive analytical and numerical results
ever since.

The idea of parton wave functions was originally
conceived in particle physics but has also been very
successful in condensed matter physics. In this approach,
the physical particles or spins are represented using slave

particles (bosons or fermions) in certain enlarged Hilbert
spaces. It is hoped that strongly correlated physical states
can be approximated as suitable “mean field" states of the
slave particles with their unphysical components removed
by some kind of projection. While this may appear to be
ad hoc at first sight, it does provide very valuable insights
into many problems. The ground states of some exactly
solvable models, such as the Haldane-Shastry model
[12,13] and the Kitaev honeycomb model [14], can be
expressed as Gutzwiller projected parton states. In the
studies of high-Tc superconductors [15–17], fractional
quantum Hall states [18–21], and quantum spin liquids
[22–24], parton wave functions have been used extensively
as variational ansatz.

It is usually possible to deduce some properties of parton
wave functions using low-energy effective field theories
[16,24]. Nevertheless, numerical results are very much
desired for quantitative assessments. For example, finding
the optimal parameters with respect to a given Hamiltonian
requires energy minimization. Monte Carlo methods are
widely used for computing expectation values [25–30].
This is relatively simple if the target state is made of
fermionic determinants and/or Pfaffians but rather chal-
lenging if bosonic permanents are involved. The compu-
tation of entanglement entropy and entanglement spectrum
[31–35], which have been used extensively to characterize
many-body states, is still quite demanding for generic
parton wave functions [36–40].

In this Letter, we prove that generic parton wave
functions can be expressed as local tensor networks in a
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states [1–6] and parton wave functions [7–10], which share
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body states using a moderate amount of resources.

Tensor network states are designed to capture special
quantum entanglement patterns in the low-energy eigen-
states of physical Hamiltonians. The wave functions are
expressed as contraction of tensors (i.e., multi-index
number arrays). If a system is divided into two subsystems,
the entanglement entropy of one subsystem is bounded by
the number of virtual indices on the boundary. In many
cases, the number of parameters stays constant or grows
polynomially, so the approximation is very useful. This
approach begins with the invention of the density-matrix
renormalization group (DMRG) algorithm [11] and has
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ever since.

The idea of parton wave functions was originally
conceived in particle physics but has also been very
successful in condensed matter physics. In this approach,
the physical particles or spins are represented using slave

particles (bosons or fermions) in certain enlarged Hilbert
spaces. It is hoped that strongly correlated physical states
can be approximated as suitable “mean field" states of the
slave particles with their unphysical components removed
by some kind of projection. While this may appear to be
ad hoc at first sight, it does provide very valuable insights
into many problems. The ground states of some exactly
solvable models, such as the Haldane-Shastry model
[12,13] and the Kitaev honeycomb model [14], can be
expressed as Gutzwiller projected parton states. In the
studies of high-Tc superconductors [15–17], fractional
quantum Hall states [18–21], and quantum spin liquids
[22–24], parton wave functions have been used extensively
as variational ansatz.

It is usually possible to deduce some properties of parton
wave functions using low-energy effective field theories
[16,24]. Nevertheless, numerical results are very much
desired for quantitative assessments. For example, finding
the optimal parameters with respect to a given Hamiltonian
requires energy minimization. Monte Carlo methods are
widely used for computing expectation values [25–30].
This is relatively simple if the target state is made of
fermionic determinants and/or Pfaffians but rather chal-
lenging if bosonic permanents are involved. The compu-
tation of entanglement entropy and entanglement spectrum
[31–35], which have been used extensively to characterize
many-body states, is still quite demanding for generic
parton wave functions [36–40].

In this Letter, we prove that generic parton wave
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Figure 4: Schematic construction of a PEPS tensor network state. The elementary
tensor M associated with each site (left panel) is tiled in a translational invariant
fashion into a PEPS (right panel). The index order of its five legs is arbitrary but
fixed. Here we use the order (l, r, t, b,�) ⌘ (1, 2,3, 4,5) for left, right, top, bottom,
and local state spaces, respectively. When exploiting symmetries, every individual
index (i.e., leg of a tensor or line) represents a state space that must be expressed
in terms of symmetry subspaces, throughout. For non-abelian symmetries, a given
index describes a state space s that is organized as |si ⌘ |qn; qzi, where q specifies
a symmetry sector, n a specific multiplet within the symmetry sector q, whereas qz
indexes the internal multiplet structure which can be split off as a tensor product
with a generalized CGTs [30].

then represents a tensor product of several state spaces. Setting up a symmetric PEPS tensor
network, for example, follows exactly this pattern, leading to the diagrammatic representa-
tions in Fig. (4) for a single tensor (left) and a contraction of several such tensors (right): The
symmetrized M tensors contain additional arrows on the index lines to indicate which state
spaces are incoming and outgoing (i.e., which (group of) state spaces are fused into which,
according to Eq. (71)). We have some freedom in fixing the direction of these arrows and some
choices might be more convenient to implement than others. Note that the extra index of M3

3
determines the global symmetry state of a specific PEPS representation. Of course, the sym-
metric PEPS also guarantees that the corresponding quantum state is symmetric, i.e., forms a
well-defined symmetry multiplet.

Symmetry-induced selection rules cause a large number of matrix elements to be exactly
zero, thus bringing the Hamiltonian into a block-diagonal structure and subdividing tensors
into well-defined symmetry sectors. Keeping only the nonzero elements, we can achieve
tremendous improvement in speed and accuracy in numerical simulations by the incorpo-
ration of symmetries. In the context of non-abelian symmetries, the nonzero data blocks are
not independent of each other and can be further compressed using reduced matrix elements
together with the Clebsch-Gordan algebra for multiplet spaces.

The special ingredient of our fermionic iPEPS implementation, that sets our work apart
from that of other iPEPS practitioners, concerns the explicit incorporation of non-abelian sym-
metries, such as SU(2)spin ⌦ SU(N)orb with the fermionic Z2 parity symmetry in the particle
sector. The non-abelian symmetries are fully encoded in the QSpace [30] tensor library, which
automatically handles the symmetry-induced fusion rules of both the reduced matrix elements
and the Clebsch-Gordan space.

Non-abelian iPEPS was pioneered by Liu, Li, Weichselbaum, von Delft and Su [37] for the
case of the spin-1 Kagome Heisenberg antiferromagnet, which illustrated an SU(2)spin symmet-
ric iPEPS representation in terms of a “projection” picture. Following ideas of SU(2) invariant
iPEPS representations for the spin-1

2 resonating valence-bond state [91, 92] and the spin-1
resonating AKLT state [93], the symmetric iPEPS tensors can be understood as emerging from
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We elaborate a simple classification scheme of all rank-5 SU(2) spin rotational symmetric tensors according to
(i) the onsite physical spin S, (ii) the local Hilbert space V ⊗4 of the four virtual (composite) spins attached to each
site, and (iii) the irreducible representations of the C4v point group of the square lattice. We apply our scheme
to draw a complete list of all SU(2)-symmetric translationally and rotationally invariant projected entangled
pair states (PEPS) with bond dimension D ! 6. All known SU(2)-symmetric PEPS on the square lattice are
recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class
can be associated a (D − 1)-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and
defined in terms of D-independent tensors of a given bond dimension D. In addition, generic (low-dimensional)
families of PEPS explicitly breaking either (i) particular point-group lattice symmetries (lattice nematics) or
(ii) time-reversal symmetry (chiral spin liquids) or (iii) SU(2) spin rotation symmetry down to U(1) (spin nematics
or Néel antiferromagnets) can also be constructed. We apply this framework to search for new topological chiral
spin liquids characterized by well-defined chiral edge modes, as revealed by their entanglement spectrum. In
particular, we show how the symmetrization of a double-layer PEPS leads to a chiral topological state with a
gapless edge described by a SU(2)2 Wess-Zumino-Witten model.

DOI: 10.1103/PhysRevB.94.205124

I. INTRODUCTION

The study of quantum many-body entanglement has pro-
vided many key insights into the structure of quantum states
of matter. Low-energy states of quantum lattice systems obey
typically the so-called “area law” of the entanglement entropy
[1–3]. As such, the area law is a huge constraint on the classes
of states that capture the relevant properties of matter at low
energies. A more refined study has shown that, in fact, those
states are captured by the so-called tensor network states, or
simply “tensor networks” [4,5]. Such states obey naturally
the area law, and are at the basis of many theoretical and
numerical developments in the study of quantum many-body
systems and beyond [6]. Examples of such states are, e.g.,
matrix product states (MPS) [7], projected entangled pair states
(PEPS) [8,9], and the multiscale entanglement renormalization
Ansatz (MERA) [10]. These structures are, respectively,
behind the so-called density matrix renormalization group
algorithm (DMRG) for one-dimensional (1D) systems [11],
PEPS algorithms for two-dimensional (2D) systems [12], and
entanglement renormalization [13].

The description of quantum many-body states in terms of
tensor networks has several advantages. Apart from naturally
obeying the area law (and therefore capturing the correct
expected entanglement behavior), tensor network (TN) states
can also be manipulated efficiently (either exactly or ap-
proximately). Another advantage is the fact that both lattice
and internal symmetries can be naturally incorporated. For
instance, a description in terms of symmetric tensors [14,15]
can lead to important computational advantages [16–20], and
helps in the theoretical classification of phases of matter
[21]. Moreover, gauge symmetries can also be naturally
incorporated [22], hence offering a natural framework to
describe lattice gauge theories [23,24].

In a seminal paper [25], Jiang and Ran made the first
attempt to organize PEPS into crude classes distinguished

by short-range physics, related to the fractionalization of
both onsite symmetries and space-group symmetries. In their
work, the authors introduced (quite generally) the notion of
projective symmetry group (PSG) for PEPS, enabling to deal
a priori with gauge equivalence between tensors. Using lattice
quantum numbers, the authors predicted a number of district
classes for spin- 1

2 spin liquids on the kagome lattice. More
recently, a similar framework was applied to classify (trivial)
spin-1 PEPS on the square lattice [26].

Our goal in this paper is to produce a simple classification
scheme of all rank-5 SU(2) spin rotational symmetric ten-
sors. We characterize the tensors according to three criteria:
(i) the onsite physical spin S, (ii) the local Hilbert space
V ⊗4 of the four virtual (composite) spins attached to each
site, and (iii) the irreducible representations of the C4v point
group of the square lattice. Using this scheme, we produce
explicit expressions for all SU(2)-symmetric translationally
and rotationally invariant PEPS with bond dimension D ! 6.
As we shall see, one can recover all known SU(2)-symmetric
PEPS on the square lattice as particular cases in our classi-
fication. Generically, to each of our symmetry class can be
associated a (D − 1)-dimensional manifold of spin liquids
(potentially) preserving lattice symmetries and defined in
terms of D-independent tensors of a given bond dimension
D. In addition, generic (low-dimensional) families of PEPS
explicitly breaking particular point-group lattice symmetries
(lattice nematics) and/or time-reversal symmetry (chiral spin
liquids [27,28]) can also be constructed. Finally, we apply
this framework to search for new topological chiral spin
liquids characterized by well-defined chiral edge modes, as
revealed by their entanglement spectrum, and show how the
symmetrization of a given double-layer PEPS leads to a chiral
topological state with a gapless edge described by a SU(2)2
Wess-Zumino-Witten (WZW) model [29].

The paper is organized as follows: In Sec. II, we elaborate
on the specifics of our classification [30], show how many

2469-9950/2016/94(20)/205124(29) 205124-1 ©2016 American Physical Society
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FIG. 2. Zoom of the singlet low energy spectra at ✓ = ⇡/4 and
� = ⇡/2, for N ranging from 2 to 10, and the same cluster sizes as
in Fig. 1 (for N = 2, Ns = 20). The GS energy is subtracted off for
better comparison between the various spectra. The exact degeneracy
g of each level is indicated on the plot as ⇥g. The first non-singlet
excitation above N quasi-degenerate low-energy singlets – shown as
a filled triangle – always belongs to the adjoint irrep.

severely limited by the size of the available clusters since the
dimension of the Hilbert space increases exponentially with
Ns. A way to overcome such limitations is to implement the
SU(N ) symmetry and this is the second ED protocole that
we have employed here. In particular, when Ns is a multi-
ple of N, the ground state of Hamiltonian (1) is a SU(N ) sin-
glet state for a wide range of parameters. The singlet sector
has a dimension much lower than the one of the full Hilbert
space. The gain to implement the full SU(N) symmetry and
to look for the lowest energy states directly in the singlet sec-
tor is huge and increases with N. For instance, for N=10 and
Ns = 20, the singlet sector has only dimension 16796, while
the dimension of the full Hilbert space is 1020. In addition,
to write the matrix representing the Hamiltonian in the singlet
subspace and in the sectors labelled by higher dimensional
SU(N ) irrep, we have employed the algorithms detailed in
Refs. [33, 34], which is mainly based on the use of Standard
Young Tableaux and on the theory of the representation of the
permutation group.

In particular, it allows one to bypass the need for the
Clebsch-Gordan coefficients, which can only be calculated
with an algorithm whose complexity also increases with N
(see Ref. [35]). Typically, for the present problem, through
this method, we can address clusters with Ns ⇠ 20 sites for N
up to 10. Note that contrary to the first ED method based
on the implementation of spatial symmetries, the momenta
can only be accessed in a second stage: we first calculate the
eigenvectors and then the effect of translation or rotation on
them.

B. Periodic clusters : bulk gap and GS manifold

The results for N = 2 and N = 3 described above suggest
that the existence of an Abelian CSL may be generic for ar-
bitrary integer N . To investigate such an appealing scenario,

we start by examining, for larger N , the low-energy spectra
obtained on Ns-site periodic clusters (see Table I for details
about clusters used). We first consider the case of Ns being
an integer multiple of N so that, in a CSL phase, no quasi-
particle excitations would be populating the GS. A selection
of the singlet energy spectra for fixed ✓ = ⇡/4, plotted ver-
sus �, are shown in Fig. 1 for N ranging N = 4 to N = 10.
For all the values of N studied here, in a broad interval of �
values, a clear gap is observed between a group of degenerate
and quasi-degenerate states and the rest of the singlet spec-
trum. Interestingly, we note that � = ⇡/2 – corresponding to
a pure imaginary 3-site cyclic permutation – is alway located
within the gapped phase (except perhaps for N = 3 for which
� = ⇡/4 instead was chosen in Ref. [28]). The gapped phase
is also stable within a significant range of the parameter ✓, be-
yond ✓ = ⇡/4, e.g. also at ✓ = ⇡/6. Hence, in the following,
we shall mostly report results obtained at fixed � = ⇡/2 (i.e.
for a pure imaginary 3-site permutation) and for ✓ = ⇡/4 or,
occasionally, ✓ = ⇡/6.

To identify the type of gapped phase, we now investigate
the exact degeneracy and the quantum numbers of the GS
manifold. Fig. 2 shows a zoom of the low-energy spectra at
✓ = ⇡/4 and � = ⇡/2, with the exact degeneracy of each
level below the gap. A simple counting shows that there are
exactly N states below the gap. Note that the first excita-
tion defining the gap does not belong to the singlet sector
but rather always belongs to the adjoint irrep of dimension
N

2
� 1. This is an extention of the SU(2) case where the

first excitation in antiferromagnetic spin liquids are typically
spin-1 “magnons”. In the thermodynamic limit, the gap in the
singlet sector should be bounded from above by twice the true
“magnetic” gap as two isolated “magnons” can fuse into a sin-
glet. If a singlet bound state occurs between two magnons, the
singlet gap is then strictly smaller than twice the magnon gap.

The above observation of the N -fold degeneracy of the GS
space suggests that the gapped phases indeed correspond to
Abelian SU(N)1 chiral spin liquids. As realized already for
N = 3 in Ref. [28], it is possible to obtain, for arbitrary N ,
the exact momenta of the various states in the GS manifold
expected for an Abelian SU(N)1 CSL. This can be infered
from a simple generalized exclusion principle (GEP) [36, 37]
with clustering rules. For instance, when N = 3, labelling
the color degrees of freedom as c1, c2 and c3, the three (quasi)
degenerate ground-states (for Ns = kN ) are given by oc-
cupations (c1, c3, c2, c1, c3, c2, . . .) – and its translations – of
Ns orbitals which are obtained when folding the Brillouin
zone [38, 39]. This N = 3 exclusion rule simply enforces
that a c2 particle must necessarily (i) appear at least once in 3
consecutive orbitals and (ii) be followed by a c1 particle. Such
rules can be rephrased in terms of follow-up rules in the string
of colors, e.g. c1 ! (c1, c2, c3), c2 ! c1, c3 ! (c1, c2),
which defines a “transfer matrix”,

T
(N=3) =

"
1 1 1
1 0 1
1 0 0

#
, (3)

for N = 3. The transfer matrix above is easy to generalize
to any N , with 1’s in the first column and above the diagonal

gap above the N quasi-
deg ground-states

In 2d: generalization of Hastings-Oshikawa-Lieb-Schultz-Mattis theorem 
forbids a non-degenerate gapped state

gapless or discrete symmetry breaking or topological  
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Exact Diagonalization on torus
Predictions: 

•  If                    : singlet ground-state degeneracy on a torus = N 

• Lattice momenta can be obtained from a generalized Pauli principle

• Quasi-hole counting: deg=           , 1 per momentum sector
4

FIG. 2. Zoom of the singlet low energy spectra at ✓ = ⇡/4 and
� = ⇡/2, for N ranging from 2 to 10, and the same cluster sizes as
in Fig. 1 (for N = 2, Ns = 20). The GS energy is subtracted off for
better comparison between the various spectra. The exact degeneracy
g of each level is indicated on the plot as ⇥g. The first non-singlet
excitation above N quasi-degenerate low-energy singlets – shown as
a filled triangle – always belongs to the adjoint irrep.

severely limited by the size of the available clusters since the
dimension of the Hilbert space increases exponentially with
Ns. A way to overcome such limitations is to implement the
SU(N ) symmetry and this is the second ED protocole that
we have employed here. In particular, when Ns is a multi-
ple of N, the ground state of Hamiltonian (1) is a SU(N ) sin-
glet state for a wide range of parameters. The singlet sector
has a dimension much lower than the one of the full Hilbert
space. The gain to implement the full SU(N) symmetry and
to look for the lowest energy states directly in the singlet sec-
tor is huge and increases with N. For instance, for N=10 and
Ns = 20, the singlet sector has only dimension 16796, while
the dimension of the full Hilbert space is 1020. In addition,
to write the matrix representing the Hamiltonian in the singlet
subspace and in the sectors labelled by higher dimensional
SU(N ) irrep, we have employed the algorithms detailed in
Refs. [33, 34], which is mainly based on the use of Standard
Young Tableaux and on the theory of the representation of the
permutation group.

In particular, it allows one to bypass the need for the
Clebsch-Gordan coefficients, which can only be calculated
with an algorithm whose complexity also increases with N
(see Ref. [35]). Typically, for the present problem, through
this method, we can address clusters with Ns ⇠ 20 sites for N
up to 10. Note that contrary to the first ED method based
on the implementation of spatial symmetries, the momenta
can only be accessed in a second stage: we first calculate the
eigenvectors and then the effect of translation or rotation on
them.

B. Periodic clusters : bulk gap and GS manifold

The results for N = 2 and N = 3 described above suggest
that the existence of an Abelian CSL may be generic for ar-
bitrary integer N . To investigate such an appealing scenario,

we start by examining, for larger N , the low-energy spectra
obtained on Ns-site periodic clusters (see Table I for details
about clusters used). We first consider the case of Ns being
an integer multiple of N so that, in a CSL phase, no quasi-
particle excitations would be populating the GS. A selection
of the singlet energy spectra for fixed ✓ = ⇡/4, plotted ver-
sus �, are shown in Fig. 1 for N ranging N = 4 to N = 10.
For all the values of N studied here, in a broad interval of �
values, a clear gap is observed between a group of degenerate
and quasi-degenerate states and the rest of the singlet spec-
trum. Interestingly, we note that � = ⇡/2 – corresponding to
a pure imaginary 3-site cyclic permutation – is alway located
within the gapped phase (except perhaps for N = 3 for which
� = ⇡/4 instead was chosen in Ref. [28]). The gapped phase
is also stable within a significant range of the parameter ✓, be-
yond ✓ = ⇡/4, e.g. also at ✓ = ⇡/6. Hence, in the following,
we shall mostly report results obtained at fixed � = ⇡/2 (i.e.
for a pure imaginary 3-site permutation) and for ✓ = ⇡/4 or,
occasionally, ✓ = ⇡/6.

To identify the type of gapped phase, we now investigate
the exact degeneracy and the quantum numbers of the GS
manifold. Fig. 2 shows a zoom of the low-energy spectra at
✓ = ⇡/4 and � = ⇡/2, with the exact degeneracy of each
level below the gap. A simple counting shows that there are
exactly N states below the gap. Note that the first excita-
tion defining the gap does not belong to the singlet sector
but rather always belongs to the adjoint irrep of dimension
N

2
� 1. This is an extention of the SU(2) case where the

first excitation in antiferromagnetic spin liquids are typically
spin-1 “magnons”. In the thermodynamic limit, the gap in the
singlet sector should be bounded from above by twice the true
“magnetic” gap as two isolated “magnons” can fuse into a sin-
glet. If a singlet bound state occurs between two magnons, the
singlet gap is then strictly smaller than twice the magnon gap.

The above observation of the N -fold degeneracy of the GS
space suggests that the gapped phases indeed correspond to
Abelian SU(N)1 chiral spin liquids. As realized already for
N = 3 in Ref. [28], it is possible to obtain, for arbitrary N ,
the exact momenta of the various states in the GS manifold
expected for an Abelian SU(N)1 CSL. This can be infered
from a simple generalized exclusion principle (GEP) [36, 37]
with clustering rules. For instance, when N = 3, labelling
the color degrees of freedom as c1, c2 and c3, the three (quasi)
degenerate ground-states (for Ns = kN ) are given by oc-
cupations (c1, c3, c2, c1, c3, c2, . . .) – and its translations – of
Ns orbitals which are obtained when folding the Brillouin
zone [38, 39]. This N = 3 exclusion rule simply enforces
that a c2 particle must necessarily (i) appear at least once in 3
consecutive orbitals and (ii) be followed by a c1 particle. Such
rules can be rephrased in terms of follow-up rules in the string
of colors, e.g. c1 ! (c1, c2, c3), c2 ! c1, c3 ! (c1, c2),
which defines a “transfer matrix”,

T
(N=3) =

"
1 1 1
1 0 1
1 0 0

#
, (3)

for N = 3. The transfer matrix above is easy to generalize
to any N , with 1’s in the first column and above the diagonal
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FIG. 3. Low-energy spectra on periodic clusters at fixed � = ⇡/2 and for ✓ = ⇡/4 (a-d) or ✓ = ⇡/6 (e-h). Clusters with site numbers
Ns = kN (left) or Ns = kN � 1 (right), k 2 N, are chosen to obtain 0 and 1 quasi-hole, respectively, in the putative CSL. The respective BZ
with the allowed momenta is shown on each plot as a grey square – only non-equivalent momenta are labelled. (a,b) N = 4 and Ns = 20, 19;
(c,d) N = 5 and Ns = 15a, 14; (e,f) N = 6 and Ns = 12, 11; (g,h) N = 7 and Ns = 14, 13. For Ns = kN (left), the GS manifold
is composed of N singlets (open circles) while, for Ns = kN � 1 (right), it is composed of Ns quasi-degenerate levels, one level at each
cluster momentum comprising of N degenerate states forming a N̄ anti-fundamental IRREP (open triangles). The degeneracies of the various
momenta appearing in the considered clusters reduced Brillouin zones are listed as grayed squared numbers.

and zeros otherwise. For example, one gets

T
(N=5) =

2

664

1 1 1 1 1
1 0 1 1 1
1 0 0 1 1
1 0 0 0 1
1 0 0 0 0

3

775, (4)

for N = 5. Note that, in addition to the rules encoded in the
transfer matrix (which alone produce a large number of irrel-
evant configurations), one should also simultaneously enforce
a global property relating the total appearance of all colors
such that the GS belong to the SU(N ) IRREP of smallest pos-
sible dimension compatible with system size. More precisely,
defining the integer r0 = mod(Ns, N), the smallest possible
IRREP corresponds to the completely antisymmetric IRREP
with a Young tableau of r0 vertical boxes (labelled hereafter
as caIRN (r0)), and, heuristically, is to be associated to the GS
manifold. E.g. for Ns = kN , all colors should appear exactly
k times, i.e. c1 = c2 = · · · = cN = k, as the singlet character

of the GS manifold implies.

We now focus on two distinct commensurability relations
between the cluster size Ns and N ; either, (i) Ns = kN ,
k 2 N, for which, as above, the GS contains no quasi-particle
and (ii) Ns = kN � 1, k 2 N, for which, a single quasi-hole
populates the GS. Note that in case (ii), r0 = N � 1 so that
the IRREP of the GS manifold is the N̄ anti-fundamental IR-
REP whose (only) weight configurations are given by c1 = k,
c2 = k, etc.., cN�1 = k, cN = k � 1 (as provided by the
transfer matrix rules), or any permutation of the N color num-
bers. The above generalized exclusion principle implies a GS
(quasi-)degeneracy of N and Ns for (i) and (ii), respectively.
This is indeed observed as shown in Fig. 3. The predictions
of the GEP are even more precise, providing all GS momenta
expected for the (Abelian) CSL on every periodic cluster (see
Appendix A for details on the way momenta are assigned). We
have checked that – in most cases – all GS momenta reported
in Fig. 3 match the ones predicted by the heuristic rules. In

0 quasi-hole 1 quasi-hole
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FIG. 3. Low-energy spectra on periodic clusters at fixed � = ⇡/2 and for ✓ = ⇡/4 (a-d) or ✓ = ⇡/6 (e-h). Clusters with site numbers
Ns = kN (left) or Ns = kN � 1 (right), k 2 N, are chosen to obtain 0 and 1 quasi-hole, respectively, in the putative CSL. The respective BZ
with the allowed momenta is shown on each plot as a grey square – only non-equivalent momenta are labelled. (a,b) N = 4 and Ns = 20, 19;
(c,d) N = 5 and Ns = 15a, 14; (e,f) N = 6 and Ns = 12, 11; (g,h) N = 7 and Ns = 14, 13. For Ns = kN (left), the GS manifold
is composed of N singlets (open circles) while, for Ns = kN � 1 (right), it is composed of Ns quasi-degenerate levels, one level at each
cluster momentum comprising of N degenerate states forming a N̄ anti-fundamental IRREP (open triangles). The degeneracies of the various
momenta appearing in the considered clusters reduced Brillouin zones are listed as grayed squared numbers.

and zeros otherwise. For example, one gets

T
(N=5) =

2

664

1 1 1 1 1
1 0 1 1 1
1 0 0 1 1
1 0 0 0 1
1 0 0 0 0

3

775, (4)

for N = 5. Note that, in addition to the rules encoded in the
transfer matrix (which alone produce a large number of irrel-
evant configurations), one should also simultaneously enforce
a global property relating the total appearance of all colors
such that the GS belong to the SU(N ) IRREP of smallest pos-
sible dimension compatible with system size. More precisely,
defining the integer r0 = mod(Ns, N), the smallest possible
IRREP corresponds to the completely antisymmetric IRREP
with a Young tableau of r0 vertical boxes (labelled hereafter
as caIRN (r0)), and, heuristically, is to be associated to the GS
manifold. E.g. for Ns = kN , all colors should appear exactly
k times, i.e. c1 = c2 = · · · = cN = k, as the singlet character

of the GS manifold implies.

We now focus on two distinct commensurability relations
between the cluster size Ns and N ; either, (i) Ns = kN ,
k 2 N, for which, as above, the GS contains no quasi-particle
and (ii) Ns = kN � 1, k 2 N, for which, a single quasi-hole
populates the GS. Note that in case (ii), r0 = N � 1 so that
the IRREP of the GS manifold is the N̄ anti-fundamental IR-
REP whose (only) weight configurations are given by c1 = k,
c2 = k, etc.., cN�1 = k, cN = k � 1 (as provided by the
transfer matrix rules), or any permutation of the N color num-
bers. The above generalized exclusion principle implies a GS
(quasi-)degeneracy of N and Ns for (i) and (ii), respectively.
This is indeed observed as shown in Fig. 3. The predictions
of the GEP are even more precise, providing all GS momenta
expected for the (Abelian) CSL on every periodic cluster (see
Appendix A for details on the way momenta are assigned). We
have checked that – in most cases – all GS momenta reported
in Fig. 3 match the ones predicted by the heuristic rules. In

0 quasi-hole
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FIG. 4. Low-energy spectra on open C4-symmetric clusters, as a function of the angular momentum (w.r.t. the GS angular momentum l0), at
fixed � = ⇡/2 and for ✓ = ⇡/4 (a–b) or ✓ = ⇡/6 (c–h). (a,b) N = 4 and Ns = 16, 13; (c,d) N = 5 and Ns = 16, 17; (e,f) N = 6 and
Ns = 16, 17; (g) N = 7 and Ns = 21; (g) N = 8 and Ns = 16. Symbols labelling the various SU(N ) irreps entering the chiral mode are
shown in the legends. From (a) to (h), the GS IRREPs are defined by the pairs (N, r0) = (4, 0), (4, 1), (5, 1), (5, 2), (6, 4), (6, 5), (7, 6), (8, 0)
(see text) corresponding to the 1 and 4 SU(4), 5 and 10 SU(5), 15 and 6 SU(6), 1 SU(7) and 1 SU(8) IRREPs, respectively. All low-energy
ToS in (a-h) for 0  l � l0  3 follow exactly the WZW CFT predictions of Tables VIII,IX,XII,XIII,XVI,XV,XVII and XXI, respectively,
apart from the SU(6) 1̄5 (SU(8) 1) tower for which two multiplets 1̄5 and 2̄1 (1 and 63) are missing in the l � l0 = 3 Virasoro level.

6

ex
cit

ati
on

en
erg

y
ex
cit

ati
on

en
erg

y
ex
cit

ati
on

en
erg

y
ex
cit

ati
on

en
erg

y

FIG. 4. Low-energy spectra on open C4-symmetric clusters, as a function of the angular momentum (w.r.t. the GS angular momentum l0), at
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Ns = 16, 17; (g) N = 7 and Ns = 21; (g) N = 8 and Ns = 16. Symbols labelling the various SU(N ) irreps entering the chiral mode are
shown in the legends. From (a) to (h), the GS IRREPs are defined by the pairs (N, r0) = (4, 0), (4, 1), (5, 1), (5, 2), (6, 4), (6, 5), (7, 6), (8, 0)
(see text) corresponding to the 1 and 4 SU(4), 5 and 10 SU(5), 15 and 6 SU(6), 1 SU(7) and 1 SU(8) IRREPs, respectively. All low-energy
ToS in (a-h) for 0  l � l0  3 follow exactly the WZW CFT predictions of Tables VIII,IX,XII,XIII,XVI,XV,XVII and XXI, respectively,
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TABLE XIII. SU(5)1 WZW model – Tower of states starting from

10

(resp.

10

by conjugation of all irreps).

l
�

l 0

O
rd

er

Irreps / Multiplicities

0 q3/5 1
10

1 q8/5 1
10

� 1
15

� 1

40

2 q13/5 3
10

� 1
15

� 2

40

� 1

175

3 q18/5 5
10

� 3
15

� 1

35

� 4

40

� 3

175

� 1

210

TABLE XIV. SU(6)1 WZW model – Tower of states starting from
1•.

l
�

l 0
O

rd
er

Irreps / Multiplicities

0 q0 1
1•

1 q1 1

35

2 q2 1
1•� 2

35

� 1

189

3 q3 2
1•� 4

35

� 1

175

� 2

189

� 1

280

� 1

280
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TABLE XV. SU(6)1 WZW model – Tower of states starting from
6

(resp.

6

by conjugation of all irreps.

l
�

l 0

O
rd

er

Irreps / Multiplicities

0 q5/12 1
6

1 q17/12 1
6

� 1

84

2 q29/12 2
6

� 2

84

� 1

120

� 1

210

3 q41/12 4
6

� 5

84

� 2

120

� 2

210

� 1

336

� 1

840

TABLE XVI. SU(6)1 WZW model – Tower of states starting from

15

(resp.

15

by conjugation of all irreps).

l
�

l 0

O
rd

er

Irreps / Multiplicities

0 q2/3 1
15

1 q5/3 1
15

� 1
21

� 1

105

2 q8/3 3
15

� 1
21

� 1

1050

� 2

105

� 1

384

3 q11/3 5
15

� 3
21

� 1

1050

� 5

105

� 1

2100

� 3

384

� 1

1050

perfect 

agreement !
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FIG. 6. The parton energy spectra and edge states on the cylinder
for N = 2 to 9. For filling fraction 1/N , the lowest parton band is
fully occupied and the edge states are occupied up to the exact zero
modes at the single-particle momentum ky = ⇡/N . These exact
zero modes, denoted by dL� and dR� , are localized at the left and
right boundaries of the cylinder, respectively.

FIG. 7. The entanglement spectra on width-6 cylinders for SU(2)
CSLs. (a) Identity sector. (b) Semion sector (⌦ 1

2 ). The content of the
chiral branches agrees exactly with the CFT predictions of tables IV
and II up to Ky = 4 (mod[6]).

TABLE II. SU(2)1 WZW model – The direct product of the confor-
mal tower of the spin-1/2 primary (left - see Table V in Appendix B)
with a spin-1/2 gives a new tower (right) with a doubling of the num-
ber of states in each Virasoro level indexed by l � l0.

l � l0
2

tower
2

tower ⌦
2

0 1
2

1
1•� 1

3

1 1
2

!
1

1•� 1
3

2 1
2

� 1
4

1
1•� 2

3

� 1
5

3 2
2

� 1
4

2
1•� 3

3

� 1
5

4 3
2

� 2
4

3
1•� 5

3

� 2
5

lations [48]. For N = 2, it is known that the exact zero modes
play an important role in constructing the MESs [44, 46].
These exact zero modes, denoted by dL� and dR� , localize
at the two boundaries of the cylinder. Their occurrence at
the single-particle momentum ky = ⇡/2 requires that for
mod(Ny, 4) = 0 (mod(Ny, 4) = 2), the parton Hamilto-
nian has periodic (antiperiodic) boundary condition in the y

direction. The two MESs with Sz = 0 are then written as
Gutzwiller projected wave functions, | 1i = PGd

†
L"d

†
L# |�i

and | 2i = PGd
†
L"d

†
R# |�i, where PG imposes the single-

occupancy constraint at each site and |�i is the state with all
parton modes below the zero modes being fully occupied. In
this representation, it is transparent that the zero mode d†

L(R)�

creates a semion carrying spin-1/2 (with spin projection �) at
the left (right) boundary of the cylinder. It was found [46] that
the entanglement spectra of | 1i and | 2i correspond to the
conformal towers of states of the chiral SU(2)1 Wess-Zumino-
Witten (WZW) model in its spin-0 (identity) and spin-1/2
(semion) sectors, respectively. To qualify as the (quasi-
)degenerate ground states of chiral spin liquids, the wave func-
tions should be SU(2)spin singlets. While | 1i is manifestly a
spin singlet, | 2i needs to be combined with PGd

†
L#d

†
R" |�i

to form a spin singlet | ̃2i = PG(d†
L"d

†
R# � d

†
L#d

†
R") |�i.

However, the entanglement spectrum of | ̃2i would then cor-
respond to two copies of spin-1/2 conformal towers due to the
entanglement cut of an additional nonlocal singlet formed by
a pair of two spin-1/2 semions at the boundaries.

This parton construction of MESs for the SU(2) CSL can
be naturally generalized to the SU(N ) CSL. To allow for exact
zero modes, the hopping parameters in Eq. (5) are chosen as
tx = ty if N is even, and tx = cos(⇡/N)ty otherwise. This
ensures that the exact zero modes, d†

L�
and d

†
R�

, appear at
ky = ⇡/N (see Fig. 6), which is always allowed for a suitably
chosen boundary condition (i.e., periodic or twisted) in the y

direction. With that, MESs belonging to N different topolog-
ical sectors can be written in analogous to the SU(2)case as

| pi = PGd
†
L,1 . . . d

†
L,N�p+1d

†
R,N�p+2 . . . d

†
R,N

|�i (6)

Spectrum on cylinder vs Ky 
Exact zero-mode edge states

Construct N different minimally 
entangled states to target 

different excitations 

•Probe entanglement spectrum as fingerprint of topological order10

FIG. 8. The entanglement spectra on width-6 cylinders for SU(3) CSLs. (a) Identity sector. (b)
3

sector (⌦

3̄

). (c)

3̄

sector (⌦
3

). The
content of the chiral branches agrees exactly with the CFT predictions of tables VI and XXVI up to Ky = 3 (mod[6]). Note that the towers of
the 3 and 3̄ sectors are identical, apart from an overall conjugation of all irreps.

{0, 0, {0, 1, {1, 0, {1, 3, {3, 0, {0, 2, {2, 1, {1, 1,
3, 1} 0, 3} 1, 2} 0, 0} 1, 0} 1, 1} 0, 1} 2, 0}

A1 1 2 1 2 3 3 4
A2 1 1 2 2 3 3 5
B1 1 2 1 2 3 3 4
B2 1 1 2 2 3 3 5

TABLE III. Number of symmetric site-tensors in each class charac-
terized by the irrep of the C4v point group of the square lattice (lines)
and the occupation numbers of the 6,4, 4̄ and 1 particles (columns).

for such a multiplicity by taking the direct product of each
conformal tower with the conjugate of its primary spin (see
Tables XXVI , XXVII and XXVIII in Appendix D as exam-
ples). This brings our simulations in overall agreement with
CFT as shown in Figs. 8 and 9 for N = 3 and N = 4, respec-
tively, and a direct comparison with Tables XXVI, XXVII and
XXVIII (see Appendix D).

IV. IPEPS

A. Symmetric PEPS construction

We now extend the construction of chiral PEPS used for
N = 2 (see ref. [25, 30, 32]) and N = 3 (see Ref. [28]).
The PEPS is obtained by contracting the network represented
in Fig. 10 i.e. by summing all virtual indices on the links
connecting rank-(z + 1) site and rank-2 bond tensors, z being
the lattice coordination number, z = 4 for the square lattice.

The physical space F on every lattice site is spanned by d =
N states transforming according to the fundamental irrep of
SU(N ). The choice of the virtual space on the z = 4 bonds
around each site can be made following heuristic rules valid
for all N (which we will generalize to the non-Abelian case
in the conclusion). In other words, we construct the spin-
SU(N ) PEPS from site/bond tensors with virtual space,

VN = • � � · · · �

9
>>=

>>;
N � 1 (8)

where the direct sum contains all N irreps defined by single
column Young tableaux of 0 up to N � 1 boxes, consistently
with the N = 2 and N = 3 cases, V2 = 1 � 2 and V3 = 1 �

3� 3̄. For the N = 4 case we then assume V4 = 6�4� 4̄�1
(with bond dimension D = 15). Note that the site tensor A

can be seen as a linear map (VN )⌦z
! F , and the bond tensor

B as (VN )⌦2
! •.

As for N = 2 and 3, we classify the SU(4)-symmetric
site-tensors according to (i) the particle occupations nocc =
{n6, n4, n4̄, n1} on the z = 4 virtual spaces connected to
each site (

P
n↵ = z) and (ii) the (1-dimensional) irrep of

the C4v point group of the square lattice [61] (see Table III).
Since the chiral spin liquid only breaks P and T but does not
break the product PT, the PEPS complex site tensor A should
be invariant (up to a sign) under PT symmetry but acquires a
complex conjugation under P or T separately (up to a sign).
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FIG. 9. The entanglement spectra on width-8 cylinders for SU(4) CSLs. (a) Identity sector. (b)
4

sector (⌦

4̄

). (c)

6

sector (⌦

6

). (d)

4̄

sector (⌦
4

). Note that the towers of the 4 and 4̄ sectors are identical, apart from an overall conjugation of all irreps. The content of the chiral
branches agrees exactly with the CFT predictions of tables VIII, XXVII and XXVIII up to Ky = 3.

FIG. 10. PEPS on the square lattice involving site A tensors and
bond B tensors. The bond dimension on the black links is D, up
to 1350, and the vertical red segments correspond to the d = N
physical degrees of freedom.

The simplest adequate ansatz has the following form,

A = AR + iAI =
NRX

a=1

�
R

a
A

a

R
+ i

NIX

b=1

�
I

b
A

b

I
, (9)

where the real elementary tensors A
a

R
and A

b

I
either trans-

form according to the A1 and A2 irreps, respectively, or ac-
cording to the B1 and B2 irreps, respectively, giving rise to
two possible families AA and AB . NR = 16 and NI = 17
are the numbers of the elementary tensors in each class and
�
R

a
and �

I

a
are arbitrary real coefficients of these tensors. The

bond tensor B, enforcing singlet (•) bonds, is assumed to be
real and is defined as a weighted sum of three elementary

(reflection-symmetric) tensors representing the three allowed
fusion channels • ⌦ • ! • , 6 ⌦ 6 ! • and 4 ⌦ 4̄ ! •.

To contract the infinite (double layer) tensor network, we
have used the iPEPS method employing a Corner Transfer
Matrix Renormalization Group (CTMRG) algorithm and ob-
tain the fixed-point environment tensors used to compute the
variational energy (on a 2 ⇥ 2 plaquette) or the entanglement
spectra on infinite cylinders [28, 30]. In order to cope with
the large D = 15 bond dimension, the tensor contractions at
each CTMRG step have been performed using the full SU(N)-
symmetry, thanks to the QSpace library [62, 63]. Note that
QSpace does not automatically capture the exact degeneracy
of singular values in CTMRG, especially those in different ir-
reps. So, in practice, one still needs to manually keep track
of all degenerate singular values when doing truncation. We
have increased the environment dimension up to � = 1350 to
control truncation errors. The optimization of the PEPS (9)
w.r.t. its variational parameters is done within a variational
optimization scheme [64]. For ✓ = ⇡/4, � = ⇡/2 , the best
variational energy (per site) e ' �2.105 (close to the DMRG
estimate �2.14) is obtained for the AB ansatz that we shall
consider hereafter.

B. Entanglement spectrum and edge physics

Both ED and DMRG computations have shown over-
whelming evidence of SU(N)1 edge modes, both on disk and
cylinder geometries, a fingerprint of the Abelian CSL phase.

perfect agreement !

Wu, Wang, Tu, PRL 124, 246401 (2020)
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FIG. 8. The entanglement spectra on width-6 cylinders for SU(3) CSLs. (a) Identity sector. (b)
3

sector (⌦

3̄

). (c)

3̄

sector (⌦
3

). The
content of the chiral branches agrees exactly with the CFT predictions of tables VI and XXVI up to Ky = 3 (mod[6]). Note that the towers of
the 3 and 3̄ sectors are identical, apart from an overall conjugation of all irreps.

{0, 0, {0, 1, {1, 0, {1, 3, {3, 0, {0, 2, {2, 1, {1, 1,
3, 1} 0, 3} 1, 2} 0, 0} 1, 0} 1, 1} 0, 1} 2, 0}

A1 1 2 1 2 3 3 4
A2 1 1 2 2 3 3 5
B1 1 2 1 2 3 3 4
B2 1 1 2 2 3 3 5

TABLE III. Number of symmetric site-tensors in each class charac-
terized by the irrep of the C4v point group of the square lattice (lines)
and the occupation numbers of the 6,4, 4̄ and 1 particles (columns).

for such a multiplicity by taking the direct product of each
conformal tower with the conjugate of its primary spin (see
Tables XXVI , XXVII and XXVIII in Appendix D as exam-
ples). This brings our simulations in overall agreement with
CFT as shown in Figs. 8 and 9 for N = 3 and N = 4, respec-
tively, and a direct comparison with Tables XXVI, XXVII and
XXVIII (see Appendix D).

IV. IPEPS

A. Symmetric PEPS construction

We now extend the construction of chiral PEPS used for
N = 2 (see ref. [25, 30, 32]) and N = 3 (see Ref. [28]).
The PEPS is obtained by contracting the network represented
in Fig. 10 i.e. by summing all virtual indices on the links
connecting rank-(z + 1) site and rank-2 bond tensors, z being
the lattice coordination number, z = 4 for the square lattice.

The physical space F on every lattice site is spanned by d =
N states transforming according to the fundamental irrep of
SU(N ). The choice of the virtual space on the z = 4 bonds
around each site can be made following heuristic rules valid
for all N (which we will generalize to the non-Abelian case
in the conclusion). In other words, we construct the spin-
SU(N ) PEPS from site/bond tensors with virtual space,

VN = • � � · · · �

9
>>=

>>;
N � 1 (8)

where the direct sum contains all N irreps defined by single
column Young tableaux of 0 up to N � 1 boxes, consistently
with the N = 2 and N = 3 cases, V2 = 1 � 2 and V3 = 1 �

3� 3̄. For the N = 4 case we then assume V4 = 6�4� 4̄�1
(with bond dimension D = 15). Note that the site tensor A

can be seen as a linear map (VN )⌦z
! F , and the bond tensor

B as (VN )⌦2
! •.

As for N = 2 and 3, we classify the SU(4)-symmetric
site-tensors according to (i) the particle occupations nocc =
{n6, n4, n4̄, n1} on the z = 4 virtual spaces connected to
each site (

P
n↵ = z) and (ii) the (1-dimensional) irrep of

the C4v point group of the square lattice [61] (see Table III).
Since the chiral spin liquid only breaks P and T but does not
break the product PT, the PEPS complex site tensor A should
be invariant (up to a sign) under PT symmetry but acquires a
complex conjugation under P or T separately (up to a sign).
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for such a multiplicity by taking the direct product of each
conformal tower with the conjugate of its primary spin (see
Tables XXVI , XXVII and XXVIII in Appendix D as exam-
ples). This brings our simulations in overall agreement with
CFT as shown in Figs. 8 and 9 for N = 3 and N = 4, respec-
tively, and a direct comparison with Tables XXVI, XXVII and
XXVIII (see Appendix D).

IV. IPEPS

A. Symmetric PEPS construction

We now extend the construction of chiral PEPS used for
N = 2 (see ref. [25, 30, 32]) and N = 3 (see Ref. [28]).
The PEPS is obtained by contracting the network represented
in Fig. 10 i.e. by summing all virtual indices on the links
connecting rank-(z + 1) site and rank-2 bond tensors, z being
the lattice coordination number, z = 4 for the square lattice.

The physical space F on every lattice site is spanned by d =
N states transforming according to the fundamental irrep of
SU(N ). The choice of the virtual space on the z = 4 bonds
around each site can be made following heuristic rules valid
for all N (which we will generalize to the non-Abelian case
in the conclusion). In other words, we construct the spin-
SU(N ) PEPS from site/bond tensors with virtual space,

VN = • � � · · · �

9
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N � 1 (8)

where the direct sum contains all N irreps defined by single
column Young tableaux of 0 up to N � 1 boxes, consistently
with the N = 2 and N = 3 cases, V2 = 1 � 2 and V3 = 1 �

3� 3̄. For the N = 4 case we then assume V4 = 6�4� 4̄�1
(with bond dimension D = 15). Note that the site tensor A

can be seen as a linear map (VN )⌦z
! F , and the bond tensor

B as (VN )⌦2
! •.

As for N = 2 and 3, we classify the SU(4)-symmetric
site-tensors according to (i) the particle occupations nocc =
{n6, n4, n4̄, n1} on the z = 4 virtual spaces connected to
each site (

P
n↵ = z) and (ii) the (1-dimensional) irrep of

the C4v point group of the square lattice [61] (see Table III).
Since the chiral spin liquid only breaks P and T but does not
break the product PT, the PEPS complex site tensor A should
be invariant (up to a sign) under PT symmetry but acquires a
complex conjugation under P or T separately (up to a sign).
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:
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FIG. 8. The entanglement spectra on width-6 cylinders for SU(3) CSLs. (a) Identity sector. (b)
3

sector (⌦

3̄

). (c)

3̄

sector (⌦
3

). The
content of the chiral branches agrees exactly with the CFT predictions of tables VI and XXVI up to Ky = 3 (mod[6]). Note that the towers of
the 3 and 3̄ sectors are identical, apart from an overall conjugation of all irreps.

{0, 0, {0, 1, {1, 0, {1, 3, {3, 0, {0, 2, {2, 1, {1, 1,
3, 1} 0, 3} 1, 2} 0, 0} 1, 0} 1, 1} 0, 1} 2, 0}

A1 1 2 1 2 3 3 4
A2 1 1 2 2 3 3 5
B1 1 2 1 2 3 3 4
B2 1 1 2 2 3 3 5

TABLE III. Number of symmetric site-tensors in each class charac-
terized by the irrep of the C4v point group of the square lattice (lines)
and the occupation numbers of the 6,4, 4̄ and 1 particles (columns).

for such a multiplicity by taking the direct product of each
conformal tower with the conjugate of its primary spin (see
Tables XXVI , XXVII and XXVIII in Appendix D as exam-
ples). This brings our simulations in overall agreement with
CFT as shown in Figs. 8 and 9 for N = 3 and N = 4, respec-
tively, and a direct comparison with Tables XXVI, XXVII and
XXVIII (see Appendix D).

IV. IPEPS

A. Symmetric PEPS construction

We now extend the construction of chiral PEPS used for
N = 2 (see ref. [25, 30, 32]) and N = 3 (see Ref. [28]).
The PEPS is obtained by contracting the network represented
in Fig. 10 i.e. by summing all virtual indices on the links
connecting rank-(z + 1) site and rank-2 bond tensors, z being
the lattice coordination number, z = 4 for the square lattice.

The physical space F on every lattice site is spanned by d =
N states transforming according to the fundamental irrep of
SU(N ). The choice of the virtual space on the z = 4 bonds
around each site can be made following heuristic rules valid
for all N (which we will generalize to the non-Abelian case
in the conclusion). In other words, we construct the spin-
SU(N ) PEPS from site/bond tensors with virtual space,

VN = • � � · · · �

9
>>=

>>;
N � 1 (8)

where the direct sum contains all N irreps defined by single
column Young tableaux of 0 up to N � 1 boxes, consistently
with the N = 2 and N = 3 cases, V2 = 1 � 2 and V3 = 1 �

3� 3̄. For the N = 4 case we then assume V4 = 6�4� 4̄�1
(with bond dimension D = 15). Note that the site tensor A

can be seen as a linear map (VN )⌦z
! F , and the bond tensor

B as (VN )⌦2
! •.

As for N = 2 and 3, we classify the SU(4)-symmetric
site-tensors according to (i) the particle occupations nocc =
{n6, n4, n4̄, n1} on the z = 4 virtual spaces connected to
each site (

P
n↵ = z) and (ii) the (1-dimensional) irrep of

the C4v point group of the square lattice [61] (see Table III).
Since the chiral spin liquid only breaks P and T but does not
break the product PT, the PEPS complex site tensor A should
be invariant (up to a sign) under PT symmetry but acquires a
complex conjugation under P or T separately (up to a sign).

CSL breaks P and T but not PT

11

FIG. 9. The entanglement spectra on width-8 cylinders for SU(4) CSLs. (a) Identity sector. (b)
4

sector (⌦

4̄

). (c)

6

sector (⌦

6

). (d)

4̄

sector (⌦
4

). Note that the towers of the 4 and 4̄ sectors are identical, apart from an overall conjugation of all irreps. The content of the chiral
branches agrees exactly with the CFT predictions of tables VIII, XXVII and XXVIII up to Ky = 3.

FIG. 10. PEPS on the square lattice involving site A tensors and
bond B tensors. The bond dimension on the black links is D, up
to 1350, and the vertical red segments correspond to the d = N
physical degrees of freedom.

The simplest adequate ansatz has the following form,

A = AR + iAI =
NRX

a=1

�
R

a
A

a

R
+ i

NIX

b=1

�
I

b
A

b

I
, (9)

where the real elementary tensors A
a

R
and A

b

I
either trans-

form according to the A1 and A2 irreps, respectively, or ac-
cording to the B1 and B2 irreps, respectively, giving rise to
two possible families AA and AB . NR = 16 and NI = 17
are the numbers of the elementary tensors in each class and
�
R

a
and �

I

a
are arbitrary real coefficients of these tensors. The

bond tensor B, enforcing singlet (•) bonds, is assumed to be
real and is defined as a weighted sum of three elementary

(reflection-symmetric) tensors representing the three allowed
fusion channels • ⌦ • ! • , 6 ⌦ 6 ! • and 4 ⌦ 4̄ ! •.

To contract the infinite (double layer) tensor network, we
have used the iPEPS method employing a Corner Transfer
Matrix Renormalization Group (CTMRG) algorithm and ob-
tain the fixed-point environment tensors used to compute the
variational energy (on a 2 ⇥ 2 plaquette) or the entanglement
spectra on infinite cylinders [28, 30]. In order to cope with
the large D = 15 bond dimension, the tensor contractions at
each CTMRG step have been performed using the full SU(N)-
symmetry, thanks to the QSpace library [62, 63]. Note that
QSpace does not automatically capture the exact degeneracy
of singular values in CTMRG, especially those in different ir-
reps. So, in practice, one still needs to manually keep track
of all degenerate singular values when doing truncation. We
have increased the environment dimension up to � = 1350 to
control truncation errors. The optimization of the PEPS (9)
w.r.t. its variational parameters is done within a variational
optimization scheme [64]. For ✓ = ⇡/4, � = ⇡/2 , the best
variational energy (per site) e ' �2.105 (close to the DMRG
estimate �2.14) is obtained for the AB ansatz that we shall
consider hereafter.

B. Entanglement spectrum and edge physics

Both ED and DMRG computations have shown over-
whelming evidence of SU(N)1 edge modes, both on disk and
cylinder geometries, a fingerprint of the Abelian CSL phase.

Tensor is a linear combination of point-group SU(N) symmetric ones

•Optimization is performed using CTMRG few coefficients
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In many physical scenarios, close relations between the bulk properties of quantum systems and theories
associated with their boundaries have been observed. In this work, we provide an exact duality mapping between
the bulk of a quantum spin system and its boundary using projected entangled-pair states. This duality associates to
every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds
to the excitation spectrum of the boundary Hamiltonian. We study various specific models: a deformed AKLT
model [I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)], an Ising-type model
[F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006)], and Kitaev’s
toric code [A. Kitaev, Ann. Phys. 303, 2 (2003)], both in finite ladders and in infinite square lattices. In the
second case, some of those models display quantum phase transitions. We find that a gapped bulk phase with
local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk
is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered
states yield nonlocal Hamiltonians. Because our duality also associates a boundary operator to any operator in
the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their
boundary.

DOI: 10.1103/PhysRevB.83.245134 PACS number(s): 71.10.−w, 03.67.−a, 02.70.−c

I. INTRODUCTION

It has long been speculated that the boundary plays a
very significant role in establishing the physical properties
of a quantum field theory. This idea has been very fruitful in
clarifying the physics of the fractional quantum Hall effect, and
it is also the origin of the holographic principle in black hole
physics. An explicit manifestation of this fact is the so-called
area law. The area law states that for ground (thermal) states
of lattice systems with short-range interactions, the entropy
(quantum mutual information) of the reduced density operator
ρA, corresponding to a region A, is proportional to the surface
of that region rather than to the volume, at least for gapped
systems.1–4 Criticality may reflect itself in the appearance of
multiplicative and/or linear logarithmic corrections to the area
law.5,6

Apart from the deep physical significance of this law,
it has important implications regarding the possibility of
simulating many-body quantum systems using tensor network
(TN) states.7–10 For instance, it has been shown11 that any state
of a quantum spin system fulfilling the area law in one spatial
dimension (including logarithmic violations) can be efficiently
represented by a matrix product state (MPS),12,13 the simplest
version of a TN.

Very recently, another remarkable discovery has been made
with relation to the area law.14 It has been shown that
for certain models in two spatial dimensions the reduced
density matrix of a region A has a very peculiar spectrum,
which is called the entanglement spectrum: by taking the
logarithm of the eigenvalues of ρA, one obtains a spectrum
that resembles very much that of a one-dimensional critical
theory (i.e., as prescribed by conformal field theory). This
has been established for different systems as diverse as
gapped fractional quantum Hall states14 or spin-1/2 quantum

magnets.15 Interestingly, the correlation length in the bulk of
the ground state can be naturally interpreted as a thermal length
in one dimension.15

This is all very suggestive of the fact that the reduced
density matrix is the thermal state of a one-dimensional
theory. However, there is a clear mismatch in dimensions:
the Hilbert space associated to ρA has two spatial dimensions,
whereas the one-dimensional theory obviously has only one.
Intuitively, this is clear because all relevant degrees of freedom
of ρA should be located around the boundary of region A.
The main question addressed in this paper is to explicitly
identify the degrees of freedom on which this one-dimensional
Hamiltonian acts.

We show that projected entangled-pair states (PEPS)16

give a very natural answer to that question. The degrees of
freedom of the one-dimensional theory correspond to the
virtual particles which appear in the valence bond description
of PEPS and that “live” at the boundary of region A.16,17 More
specifically, PEPS are built by considering a set of virtual
particles at each node of the lattice, which are then projected
out to obtain the state of the physical spins. As we show,
the boundary Hamiltonian can be thought of as acting on
the virtual particles that live at the boundary of region A.
Furthermore, we present evidence that, for gapped systems,
such a boundary Hamiltonian is quasilocal (i.e., it contains
only short-range interactions) in terms of those (localized)
virtual particles. As a quantum phase transition is approached,
the range of the interactions increases. Finally, we show that
the interactions lose their local character for the case of
quantum systems exhibiting topological order. We also show
how operators in the bulk can be mapped to operators on the
boundary.

The fact that the boundary Hamiltonian is quasilocal
has important implications for the theory of PEPS which

245134-11098-0121/2011/83(24)/245134(12) ©2011 American Physical Society
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Nv

infinite PEPS cylinder

SU(3)  Nv=6

12

FIG. 11. Entanglement spectra on an infinitely-long width-4 cylinder obtained from a D = 15 PEPS wavefunction optimized for ✓ = ⇡/4,
� = ⇡/2 and environment dimension � = 1350. Spectra are plotted vs perimeter momentum ky and, to better evidence their chiral nature,
the ky = �⇡/2 spectrum is replicated at ky = 3⇡/2. Appropriate Z4 charge boundaries are set up to select the 6 (a), 1 (b), 4 (c) and 4̄ (d)
topological sectors, showing one, two and four branches, respectively. Note that the 4 and 4̄ spectra are identical apart from an overall charge
conjugation of all irreps (and small finite-� numerical errors).

We note that, apart from the trivial (identity) sector, the con-
formal towers previously obtained using PEPS on cylinders
for N = 2, 3 bear some differences with those obtained in
DMRG. For example, the spin-1/2 semionic branch of the
SU(2) spin-1/2 chiral PEPS corresponds exactly to the SU(2)1
conformal tower – consisting of half-integer spin multiplets –
associated to the WZW spin-1/2 primary field and its descen-
dants, but with an exact two-fold degeneracy [25, 30, 32]. For
the SU(3) spin- chiral PEPS, in the topological sectors de-
fined by imposing Q = ±1 3 charges at the boundaries, the

level contents of the ES follow the prediction of the Virasoro
levels of the SU(3)1 WZW CFT with, however, a tripling of
the branches [28]. Interestingly, both DMRG and PEPS show
the same number of states in each Virasoro level, namely N
times the WZW CFT content. These particular features of the
PEPS ansatz are now further tested in the case of the SU(4)
model in order to draw more general (empirical) statements
for spin- SU(N ) chiral PEPS.

The ES, revealing the topological properties of the PEPS,
is computed by placing the optimized D = 15 PEPS on a

SU(4),  Nv=4, full SU(N) symmetry D=15
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PEPS: correlation lengths

Within the PEPS methodology, correlation lengths of
different types of operators, including the anyonic type, can
be obtained from two complementary methods. On one
hand, correlation functions of usual local operators, e.g.,
spin-spin correlation CsðdÞ ¼ hSi · Siþdexi or dimer-dimer
correlation CdðdÞ ¼ hDx

iD
x
iþdex

i − hDx
i ihDx

iþdex
i, can be

obtained by applying local operators on the physical
indices. Here the spin operators are the eight generators
of the su(3) algebra, and the dimer operator is Dx

i ¼
Si · Siþex . The Z3 gauge symmetry enables us to define
topologically nontrivial local excitations like spinon, vison,
and their bound state [17,39,62]. A spinon excitation can be
created by applying an operator X satisfying XZ ¼ ωZX on
the virtual index of local tensor such that it carries zero Z3

charge instead of the original charge 1. Similarly, X2 can
create a charge −1 spinon, since X2Z ¼ ω2ZX2. A pair of
vison excitations can be created by putting a string of Z
(or Z2) operators on the virtual level, whose end points
correspond to the visons. Parafermions, bound states of a
spinon and a vison [41,62], can be created by putting
spinons at the end points of the Z string. All these real space
correlations obtained using the CTMRG environment
tensors (see the Supplemental Material [34] for further
details) are shown in Fig. 4(a).
On the other hand, correlation lengths can also be

extracted from the spectrum of transfer matrix, constructed
with CTMRG environment tensors (see the Supplemental
Material [34]), whose eigenvalue degeneracies carry infor-
mation about the types of correlation. Correlation lengths
along horizontal and vertical directions are found to be
the same, as expected. Denoting the distinct transfer
matrix eigenvalues as ta ða ¼ 0; 1;…Þ with jt0j > jt1j >
jt2j > % % %, it turns out t0 is nondegenerate, suggesting
absence of long-range order in the variational wave

function (confirming ED results). The subleading eigen-
values ta (a ¼ 1, 2, 3) are sixfold degenerate, followed by a
nondegenerate t4. These eigenvalues give direct access to
series of correlation lengths ξðaÞ ¼ −1= logðjta=t0jÞ, which
therefore carry the same degeneracies. We have also
computed the correlation length with a &1 Z3 flux by
inserting a string of Z (or Z2) operators, where the
leading eigenvalue of the corresponding transfer matrix
is denoted as tZ;1 [63]. From tZ;1, which is nondegenerate,
one obtains the leading correlation length in the flux
sector ξð1ÞZ ¼ −1= logðjtZ;1=t0jÞ.
A summary of various correlation lengths versus χ from

both methods is shown in Fig. 4(b). We find that the largest
one in all sectors, ξð1ÞZ , is equal to the correlation length
found between a pair of visons; it is nondegenerate, in
agreement with the fact that visons carry no spin. In the
sector without flux, the leading correlation length ξð1Þ

perfectly agrees with the one extracted from placing a
spinon-antispinon pair. Moreover, since PT symmetry
maps spinons placed on reflected bonds to antispinons,
we expect the spinon correlations to have a degeneracy
structure 3 ⊕ 3̄, which is indeed consistent with the sixfold
degeneracy in ξð1Þ and further supported by checking the
U(1) quantum numbers of the t1 multiplet. The U(1)
quantum numbers further suggest that t2;3, which are also
sixfold degenerate, also carry SU(3) representation 3 ⊕ 3̄.
Thus, ξð1;2;3Þ all correspond to spinon correlation lengths.
This, in fact, is in correspondence with the three linearly
dispersing branches in the ES in the Q ¼ &1 charged
sectors, as we shall discuss later. Examining further, we
find ξð4Þ is identical to dimer correlation length, where
nondegeneracy agrees with dimer operator being SU(3)
rotation invariant. Depending on the parafermion type, the
ξparafermion have different values, both of which are smaller
than the spinon correlation length. Interestingly, all these
correlation lengths, except the spin correlation length, have
no sign of saturation with increasing χ, in agreement with
our expectation that the state is not in the Z3 quantum
double phase.
Degeneracy structure of topological chiral PEPS.—A

remarkable feature of our results is the correspondence
between the leading four eigenvalues of the transfer matrix
and the different sectors in the ES: The Q ¼ 0 sector has
one branch, while Q ¼ &1 each have three almost degen-
erate branches. This is in direct analogy to the unique
leading eigenvalue t0, which has trivial spin, and the
approximate threefold degeneracy of t1, t2, and t3, which
have perfectly degenerate spins 3 and 3̄, matching the
perfect degeneracy between Q ¼ &1. A similar correspon-
dence between (approximate) degeneracy of the (2D)
transfer operator and of the ES branches was observed
for chiral PEPSs with SUð2Þ1 counting, where it could
be explained as arising from the symmetry of the tensors,
and subsequently used to remove the degeneracy in the
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FIG. 4. Different bulk correlations in the optimized PEPS. From
the correlations versus distance (computed with χ ¼ 392) in (a),
we extract the correlation lengths using exponential fits, which are
shown in (b) (using the same symbols), along with those extracted
from the transfer matrix spectrum with or without flux inserted
(shown as lines), with g the degeneracy of the eigenvalue. Both
approaches agree for the spinon, vison, and dimer correlation
lengths, which show no saturation with increasing χ.
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FIG. 13. Maximum correlation lengths obtained from the transfer
matrix (in the absence of gauge flux) plotted versus �, normalized
by D2 = 225. The SU(4) quantum numbers associated to these
correlation lengths are indicated.

tions [30]. We believe such a property also holds for any
SU(N ) CSL, although it could not be established here for
N = 4 due to the large value of the bond dimension D.

V. CONCLUSION AND OUTLOOK

In this work, the previous pairing potential and SU(3) chiral
Heisenberg models on the square lattice have been generalized
to any SU(N ) fundamental irrep as physical degrees of free-
dom. The construction follows two steps: the first one con-
sists in building up the most general fully translational, rota-
tional and SU(N )-symmetric model (possibly breaking time-
reversal symmetry) whose interactions extend at most to 3-
sites within the square plaquettes. In a second step, one re-
stricts to a subset of this model family whose Hamiltonians
can be written solely as a sum of S3-symmetric operators de-
fined on all the triangles within the square plaquettes. By do-
ing so, we expect to micmic some of the physics of the trian-
gular lattice with 3-site chiral interactions, although keeping
the full C4v point group symmetry of the square lattice. This
procedure defines a sub-family of chiral Heisenberg models
spanned with two independent parameters (angles) that we
have explored in details.

Extensive ED computations bring overwhelming evidence
of extended regions of stability of SU(N ) CSL phases for all
N , up to N = 10. The Abelian SU(N)1 topological nature
of these phases have been clearly established from the many-
body low-energy spectra of periodic (torii) and open (discs)
clusters. When the system size Ns is commensurate with N

(so that no anyons is present in the GS) a N -fold GS degener-
acy is observed on small torii as expected. When the commen-
surability between Ns and N is such that a single quasi-hole
populates the GS, Ns quasi-degenerate GS are found, as ex-
pected. Finally, chiral many-body low-energy spectra on open
clusters following WZW CFT counting rules provide an even
more stringent test of the existence of the SU(N)1 Abelian
CSL.

iDMRG computations by enabling to access much larger
systems – typically infinitely-long broad cylinders – provide
most valuable and complementary results for N = 2, 3, 4.
Gutwiller-projected parton wavefunctions offer a guide to
construct iDMRG ansatze in each topological sectors. Due
to their SU(N ) global singlet nature, the iDMRG wavefunc-
tions carry larger entanglement than MES (they can be seen as
linear combinations of MES, except in the trivial sector) and,
hence, show ES with more structure whose complete under-
standing has been fully provided.

Following the prescriptions for N = 2 and N = 3, we
have constricted a familly of chiral SU(4)-symmetric PEPS
and, under optimization, a good variational PEPS ansatz is
obtained for the chiral SU(4) Heisenberg Hamiltonian. The
entanglement spectra obtained in the N = 4 topological sec-
tors of a infinitely-long cylinder reveal chiral modes. The mul-
tiplicity of the chiral modes is attributed to non-MES nature
of the singlet PEPS ansatz in all sectors, apart from the trivial
one. Finally, growing correlation lengths with environment di-
mension are consistent with the existence of ”long-range tails”
(of very small weight) in correlation functions (evidenced ex-
plicitely for N = 2 [30]). We speculate that these long-range
tails would fade away (i.e. their weights would continuously
vanish) for increasing D, providing a more and more faithful
representation of the GS. If correct, this implies that the no-go
theorem [67] does not practically prevent an accurate chiral
PEPS representation of the topological gapped CSL phase.

We note that the SU(N ) CSL is stable in some regime
where the 3-site interaction is purely imaginary (correspond-
ing to � = ⇡/2), mostly studied here. In fact, this case is
relevant in ultracold atom systems which can realize a SU(N )
fermionic Hubbard model [12]. In the presence of an arti-
ficial gauge field (providing complex amplitudes to the ef-
fective hoppings), at 1/N filling (one particle per site), the
large-U Mott insulating phase [14–16] can be approximately
described by our Hamiltonian, so that an Abelian SU(N )
phase on the square lattice may be seen experimentally if low-
enough temperatures could be reached. Experimental setups
of ultracold fermionic atoms at other fractional fillings like
k/N (k 2 N particles/per site) could be also of great interest
and be described by new types of SU(N ) spin Hamiltonians,
like the two-fermion SU(4) model [68] with additional chiral
interactions on triangular units, opening the way to observe
non-Abelian SU(2)k CSL.
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Kalmeyer-Laughlin (KL) chiral spin liquid (CSL) is a type of quantum spin liquid without time-reversal
symmetry, and it is considered as the parent state of an exotic type of superconductor—anyon
superconductor. Such an exotic state has been sought for more than twenty years; however, it remains
unclear whether it can exist in a realistic system where time-reversal symmetry is breaking (T breaking)
spontaneously. By using the density matrix renormalization group, we show that KL CSL exists in a
frustrated anisotropic kagome Heisenberg model, which has spontaneous T breaking. We find that our
model has two topological degenerate ground states, which exhibit nonvanishing scalar chirality order and
are protected by finite excitation gap. Furthermore, we identify this state as KL CSL by the characteristic
edge conformal field theory from the entanglement spectrum and the quasiparticles braiding statistics
extracted from the modular matrix. We also study how this CSL phase evolves as the system approaches the
nearest-neighbor kagome Heisenberg model.
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Topological order, an exotic state of matter that hosts
fractionalized quasiparticles with anyonic braiding sta-
tistics, is one of the core topics in modern condensed-
matter physics [1]. A quantum spin liquid (QSL) [2] is a
prominent example of topological order, which is thought
to exist in some frustrated magnets [3]. Among various
types of QSL [3–11], there is a class of time-reversal
symmetry violating QSL called chiral spin liquid (CSL)
[12–14]. A CSL shares some similar properties with the
fractional quantum Hall effect; however, the CSL
is special for both possessing topological order and
spontaneous time-reversal symmetry breaking.
The simplest CSL is the Kalmeyer-Laughlin (KL)

CSL (ν ¼ 1=2 Laughlin state) [12], in which spinons
obey semionic fractional statistics. It is theoretically
shown that if one dopes the KL CSL with holes [15], an
exotic type of superconductivity—anyon superconduc-
tivity [16]—will emerge. Inspired by the fundamental
interest and prospect of finding exotic superconductors,
researchers have shown much interest in the KL CSL
[17–29]. There was no experimental or theoretical
evidence supporting the existence of this state until
very recently. Several artificial models were found that
can host a KL state [26–28]. For example, one can
directly induce scalar chirality order by a 3-spin parity
and time-reversal-violating interaction [28] on a kagome
lattice to produce the KL state. However, it remains
elusive whether the KL state can exist in a system with
time-reversal symmetry, which may be more closely
related to real materials. It has been suggested that the

KL state may exist in magnetic frustrated systems
through spontaneously breaking time-reversal symmetry
[12,17], which are among the most difficult systems for
theorists to study exactly.
In this Letter, we show that the KL state is the ground

state of a frustrated anisotropic kagome Heisenberg model
(KHM) by using the density matrix renormalization group
(DMRG) [30], a numerical method which has been proven
powerful in solving quasi-one-dimensional frustrated
systems [31–34]. Compared with the previous systems
with multiple spin interactions [26–28], the system we
study here only involves two spin interactions, and the
Hamiltonian has time-reversal symmetry. By the technique
developed in Refs. [35,36], we find two topologically
degenerate ground states, both of which break time-reversal
symmetry spontaneously and exhibit a nonvanishing scalar
chirality order. We also get a finite energy excitation gap
and small correlation length, which support that we have a
gapped phase. Furthermore, the entanglement spectrum of
the ground states fits the edge conformal field theory of the
KL state. Last but not least, we calculate the modular
matrix using the two ground states [36–38], which gives
the braiding statistics [1] of emergent anyons that is the
same as what is expected for the KL state. To the best
of our knowledge, this is the first model that breaks time-
reversal symmetry spontaneously and hosts a KL CSL. We
also show how the system evolves as it approaches the
nearest-neighbor KHM.
Model Hamiltonian.—We study a frustrated anisotropic

KHM, whose Hamiltonian is
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Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria

(Received 16 April 2015; revised manuscript received 28 August 2015; published 14 September 2015)

We investigate the stability and the nature of the chiral spin liquids which were recently uncovered in extended
Heisenberg models on the kagome lattice. Using a Gutzwiller projected wave function approach, i.e., a parton
construction, we obtain large overlaps with ground states of these extended Heisenberg models. We further
suggest that the appearance of the chiral spin liquid in the time-reversal invariant case is linked to a classical
transition line between two magnetically ordered phases.
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I. INTRODUCTION

The quest for quantum spin liquids [1] is currently a
very active endeavour in condensed matter physics. This
elusive state of quantum matter comes in various forms
and is theoretically intensely studied, however was difficult
to pin down in computational studies of realistic quantum
spin Hamiltonians and hard to characterize unambiguously in
experiments on quantum magnets.

The S = 1/2 Heisenberg antiferromagnet on the kagome
lattice has emerged as one of the paradigmatic systems where
quantum spin liquid phases are expected. A plethora of
theoretical proposals have been put forward, ranging from
valence bond crystals [2–6], algebraic spin liquids [7–10], Z2
spin liquids [11–17], to chiral spin liquids [2,18–20]. Despite
tremendous theoretical and computational progress [21–33],
the true nature of the ground state and the low-lying excited
states of the nearest neighbor Heisenberg model on the kagome
lattice is still not settled completely.

Chiral spin liquids (CSLs) are a particular family of
spin liquids in which time-reversal symmetry (TRS) and
parity symmetry are (spontaneously or explicitly) broken
[34,35]. The scalar chirality ⟨S⃗i · (S⃗j × S⃗k)⟩ is nonzero and
uniform and manifests the breaking of time-reversal and
parity symmetries, analogous to the presence of an orbital
magnetic field. In a favorable situation the breaking of these
symmetries could conceivably lead to a spin analog of the
fractional quantum Hall effect, although other types of ground
states are possible as well [36,37]. Historically, Kalmeyer and
Laughlin envisioned such a scenario by considering lattice
versions of the bosonic ν = 1/2 Laughlin wave function as
candidate ground state wave functions for the triangular lattice
Heisenberg model [38,39].

In two recent papers [40,41], two forms of chiral spin
liquids have been discovered, which are stabilized away from
the nearest neighbor Heisenberg model upon adding further
neighbor Heisenberg interactions or scalar chirality terms to
the Hamiltonian. Both studies numerically demonstrate the
required ground state degeneracy and characterize the underly-
ing topological order by computing the modular matrices. For
different models CSLs have also been found in Refs. [42–44].

This breakthrough lays the foundation for further inves-
tigations of chiral spin liquids. Several pressing, important

*alexander.wietek@uibk.ac.at

questions arise: (i) Are the two chiral spin liquid phases
distinct or are they related? (ii) Is there a simple physical
(lattice-based) picture or a variational wave function that
describes the chiral spin liquid? (iii) What is the “raison
d’être” of these chiral spin liquids, i.e., why are the chiral
spin liquids stabilized for the two reported Hamiltonians? Can
we come up with some guiding principle which will allow one
to stabilize CSLs on other lattices? In the following we will
address each of these questions. In short, we find that the two
chiral spin liquids are indeed connected. We then demonstrate
that appropriate Gutzwiller projected parton wave functions
can have large overlaps with the numerically exact ground
states of the studied microscopic models. And finally we show
that one location of the chiral spin liquids in parameter space
coincides largely with a transition line in the phase diagram
of the corresponding classical model. The classical transition
line lies between coplanar q = 0 magnetic order and a chiral,
noncoplanar magnetically ordered phase (cuboc1 [18]).

II. MODEL

We will consider the following Hamiltonian which unifies
the two models studied in Refs. [40,41]:

H = J1

∑

⟨i,j⟩
S⃗i · S⃗j + J2

∑

⟨⟨i,j⟩⟩
S⃗i · S⃗j

+ J3

∑

⟨⟨⟨i,j⟩⟩⟩
S⃗i · S⃗j + Jχ

∑

i,j,k∈△,▽
S⃗i · (S⃗j × S⃗k). (1)

This model includes first, second, and third nearest neighbor
Heisenberg interactions with coupling constants J1,J2,J3 as
sketched in Fig. 1. The third nearest neighbor Heisenberg
interactions are only considered across the hexagons. While
these interactions preserve TRS and all the discrete lattice
symmetries of the kagome lattice, the additional three-spin
scalar chirality interactions on the triangles parametrized by Jχ

break explicitly TRS and spatial parity. Note that Hamiltonian
(1) features SU(2) invariance in spin space. For simplicity we
will set J1 = 1 in the following.

In Ref. [41] a CSL phase was found for 0.05π ! arctan
| Jχ

J1
| ! π/2 and J2 = J3 = 0. In this case, TRS is explicitly

broken. Interestingly a twofold degenerate ground state was
found, which furthermore exhibits the expected modular
data and entanglement spectrum for a topologically ordered
chiral ν = 1/2 Laughlin statelike phase. On the other hand,
in Ref. [40] a chiral spin liquid with spontaneous TRS

1098-0121/2015/92(12)/125122(6) 125122-1 ©2015 American Physical Society

Topological CSL can also be found in the absence of explicit T-breaking
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An SU(4) chiral spin liquid and quantized dipole Hall effect in moiré bilayers
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Motivated by the recent proposal of realizing an SU(4) Hubbard model on triangular moiré super-
lattices, we present a DMRG study of an SU(4) spin model obtained in the limit of large repulsion
for integer filling ⌫T = 1, 3. We retain terms in the t/U expansion up to O( t3

U2 ) order, that generates
nearest-neighbor exchange J , as well as an additional three-site ring exchange term, K, which is ab-
sent in the SU(2) S=1/2 case. For filling ⌫T = 3, when increasing the three-site ring exchange term
K ⇠ t3

U2 , we identify three different phases: a spin-symmetric crystal, an SU(4)1 chiral spin liquid
(CSL) and a decoupled one dimensional chain (DC) phase. The CSL phase exists at intermediate
coupling: U/t 2 [11.3, 22.9]. The sign of K is crucial to stabilizing the CSL and the DC phase. For
filling ⌫T = 1 with the opposite sign of K, the spin-symmetric crystal phase survives to very large K.
We propose to search for the CSL phase in moiré bilayers. For example, in twisted AB stacked tran-
sition metal dichalcogenide (TMD) bilayers, the SU(4) spin is formed by layer pseudospin combined
with the real spin (locked to valley). The layer pseudospin carries an electric dipole moment in z

direction, thus the CSL is really a dipole-spin liquid, with quantum fluctuations in both the electric
moment and magnetic moment . The CSL phase spontaneously breaks the time reversal symmetry
and shows a quantum anomalous Hall effect in spin transport and dipole transport. Smoking gun
evidence for the CSL could be obtained through measurement of the quantized dipole Hall effect in
counter-flow transport.

Introduction Quantum spin liquids have attracted
much attention in the past several decades1–6 in part be-
cause they host fractional excitations and may also give
rise to unconventional superconductors upon doping2,7.
Quantum spin liquids (QSL) have been shown to be the
ground state of certain exactly solvable models8. There
is also numerical evidence for QSLs in realistic lattice
models, such as the Heisenberg spin 1/2 model on vari-
ous frustrated lattices9–23. The chiral spin liquid (CSL)
is one of the earliest QSL proposed to be relevant for the
high Tc cuprates shortly after their discovery, as an ana-
log of the celebrated fractional quantum Hall effect3,24
Theoretically, chiral spin liquids have been found to be
the ground state for various spin 1/2 lattice models on
the kagome and triangular lattices19–23,25–32 and also in
SU(N) model with N > 233–38. However, so far there
is no well-established experimental realization of a QSL
in a real material. One important reason is that it is
very hard to probe the electrically neutral excitations of
a QSL. Although CSLs are expected to demonstrate a
quantized thermal Hall transport, measurement of ther-
mal conductance faces complications including contribu-
tions from phonons. Recently, a quantized thermal Hall
measurement in a Kitaev material39 was reported, which
however awaits confirmation40.

Clearly, in addition to proposing new platforms, the
search for QSLs will depend heavily on our ability to
probe their subtle signatures. Recently it was proposed
that smoking gun evidence of chiral spin liquid (CSL)
and spinon Fermi surface QSLs can be obtained in moiré
bilayers37, a generalization of the quantum Hall bilayer41.
Similar to the quantum Hall bilayer, the layer degree of

freedom can be viewed as a pseudospin when the inter-
layer distance is much smaller than the superlattice con-
stant. More importantly, the transport of this pseu-
dospin can be measured through counter-flow probe, a
technique already frequently applied in quantum Hall bi-
layer experiments42,43.

In this work we will describe a model of interacting
electrons that can be realized in a moiré bilayer. Us-
ing the density matrix renormalization group (DMRG)
method we show that the ground state of the model
at certain integer fillings is a chiral spin liquid. The
CSL we find breaks the time reversal symmetry spon-
taneously, which is confirmed in our calculation through
a long range chirality order. The CSL identified at this
work could be realized in moiré bilayer, where the ratio
between kinetic energy and electron-electron interactions
t/U can be potentially tuned through changing twist an-
gle or screening. Besides, the moiré bilayer makes it pos-
sible to electrically detect this CSL through an anoma-
lous Hall effect in the counterflow transport. The un-
precedented control and novel probes available in double
moiré layers could provide unambiguous smoking gun ev-
idence of this quantum spin liquid and also opens a new
platform to study interesting superconducting or metallic
phases upon doping the chiral spin liquid.

Let us now describe our model and proposed realiza-
tion in more detail. Consider a moiré bilayer system
(with two moiré lattices) with the two superlattices from
the two layers aligned. This can be achieved, for exam-
ple, by twisting two sheets of transition metal dichalco-
genide (TMD) to an angle close to 180o, i.e. twisted AB-
stacked TMD homo-bilayer44. By constructing Wannier
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Quantum Spin Liquid with Emergent Chiral Order in the Triangular-lattice Hubbard Model
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The interplay between spin frustration and charge fluctuation gives rise to an exotic quantum state in the
intermediate-interaction regime of the half-filled triangular-lattice Hubbard (TLU) model, while the nature of
the state is under debate. Using the density matrix renormalization group with SU(2)spin⌦U(1)charge symmetries
implemented, we study the TLU model defined on the long cylinder geometry with circumference W = 4.
A gapped quantum spin liquid, with on-site interaction 9 . U/t . 10.75, is identified between the metallic
and the antiferromagnetic Mott insulating phases. In particular, we find that this spin liquid develops a robust
long-range spin scalar-chiral correlation as the system length L increases, which unambiguously unveils the
spontaneous time-reversal symmetry breaking. In addition, the large degeneracy of the entanglement spectrum
supports symmetry fractionalization and spinon edge modes in the obtained ground state. The possible origin of
chiral order in this intermediate spin liquid and its relation to the rotonlike excitations have also been discussed.

Introduction.— Since Anderson’s seminal work of the res-
onating valence bond (RVB) state in quantum antiferromag-
nets [1, 2], searching for spin liquid states and the conse-
quent superconductivity after doping, constitutes an exciting
topic in condensed matter physics [3]. While it has been
widely accepted that spin frustration plays the key role for
the emergence of spin liquid in Mott insulators [4–6], it has
also been noticed that the strong charge fluctuations near the
Mott transition may add an additional active ingredient to
the system [7, 8]. Although stable spin liquid states in the
half-filled bipartite-lattice Hubbard models have not been es-
tablished [9], the frustrated triangular-lattice Hubbard (TLU)
model, harboring stronger spin and charge fluctuations, has
raised great interests in the possible intermediate spin liquid
state [10–15].

Meanwhile, the experimental progresses on the triangular-
lattice organic-salt compounds -(BEDT-TTF)2Cu2(CN)3
[16–19] and EtMe3Sb[Pd(dmit)2]2 [20, 21] also shed light
on the spin-liquid states near the Mott transition. The ab-
sence of spin ordering down to the lowest experimental tem-
perature and the linear-T dependence of low-temperature spe-
cific heat suggest a possible gapless spin liquid in these
compounds [18, 21]. However, recent thermal conductivity
measurements indicate the absence of mobile gapless exci-
tations [22, 23]. The experimental identification of the spin
liquid and the pursuit of its nature have further stimulated in-
tensive theoretical studies.

To include the charge fluctuation e↵ects, one can consider
the higher-order ring-exchange coupling in the e↵ective spin
model [7, 24, 25] or simulate the Hubbard model directly. In-
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deed, numerical simulations on the ring-exchange spin model
have identified a gapless spin liquid state with the emergent
spinon Fermi surface [7, 25, 26], which can partly explain the
experimental findings. On the other hand, large-scale den-
sity matrix renormalization group (DMRG) simulations on the
TLU itself have uncovered a spin liquid phase near the Mott
transition [14, 15]. However, the two di↵erent studies lead
to drastically distinct conclusions on the nature of this spin
liquid. While the finite-DMRG calculation [14] suggests a
Dirac-like gapless spin liquid preserving time reversal sym-
metry (TRS), the more extensive infinite-DMRG study [15]
finds a gapped chiral spin liquid (CSL) with finite chiral or-
der [27–29]. Moreover, the spinon Fermi-surface state is not
found in these DMRG simulations, in contrast to the previous
understanding based on the e↵ective spin model.

In this work, to further determine the precise nature of the
spin liquid phase in the TLU, we perform DMRG calculation
on finite-size cylinders for fixed width W = 4 where we grad-
ually increase the system length up to L = 64. This goes far
beyond the previous finite-size DMRG [14] and thus signif-
icantly reduces finite-size e↵ects. We exploit the SU(2)spin⌦

U(1)charge symmetries in our DMRG simulation, which permit
us to reliably reach large-scale systems. We identify an in-
termediate non-magnetic phase with very short single-particle
and spin correlation lengths on the order of one lattice spac-
ing for (Uc1'9) . U/t . (Uc2'10.75). On short cylinders we
find exponentially decaying chiral correlation in agreement
with Ref. [14]. But the result changes fundamentally with in-
creasing system length, showing very robust long-range chi-
ral correlation characterizing spontaneous TRS breaking. We
also find a large degeneracy in the entanglement spectrum,
which agrees with symmetry fractionalization and the exis-
tence of edge spinon in the obtained ground state. Therefore,
we conclude that the low-energy physics of the TLU model at
the intermediate-U is governed by a gapped CSL. Our results
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Chiral Spin Liquid Phase of the Triangular Lattice Hubbard Model:
A Density Matrix Renormalization Group Study
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Motivated by experimental studies that have found signatures of a quantum spin liquid phase in
organic crystals whose structure is well described by the two-dimensional triangular lattice, we study the
Hubbard model on this lattice at half filling using the infinite-system density matrix renormalization
group (iDMRG) method. On infinite cylinders with finite circumference, we identify an intermediate phase
between observed metallic behavior at low interaction strength and Mott insulating spin-ordered behavior
at strong interactions. Chiral ordering from spontaneous breaking of time-reversal symmetry, a fractionally
quantized spin Hall response, and characteristic level statistics in the entanglement spectrum in the
intermediate phase provide strong evidence for the existence of a chiral spin liquid in the full two-
dimensional limit of the model.

DOI: 10.1103/PhysRevX.10.021042 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

Quantum spin liquids [1–3] have been the subject of
considerable interest since the concept was first introduced
in 1973 by Anderson, who suggested that geometrical
frustration on the triangular lattice could lead to a resonat-
ing valence bond ground state of the antiferromagnetic
Heisenberg model [4]. Although it is now known that the
Heisenberg model on the triangular lattice in fact exhibits a
three-sublattice 120° order in the ground state [5,6],
antiferromagnetic models on the triangular lattice remain
some of the most promising systems to realize a phase in
which spins remain disordered even down to zero temper-
ature. The triangular lattice has seemed particularly prom-
ising since the work of Shimizu et al., who found that the
organic crystal κ-ðBEDT-TTFÞ2Cu2ðCNÞ3, which is well
described by independent 2D layers with nearly isotropic
triangular lattice structure, shows no sign of spin ordering
even down to tens of mK, indicative of a possible spin
liquid ground state [7]. Subsequent studies of this crystal
have found that the heat capacity is T-linear at low
temperature [8], suggesting the presence of low-lying

gapless excitations, but also that the thermal conductivity
has no such T-linear contribution [9], indicating to the
contrary that there is a gap in the energy spectrum. Another
triangular lattice material, EtMe3Sb½PdðdmitÞ2$2, was until
recently believed to show T-linear behavior in both the heat
capacity and thermal conductivity [10–13], but new experi-
ments show that it too may exhibit gapped thermal trans-
port [14–16]. The true nature of the spin liquid phases in
these and other triangular lattice materials [17–19] such as
YbMgGaO4 [20,21] remains unclear.
Substantial theoretical effort has gone into answering

this question, primarily in studying the antiferromagnetic
Heisenberg model with additional terms, such as second-
neighbor interactions and ring exchanges, that frustrate the
expected three-sublattice order [22–34]. The Heisenberg
model and its extensions are derived from a perturbative
expansion of a model of itinerant electrons, the Hubbard
model [35]; by studying the Hubbard model directly, we
can capture additional effects that may be important in
actual materials, at the cost of increased computational
effort—compared with spin-1=2 models, the size of the
local Hilbert space is doubled, so the system sizes that can
be accessed by full-Hilbert-space numerical methods are
only about half as large.
Although there is now a wide variety of theoretical

evidence pointing to the existence of a nonmagnetic
insulating phase of the triangular lattice Hubbard model
[22,36–47], there is still little agreement on the precise
nature of the phase. Some candidates, suggested by results
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Moore-Read state corresponds to spin-1 lattice model
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Exact parent Hamiltonians of bosonic and fermionic Moore–Read
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Abstract
We introduce a family of strongly-correlated spinwave functions on arbitrary spin-1 2 and spin-1
lattices in one and two dimensions. These states are lattice analogues ofMoore–Read states of particles
atfilling fraction q1 , which are non-Abelian fractional quantumHall states in 2D.One parameter
enables us to perform an interpolation between the continuum limit, where the states become
continuumMoore–Read states of bosons (odd q) and fermions (even q), and the lattice limit.We
shownumerical evidence that the topological entanglement entropy stays the same along the
interpolation for some of the states we introduce in 2D,which suggests that the topological properties
of the lattice states are the same as in the continuum,while the 1D states are critical states.We then
derive exact parentHamiltonians for these states on lattices of arbitrary size. By deforming these
parentHamiltonians, we construct localHamiltonians that stabilize some of the states we introduce in
1D and in 2D.

1. Introduction

The fractional quantumHall (FQH) effect is one of themost fascinating phenomena in strongly correlated
electronic systems, inwhich the electrons of a two-dimensional electron gas subject to a strongmagnetic field
form an incompressible quantum liquid supporting fractionally charged quasiparticle excitations. The
understanding of this paradigmof topological order was in large partmade possible by the discovery of analytical
wave functions, such as the Laughlinʼs wave function [1], describing the electrons in a partially filled Landau
level.

Since its discovery in 1987 [2], one FQH state has attracted a lot of attention: Unlike the states atfilling
factors with odd denominators, the 5 2ν = FQH state with electrons occupying the second Landau level cannot
be explained by a hierarchical construction based on the Laughlinʼs states [3]. This opens the door to the
possibility of electron pairing and emergence of non-Abelian quasiparticle excitations. Indeed the leading
candidate for the description of the 5 2ν = FQH state is theMoore–Read ‘Pfaffian’ state at filling1 2 [4–6],
describing thewave function of the electrons in the second Landau level.Moore–Read states have awave
function defined by [4]

w w w w( , , ) ( ) Pf
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wherewi are the positions of the particles on the complex plane, q1 is the filling factor and themagnetic length
has been set to one. They support fractionally charged non-Abelian anyons possessingMajorana fermion states
at zero energy [7–10]. These non-Abelian anyons have attracted a lot of attention due to their applications to
topological quantum computation [11, 12].
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(algebraic) interactions. For example, SU(2)-invariant spin-
1/2 and spin-1 Hamiltonians with long-range three site in-
teractions [like Si · (Sj × Sk )] have been found to realize the
bosonic (Abelian) Laughlin and (non-Abelian) Moore-Read
FQH phases, respectively [28,30]. Using such a construction,
it was also shown that the spin-1/2 KL spin liquid exhibits the
expected chiral edge states [31]. Furthermore, it was argued
that local chiral antiferromagnetic Heisenberg models based
on some truncation and fine-tuning of the parent Hamilto-
nians also host the same topological Abelian [32,33] and
non-Abelian [30] phases. Similar to the non-Abelian Kitaev’s
phase on the hexagonal lattice [22,34], the spin-1 non-Abelian
CSL is expected to host Ising anyons in the bulk. However, the
proposed spin-1 local chiral HAFM is quite far from the initial
parent Hamiltonian and its detailed investigation is called for.

Besides KL and CFT constructions, topological chiral spin
liquids can also be designed using the framework of projected
entangled pair states (PEPS) [35–39], a class of 2D tensor
networks [40]. Generally, topological order can be easily
implemented in PEPS from local gauge symmetries [41]. The
simplest chiral PEPS is based on a chiral extension [42,43]
of the spin-1/2 resonating valence bond (RVB) state [44–46],
originally defined by Anderson as an equal-weight superposi-
tion of valence bond configurations [47]. Such a simple PEPS
turned out to be critical although, surprisingly, exhibiting
well-defined chiral edge modes consistent with the SU(2)1
Wess-Zumino-Witten (WZW) CFT of central charge c = 1. A
more general and systematic construction of PEPS chiral (and
nonchiral [48]) spin liquids has been made recently possible,
thanks to a general classification of SU(2) and translation-
ally invariant PEPS according to their symmetry properties
under point group operations [49]. Combining this classifi-
cation with a corner transfer matrix renormalization group
(CTMRG) algorithm [50], one of us investigated the physics
of the simple spin-1/2 chiral HAFM mentioned above [51].
Topological order was identified from sharply defined chiral
edge modes but, surprisingly, numerical results suggested
critical correlations in the bulk, as for the simpler chiral RVB
analog. Whether this feature is a generic property of chiral
PEPS [52] is not clear so far. Investigation of new chiral
HAFM using PEPS methods is therefore necessary.

Here, we shall consider the spin-1 chiral HAFM defined on
the two-dimensional square lattice, as introduced in Ref. [30]:

H = J1

∑

⟨i,j⟩
Si · Sj + J2

∑

⟨⟨k,l⟩⟩
Sk · Sl

+K1

∑

⟨i,j⟩
(Si · Sj )2 + K2

∑

⟨⟨k,l⟩⟩
(Sk · Sl )2

+Kc

∑

!
[Si · (Sj × Sk ) + Sj · (Sk × Sm)

+ Si · (Sj × Sm) + Si · (Sk × Sm)], (1)

where the first and third sums are taken over nearest-neighbor
(NN) bonds and the second and fourth sums run over next-
nearest-neighbor (NNN) bonds. The chiral term of amplitude
Kc is defined on every plaquette of four sites (i, j, k,m)
ordered in (let say) anticlockwise direction. The parameters
entering (1) have been obtained by a careful fine tuning, opti-
mizing the overlap of the exact GS on small finite-size clusters

with the lattice CFT correlator describing the non-Abelian
Moore-Read FQH state (on the lattice) [30]. We will here
adopt these fine-tuned parameters (retaining only 3 digits),
J1 = 1, J2 = 0.623, K1 = −0.176, K2 = 0.323, and Kc =
0.464. Note that the related spin-1/2 chiral HAFM introduced
in Ref. [28] and studied in Ref. [51] contains only the J1 and
J2 bilinear terms and the Kc chiral term since the biquadratic
interactions K1 and K2 become irrelevant for spin-1/2.

In order to explore the physics of the above model, we
combine different numerical techniques such as Lanczos exact
diagonalizations (ED), density matrix renormalization group
(DMRG) [53] and tensor network methods [35–39], all re-
viewed in Sec. II. In particular, we shall focus on spin-1
SU(2)-symmetric PEPS to describe the chiral spin liquid
phase. More precisely, we construct (disconnected) families of
PEPS breaking time-reversal (T) and parity (P) symmetries—
without breaking PT—providing a faithful representation of
chiral spin liquids directly in the thermodynamic limit. In con-
trast to usual PEPS calculations, which approach the ground
state of the model via imaginary time evolution (and could
get trapped in local minima), we use a more elegant and
secure framework based on a variational optimization scheme
(combined with a CTMRG algorithm), taking advantage of
the reduced number of variational parameters in the fully
symmetric Ansatz.

Using such state-of-the-art numerical techniques, we shall
address a number of important issues. First, in Sec. III, we
shall investigate the property of the bulk system, i.e., whether
it exhibits short-range correlations like its “parent” FQH
Moore-Read state or whether it is critical such as the spin-1/2
chiral PEPS analog. Second, in Sec. IV, we shall consider
the edge spectrum, seeking to characterize topological chiral
order, and looking for evidence of its non-Abelian charac-
ter. Finally, we shall discuss the results in the last section,
and make some conjecture. Experimental setups will also be
briefly discussed.

II. SHORT SUMMARY OF NUMERICAL METHODS

A. Lanczos exact diagonalizations

In Refs. [30], the parameters of the spin-1 model have been
obtained using exact diagonalization of small lattices (up to
4 × 4) on the plane or on the cylinder, fine tuning the overlap
of the exact GS with the targeted non-Abelian chiral state.
Here we diagonalize, using Lanczos ED methods, 4 × 4 and√

20 ×
√

20 square tori—exhibiting the full translation and
(at least) C4 point group symmetries of the square lattice—to
investigate the low-energy spectrum of the model. In contrast
to the planar geometry, in the case of a torus geometry, the
GS is expected to become degenerate (threefold degenerate
for the Moore-Read state) in a gapped topological phase and
in the limit of very large sizes. Hence fundamental differences
from the previous computations are expected, even on small
clusters.

B. Density matrix renormalization group

A standard approach for matrix product state (MPS)
simulations of 2D systems consists in studying cylinders
(with N = L × W sites, L > W ) with periodic (respectively,
open) boundary conditions in the short (respectively, long)
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Abelian and non-Abelian topological phases exhibiting protected chiral edge modes are ubiquitous in the
realm of the fractional quantum Hall (FQH) effect. Here, we investigate a spin-1 Hamiltonian on the square
lattice which could, potentially, host the spin liquid analog of the (bosonic) non-Abelian Moore-Read FQH
state, as suggested by exact diagonalization of small clusters. Using families of fully SU(2)-spin symmetric
and translationally invariant chiral projected entangled pair states (PEPS), variational energy optimization is
performed using infinite-PEPS methods, providing good agreement with density matrix renormalization group
(DMRG) results. A careful analysis of the bulk spin-spin and dimer-dimer correlation functions in the optimized
spin liquid suggests that they exhibit long-range “gossamer tails”. From the investigation of the entanglement
spectrum, we observe sharply defined chiral edge modes following the prediction of the SU(2)2 Wess-Zumino-
Witten theory and exhibiting a conformal field theory (CFT) central charge c = 3/2, as expected for a Moore-
Read chiral spin liquid. Using the PEPS bulk-edge correspondence, we argue the “weak” criticality of the bulk
is in fact a finite-D artifact of the chiral PEPS, which quickly becomes (practically) irrelevant as the PEPS bond
dimension D is increased. We conclude that the PEPS formalism offers an unbiased and efficient method to
investigate non-Abelian chiral spin liquids in quantum antiferromagnets.
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I. INTRODUCTION AND MODEL

The two-dimensional (2D) electron gas experiencing long-
range Coulomb repulsion and subject to a strong magnetic
field—hence breaking time-reversal (TR) symmetry—can ex-
hibit plethora of topological fractional quantum Hall (FQH)
phases at simple rational filling fractions ν [1]. FQH states
are characterized by topological order—the ground state (GS)
degeneracy depends on the system topology [2,3]—and by
chiral edge modes localized at the system boundaries (if any)
and propagating in one direction only [4,5]. Such edge modes
are gapless and described by known (1 + 1)-dimensional
conformal field theories (CFT). The bulk excitations of the
FQH states are fractionalized anyons [6] which could have
either Abelian statistics, as in the Laughlin state [7], or non-
Abelian statistics [8,9], as in the Moore-Read (MR) state [10].
Non-Abelian SU(2)k anyons (for k > 1) are described by
well-known deformations of SU(2), in which only the first
k + 1 angular momenta j = 0, 1

2 , 1, . . . , k
2 of SU(2) occur.

The MR state harbors j = 1
2 Ising anyons (realized for k =

2), descendants of vortices in (two-dimensional) p + ip su-
perconductors [11,12], and exhibiting simple fusion rules,
1
2 × 1

2 → 0 + 1.
Fractional Chern insulators (FCI) [13,14] offer the most

direct implementation of the FQH physics on the lattice, still
requiring a (gauge) magnetic field to generate electronic bands
with nontrivial topological properties (i.e., nonzero Chern
numbers), and strong (local) interactions. In the case of Mott
insulators, such as those realizing quantum magnets, the ap-
propriate setting to realize FQH physics is less clear. It is well
known, nevertheless, since the pioneering work of Kalmeyer

and Laughlin (KL) [15], that simple FQH wavefunctions
(such as the Abelian bosonic ν = 1/2 Laughlin state) can be
“localized” on the sites of a 2D lattice in order to realize chiral
(singlet) spin liquids (CSL) [16], spin analogs of the parent
FQH states. However, it is largely unknown whether and
under which conditions simple local Hamiltonians describing
(frustrated) quantum antiferromagnets can host such spin
liquids, in particular the non-Abelian ones. Recent numerical
investigations of a spin-1/2 chiral Heisenberg antiferromag-
netic model (HAFM) on the kagomé lattice [17,18] suggest
that a scalar chiral interaction on all triangular units can
indeed stabilize a spin liquid of the ν = 1/2 KL type. Similar
Abelian CSL were also uncovered in spin-1/2 chiral anti-
ferromagnets on the triangular lattice [19,20]. Interestingly,
the CSL can also emerge in spin-1/2 time-reversal invariant
frustrated magnets [18,21]. Kitaev’s anisotropic honeycomb
model in the presence of an external magnetic field [22]
is, so far, the only indisputable example of a local (lattice)
Hamiltonian hosting a non-Abelian CSL, but local spin-1
Hamiltonians on triangular and kagome lattices have also been
proposed [23,24], as well as coupled-wire constructions of
SU(2)k CSL [25]. A definite identification of local SU(2)-
invariant models realizing non-Abelian CSL is therefore
needed and the goal of this study.

Further progress in the field of chiral SL have been
launched by the constructions of parent quantum spin Hamil-
tonians [26–29] designed to host various spin analogs of the
FQH liquids. For example, by rewriting KL-like states as
correlators of CFT primary fields, a systematic construction of
parent Hamiltonians can be obtained. It turns out that, gener-
ically, the obtained parent Hamiltonians show long-range

2469-9950/2018/98(18)/184409(14) 184409-1 ©2018 American Physical Society

PHYSICAL REVIEW B 98, 184409 (2018)

Non-Abelian chiral spin liquid in a quantum antiferromagnet revealed by an iPEPS study

Ji-Yao Chen,1 Laurens Vanderstraeten,2 Sylvain Capponi,1 and Didier Poilblanc1,3

1Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
2Department of Physics and Astronomy, University of Ghent, Krijgslaan 281, 9000 Gent, Belgium

3Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

(Received 19 July 2018; published 8 November 2018)

Abelian and non-Abelian topological phases exhibiting protected chiral edge modes are ubiquitous in the
realm of the fractional quantum Hall (FQH) effect. Here, we investigate a spin-1 Hamiltonian on the square
lattice which could, potentially, host the spin liquid analog of the (bosonic) non-Abelian Moore-Read FQH
state, as suggested by exact diagonalization of small clusters. Using families of fully SU(2)-spin symmetric
and translationally invariant chiral projected entangled pair states (PEPS), variational energy optimization is
performed using infinite-PEPS methods, providing good agreement with density matrix renormalization group
(DMRG) results. A careful analysis of the bulk spin-spin and dimer-dimer correlation functions in the optimized
spin liquid suggests that they exhibit long-range “gossamer tails”. From the investigation of the entanglement
spectrum, we observe sharply defined chiral edge modes following the prediction of the SU(2)2 Wess-Zumino-
Witten theory and exhibiting a conformal field theory (CFT) central charge c = 3/2, as expected for a Moore-
Read chiral spin liquid. Using the PEPS bulk-edge correspondence, we argue the “weak” criticality of the bulk
is in fact a finite-D artifact of the chiral PEPS, which quickly becomes (practically) irrelevant as the PEPS bond
dimension D is increased. We conclude that the PEPS formalism offers an unbiased and efficient method to
investigate non-Abelian chiral spin liquids in quantum antiferromagnets.

DOI: 10.1103/PhysRevB.98.184409

I. INTRODUCTION AND MODEL

The two-dimensional (2D) electron gas experiencing long-
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field—hence breaking time-reversal (TR) symmetry—can ex-
hibit plethora of topological fractional quantum Hall (FQH)
phases at simple rational filling fractions ν [1]. FQH states
are characterized by topological order—the ground state (GS)
degeneracy depends on the system topology [2,3]—and by
chiral edge modes localized at the system boundaries (if any)
and propagating in one direction only [4,5]. Such edge modes
are gapless and described by known (1 + 1)-dimensional
conformal field theories (CFT). The bulk excitations of the
FQH states are fractionalized anyons [6] which could have
either Abelian statistics, as in the Laughlin state [7], or non-
Abelian statistics [8,9], as in the Moore-Read (MR) state [10].
Non-Abelian SU(2)k anyons (for k > 1) are described by
well-known deformations of SU(2), in which only the first
k + 1 angular momenta j = 0, 1

2 , 1, . . . , k
2 of SU(2) occur.

The MR state harbors j = 1
2 Ising anyons (realized for k =

2), descendants of vortices in (two-dimensional) p + ip su-
perconductors [11,12], and exhibiting simple fusion rules,
1
2 × 1

2 → 0 + 1.
Fractional Chern insulators (FCI) [13,14] offer the most

direct implementation of the FQH physics on the lattice, still
requiring a (gauge) magnetic field to generate electronic bands
with nontrivial topological properties (i.e., nonzero Chern
numbers), and strong (local) interactions. In the case of Mott
insulators, such as those realizing quantum magnets, the ap-
propriate setting to realize FQH physics is less clear. It is well
known, nevertheless, since the pioneering work of Kalmeyer

and Laughlin (KL) [15], that simple FQH wavefunctions
(such as the Abelian bosonic ν = 1/2 Laughlin state) can be
“localized” on the sites of a 2D lattice in order to realize chiral
(singlet) spin liquids (CSL) [16], spin analogs of the parent
FQH states. However, it is largely unknown whether and
under which conditions simple local Hamiltonians describing
(frustrated) quantum antiferromagnets can host such spin
liquids, in particular the non-Abelian ones. Recent numerical
investigations of a spin-1/2 chiral Heisenberg antiferromag-
netic model (HAFM) on the kagomé lattice [17,18] suggest
that a scalar chiral interaction on all triangular units can
indeed stabilize a spin liquid of the ν = 1/2 KL type. Similar
Abelian CSL were also uncovered in spin-1/2 chiral anti-
ferromagnets on the triangular lattice [19,20]. Interestingly,
the CSL can also emerge in spin-1/2 time-reversal invariant
frustrated magnets [18,21]. Kitaev’s anisotropic honeycomb
model in the presence of an external magnetic field [22]
is, so far, the only indisputable example of a local (lattice)
Hamiltonian hosting a non-Abelian CSL, but local spin-1
Hamiltonians on triangular and kagome lattices have also been
proposed [23,24], as well as coupled-wire constructions of
SU(2)k CSL [25]. A definite identification of local SU(2)-
invariant models realizing non-Abelian CSL is therefore
needed and the goal of this study.

Further progress in the field of chiral SL have been
launched by the constructions of parent quantum spin Hamil-
tonians [26–29] designed to host various spin analogs of the
FQH liquids. For example, by rewriting KL-like states as
correlators of CFT primary fields, a systematic construction of
parent Hamiltonians can be obtained. It turns out that, gener-
ically, the obtained parent Hamiltonians show long-range
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FIG. 5. Maximal and next four subleading correlation lengths
ξ

(n)
MPS, n = 1, . . . , 5, in the D = 6 B1 + iB2 PEPS (optimized up to

χ = 108) vs χ in log-log scale, and sorted according to the degener-
acy g of the corresponding TM eigenvalue |tn|. The dashed (straight)
line corresponds to a simple power-law divergence, ξ = Aχα and
α = 0.46. For comparison, spin and dimer correlation lengths are
also shown.

the data well, suggesting that the maximal correlation length
diverges as ξ

(1)
MPS ∝ χα when χ → ∞, with an exponent

α < 1 (slow divergence). Hence, surprisingly, the bulk seems
critical, unlike the FQHS analog. This is reminiscent of the
spin-1/2 PEPS chiral spin liquid, which also seems to be
critical (see comparison in Appendix A).

To get more insights on the nature of the correlations
in the PEPS chiral SL, we have investigated the subleading
correlation lengths ξ

(n)
MPS, n > 1. Since the A1 + iA2 and B1 +

iB2 D = 6 chiral PEPS have very similar properties, we shall
focus, from now on, on the B1 + iB2 D = 6 PEPS. Results
for the largest five correlation lengths are plotted in Fig. 5 on
a log-log scale, showing a rather linear behavior over almost a
decade. This confirms the (slow) power law increase ξ ∝ χα ,
α ≃ 0.46, also for the subleading correlation lengths.

2. From the real-space correlation functions

In order to identify the type of physical operators, these
correlation lengths may be associated to, we have computed
the spin-spin, (longitudinal) dimer-dimer, and chiral-chiral
correlations versus distance (see Appendix B for details) and
extracted the corresponding correlation lengths ξs, ξd, and ξch
from the long-distance behavior as illustrated in Fig. 6. We
find that ξs and ξd are very close to the largest ξMPS with
degeneracy g = 3 and g = 1, respectively, consistent with
triplet spin and singlet dimer operators. In contrast to ξs and
ξd, the chiral correlation length grows very slowly suggesting
that the chiral correlation remains short-range. Interestingly,
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FIG. 6. Spin-spin, dimer-dimer, and chiral-chiral correlations (in
absolute value) vs distance in the D = 6, B1 + iB2, chiral PEPS.
Dashed lines are simple exponential fits of the short-range decay of
the spin-spin and dimer-dimer correlations. The correlation lengths
are extracted from the exponential decay at large distances.

the maximal correlation length ξ
(1)
MPS is of degeneracy g = 4

(which would naively correspond to a spin-3/2 operator)
and hence cannot trivially be associated to a simple local
operator acting on a group of physical sites but, perhaps, to
chiral modes (see Sec. IV C) counterpropagating along the
two chains of T tensors of the long (TMPS)⊗Nh ladder, Nh ≫ 1.

Let us now examine in more details the form and the mag-
nitude of the spin-spin and dimer-dimer correlation functions
at all length scales. First, at short distance, we observe a rapid
exponential fall-off characteristic of the lattice Moore-Read
spin liquid (as for the spin-1/2 chiral PEPS, an Ansatz for
the lattice KL state). The length scale associated to this short-
range behavior turned out to be very short, around ξshort ∼ 0.6,
as seen in Fig. 6. More generally, one expects a sum of
exponential contributions with a distribution of length scales.
In other words, the spin-spin (or dimer-dimer) correlation
function versus distance can be written as a discrete sum,

C(d ) =
∑

ξshort!ξ!ξs

w(ξ )exp(−d/ξ ), (6)

where the short-distance decay is characterized by
w(ξshort ) ≃ 1 while, at long distance, the slower decay
exp(−d/ξs) takes over. Typically, we find that ξs ≫ ξshort
and w(ξs) ≪ 1. In the limit χ → ∞, one expects that the
spectrum of the transfer matrix becomes dense, so that one can
use a continuous integral over all eigenvalues for computing
C(d ), namely C(d ) =

∫
ξ
dξn(ξ )w(ξ )exp(− d

ξ
), where n(ξ ) is

the density of state. Figure 5 suggests that the density of eigen-
values is constant in logarithmic scale so that n(ξ )dξ ∼ dξ

ξ
. In

order to extract the possible functional form of the correlation
function, it is now necessary to get the behavior of the weight
function w(ξ ). To do so, we have plotted w(ξs) versus ξs and
w(ξd ) versus ξd in Figs. 7(a) and 7(b), using semi-log and
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FIG. 10. Entanglement spectrum of the B1 + iB2 D = 6 chiral
PEPS for Nv = 6 (see text) vs edge momentum K , computed for
χ = 216. Different symbols correspond to different values of |Sz|,
showing that the spectrum is composed of exact SU(2) multiplets
with integer (a) and half-integer spins (b). Dashed lines correspond
to the low-energy chiral CFT modes.

total spin S quantum number.2 The same spectrum can then
be plotted for K ∈ [0,π [, mod π , labeling now the levels ac-
cording to their spin S, as shown in Fig. 11. In this way, in each
topological sector, the two branches merge into a unique chiral
branch composed of groups of quasidegenerate exact SU(2)
multiplets, labeled as ⊕Smax

Smin
nS (S), nS ∈ N. Examining care-

fully each group of multiplets, for increasing momentum K =
n 2π

Nv
, we find that their content agrees exactly—at least up to

the fourth level—the prediction of the SU(2)2 WZW confor-
mal field theory of central charge c = 3/2, characterized by
a bosonic mode combined with an Ising anyon (or “Majo-
rana fermions”). A comparison with the ES of the spin-1/2
CSL is shown in Appendix C, showing a very distinct SU(2)1
CFT counting.

Note that the third j = 1 topological tower cannot be
derived straightforwardly since, it probably requires the inser-
tion of a string of Z2 “vison” operators in the cylinder direc-
tion (see Ref. [42] for the case of the simple spin-1/2 CSL).
The representation of the vison operator in the dimension-χ
fixed-point basis is not known.

D. Uniform MPS calculation

We can also characterize the entanglement spectrum using
uniform MPS techniques. Similarly as before (see Fig. 9), we
take the fixed point (leading eigenvector) of the PEPS transfer
matrix and interpret it as a matrix-product operator ρ (with
bond dimension χ ) representing the boundary Hamiltonian
as ρ = exp(−Hb ). Here we work in the thermodynamic limit

2Note that the ES eigenvalues in the odd sector of the half-integer
spin multiplets are all exactly twofold degenerate as for the spin-1/2
chiral spin liquid [42,43] due to an interplay between SU(2) and
space-group symmetries [70].

FIG. 11. Close-up of the low (quasi-)energy entanglement spec-
trum of the D = 6 chiral PEPS for Nv = 6 vs K [modπ ] (see text).
Comparison of the spectra for χ = 144 [(a) and (b)] and χ = 216
[(c) and (d)] is shown showing an almost convergence with χ . The
expected j = 0 and j = 1/2 chiral modes of the WZW SU(2)2

theory appear at the bottom of the Z2-even [(a) and (c)] and Z2-odd
[(b) and (d)] sectors of the ES, respectively. The SU(2)-multiplet
content of each group of levels is indicated, in agreement with the
CFT prediction (except for the blue boxes where a few levels are
missing).

directly, such that the leading eigenvector of this MPO (cor-
responding to the ground state of the boundary Hamiltonian
Hb) can, again, be approximated as a uniform matrix product
state. In particular, we can plot the scaling of the bipartite
entanglement entropy of this uniform MPS as a function of
its correlation length, which is known [66] to be related to
the central charge as S ∝ c

6 ln(ξ ). As shown in Fig. 12(a), this
provides clear evidence that the boundary theory is described
by a CFT with central charge c = 3/2. In addition, we can
compute the spectrum of Hb by applying the quasiparticle
excitation Ansatz [67,68]. In Fig. 12(b), we have plotted the
entanglement spectrum, showing the signature of a chiral
spectrum. The presence of a very steep “left-moving” branch
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TABLE I. Numbers of independent SU(2)-symmetric spin-1 ten-
sors for the different virtual spaces we consider, D ! 6. The third
(fourth) column gives the number of A1/B1 (A2/B2) tensors and the
last column contains the total numbers DA / DB of tensors entering
Eq. (3)/Eq. (4). ∗ means the states of the PEPS family are all real
(i.e., nonchiral).

V D N1/M1 N2/M2 DA/DB

1
2 ⊕ 0 3 2/2 0/1 2∗/3∗

1
2 ⊕ 1

2 4 6/9 4/3 10/12
1 ⊕ 0 4 3/5 3/1 6/6
1
2 ⊕ 1

2 ⊕ 0 5 12/13 5/6 17/19
1 ⊕ 1

2 5 5/5 3/4 8/9
1 ⊕ 1

2 ⊕ 0 6 13/13 8/9 21/22

Our chiral PEPS also exhibit a very important gauge sym-
metry encoded at the level of the local A and B tensors.
More precisely, the number of spins 1/2 (or half-integer
spins, in general) present in the set of virtual degrees of
freedom attached to each site is always even. The Z2 gauge
symmetry linked to this parity conservation is at the origin of
the topological order sustained by the PEPS [41].

2. CTMRG algorithm

Once PEPS families have been constructed, the second
step is to optimize the Hamiltonian energy with respect to
the tensor parameters, for each class separately. The reduced
number of parameters (obtained thanks to the implementation
of the full state symmetries) allows to perform a “brute force”
optimization (in contrast to different variational optimization
schemes [56,57]). For each set of PEPS parameters, one then
needs to compute the corresponding variational energy, in or-
der to “feed” an efficient minimization routine, i.e., one based
on a conjugate gradient (CG) method. The variational energy
computation is done directly in the thermodynamic limit using
the CTMRG algorithm [50]. After constructing the double-
layer tensor E of Fig. 1(b), one obtains, using a real-space RG
method, the environment of Fig. 1(c) surrounding the active
2 × 2 region and involving the CTM C and T tensors shown
in Figs. 1(d) and 1(e). The identity matrix or the Hamiltonian
is then inserted in the active region (between the two layers)
to compute the energy per site. The gradient of energy density
is then computed by a finite difference method, which is
applicable thanks to the small number of parameters. With the
energy and its gradient, the CG method can now be used to
find the best parameters. Note that, for our chiral PEPS, all C
and T tensors in Fig. 1(c) are identical by symmetry (and the
C matrix remains Hermitian after each CTMRG step), which
simplifies significantly the CTMRG procedure.

3. Uniform MPS method

An alternative method for computing effective environ-
ments for PEPS in the thermodynamic limit relies on uniform
matrix product states (MPS). A transfer matrix is constructed
by repeating the double-layer tensor E [Fig. 1(b)] on an infi-
nite linear chain, and we find the transfer-matrix fixed point
as a uniform MPS using variational optimization [58]. After

FIG. 2. Lanczos ED of the spin-1 chiral HAFM on a 4 × 4
(16-site) (a) and

√
20 ×

√
20 (20-site) (b) tori. The various columns

correspond to different IRREPs of the space group and different
symbols are used to distinguish eigenstates with different (total)
spin quantum numbers. Momenta corresponding to the respective
Brillouin zones are shown on the right. The GS energy has been
subtracted for clarity.

repeating this procedure in different lattice directions, we find
effective environments and we can compute observables from
the PEPS. Additionally, the use of channel environments [59]
allows to compute correlation functions directly in momentum
space.

III. RESULTS ON BULK PROPERTIES

A. Low-energy spectra on small tori

Let us first investigate the spin-1 chiral HAFM on small
16-site and 20-site clusters with periodic boundary conditions
and full (or partial) point group symmetry, enabling to a
priori block-diagonalize the Hamiltonian matrix according to
the irreducible representations (IRREPs) of the cluster space
group. We also use the total Sz quantum number, enabling to
reconstruct the exact SU(2) multiplet structure of the energy
spectrum.

The low-energy spectra, split in the various IRREPs, are
shown in Figs. 2(a) and 2(b). For the Moore-Read state,
we expect to observe three quasidegenerate eigenstates on
a torus. In particular, their momentum quantum numbers
can be obtained from a simple counting rules [60–62] using
partitions (2, 0, 2, 0, . . .), (0, 2, 0, 2, . . .), and (1, 1, 1, 1, . . .),
from which we predict that these three states should be at
the ! point [K = (0, 0)] for 16- and 20-site square clusters.
However, no clear energy gap separating a group of quaside-
generate singlets from the rest of the spectrum—the signature
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• Simple SU(N) spin models hosting topological chiral spin liquids


• Important to combine different numerical techniques to validate all 
properties


• Characterization of edge states and entanglement properties


• Also non-Abelian CSL with SU(2)2, SU(2)3, SU(3)2, etc… edges 
physics


Ising anyons Fibonacci anyons allows universal 
computation

Conclusion and outlook
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