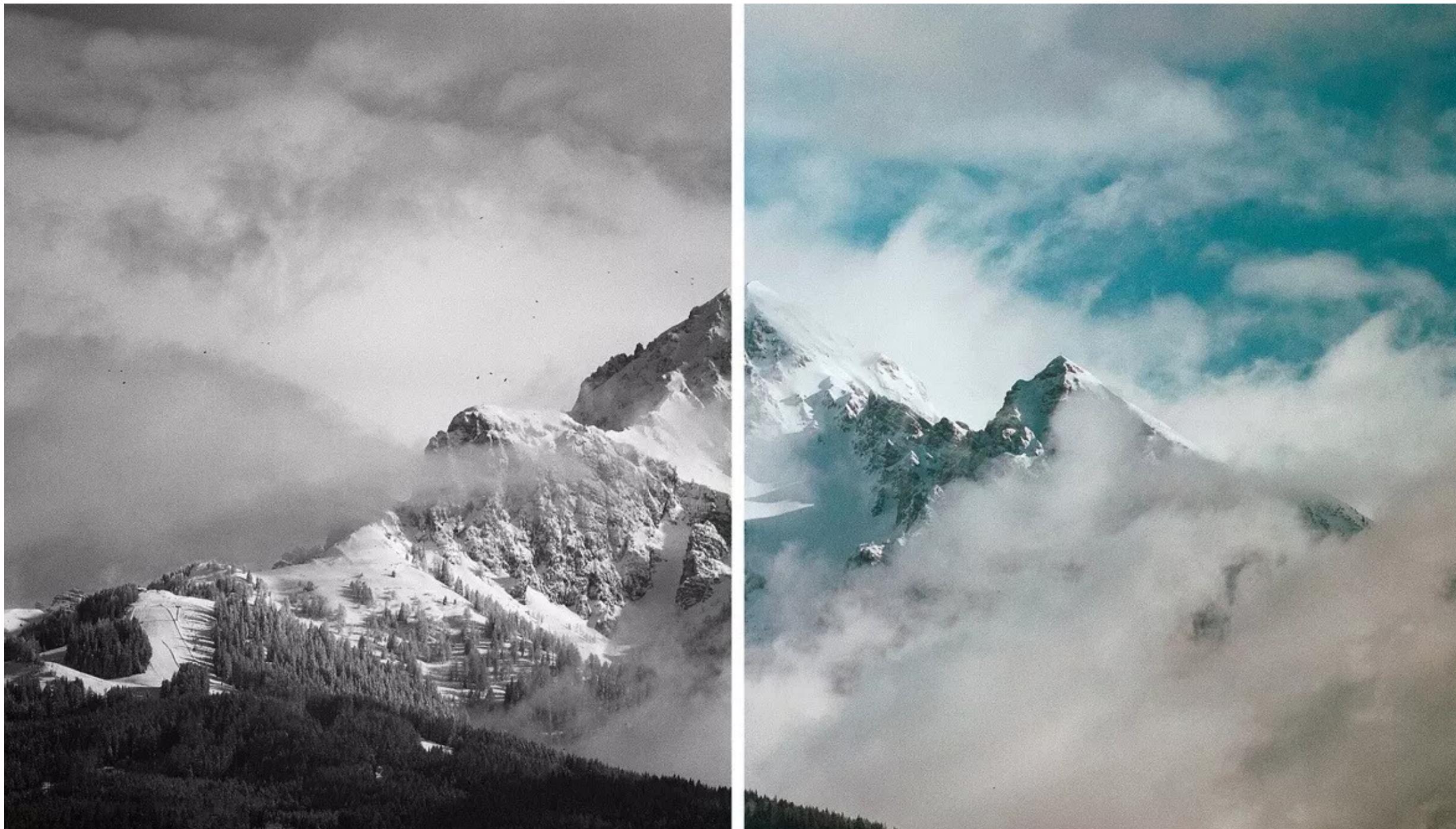


Spin liquid phases in $SU(N)$ antiferromagnets

Sylvain Capponi, Toulouse university



UNIVERSITÉ
DE TOULOUSE

Collaborators

LPT, Toulouse:

D. Poilblanc, M. Mambrini, F. Alet

PhD/postdocs: O. Gauthé, Ji-Yao Chen, P. Patil

LPTM, Cergy-Pontoise:

Philippe Lecheminant, D. Papoulier

PhD/postdocs: V. Bois, P. Fromholz, M. Moliner, H. Nonne

YITP, Kyoto: **Keisuke Totsuka**

Also: G. Roux ([Saclay](#)), A. Läuchli ([PSI/EPFL](#)), A. Tsvelik ([Brookhaven](#)), A. Weichselbaum ([Brookhaven](#)), L. Herviou, P. Nataf ([Grenoble](#)), J.-W. Li, H.-H. Tu, J. von Delft ([Munich](#)), L. Devos ([Ghent/New York](#)), L. Vanderstraeten ([Bruxelles](#))...

SU(N): platform for spin liquids

A. Auerbach

Read, Sachdev '89 ...

Enlarging $SU(2)$ into $SU(N)$ allows to destabilize (semi)classical order (1d, 2d)

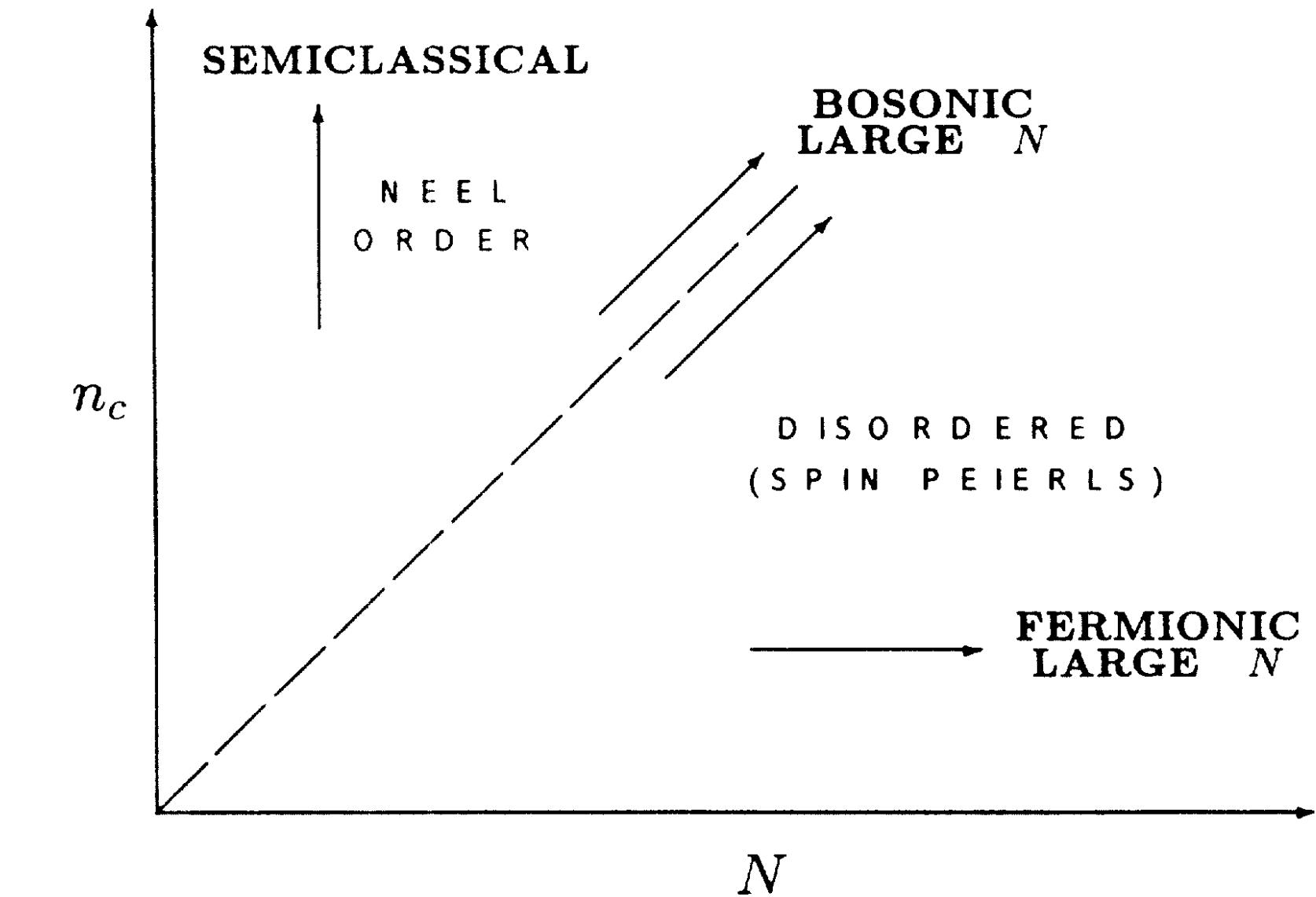


Illustration by Richard Codor

alkaline-earth cold atoms

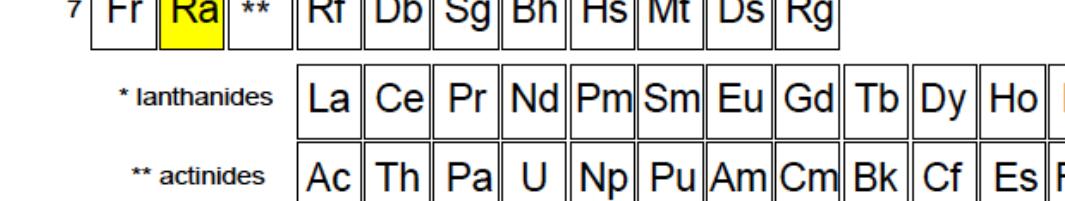


... an introduction

what's so nice ??

- ✓ decoupling of “nuclear spin I ” from electronic states
→ I_z -independent scattering length
- ✓ $SU(N)$ ($N=2I+1$) symmetry (almost perfect...) *Gorshkov et al '10*
- ✓ ^{171}Yb ($I=1/2$, $SU(2)$), ^{173}Yb ($I=5/2$, $SU(6)$), ^{87}Sr ($I=9/2$, $SU(10)$),.... *Takahashi group '10-'12*
DeSalvo et al. '10
- ✓ tunability: interactions, lattice,
- ✓ Pomeranchuk cooling *Zi Cai et al '13*

Fermionic isotopes



	IA	IIA	IIIB	IVB	VB	VIB	VIIIB	VIIIB	IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA		
1	H															He		
2	Li	Be									B	C	N	O	F	Ne		
3	Na	Mg									Al	Si	P	S	Cl	Ar		
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
6	Cs	Ba	*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
7	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
* Lanthanides		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
** actinides		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

IOP Publishing

Rep. Prog. Phys. **77** (2014) 124401 (20pp)

Reports on Progress in Physics

doi:10.1088/0034-4885/77/12/124401

Report on Progress

Ultracold Fermi gases with emergent $SU(N)$ symmetry

Degenerate Fermi Gas of ^{87}Sr

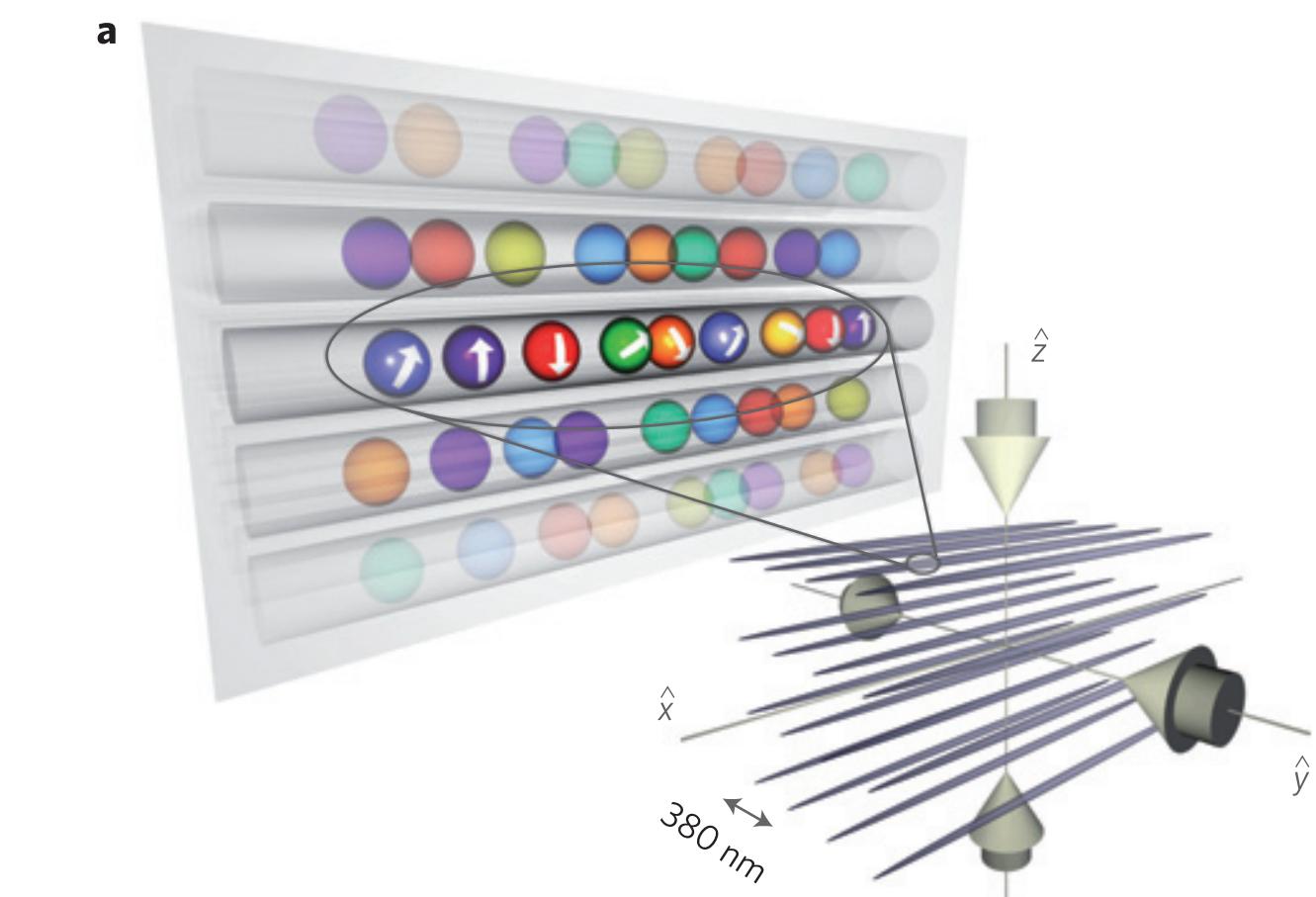
B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian

PRL 105, 190401 (2010)

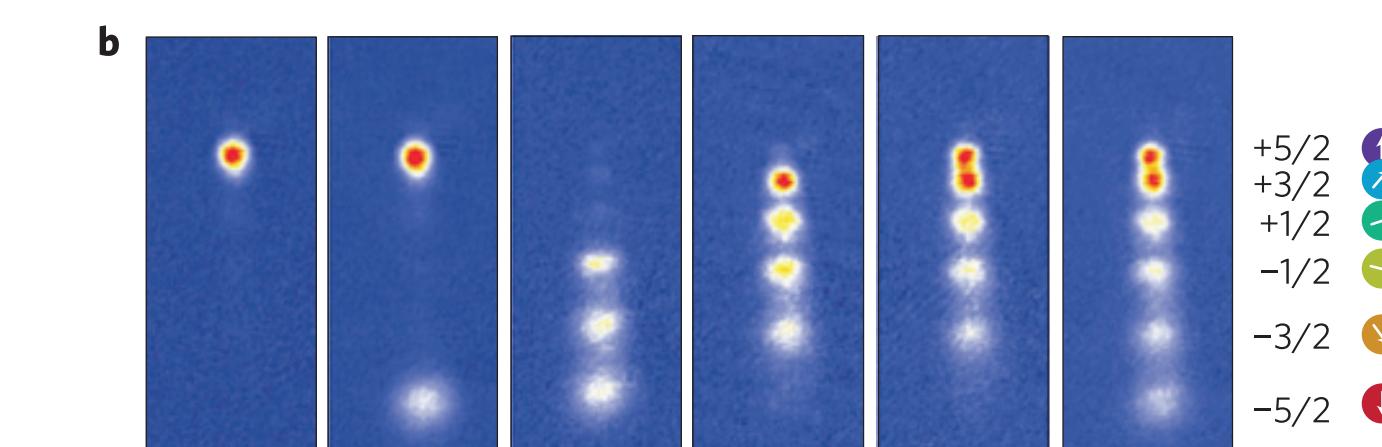
Selected for a *Viewpoint* in *Physics*
PHYSICAL REVIEW LETTERSweek ending
5 NOVEMBER 2010Realization of a $\text{SU}(2) \times \text{SU}(6)$ System of Fermions in a Cold Atomic GasShintaro Taie,^{1,*} Yosuke Takasu,¹ Seiji Sugawa,¹ Rekishi Yamazaki,^{1,2} Takuya Tsujimoto,¹ Ryo Murakami,¹ and Yoshiro Takahashi^{1,2}

LETTERS

PUBLISHED ONLINE: 2 FEBRUARY 2014 | DOI: 10.1038/NPHYS2878

nature
physics

A one-dimensional liquid of fermions with tunable spin

Guido Pagano^{1,2}, Marco Mancini^{1,3}, Giacomo Cappellini¹, Pietro Lombardi^{1,3}, Florian Schäfer¹, Hui Hu⁴, Xia-Ji Liu⁴, Jacopo Catani^{1,5}, Carlo Sias^{1,5}, Massimo Inguscio^{1,3,5} and Leonardo Fallani^{1,3,5*}

Exotic phases: topological order ?

✓ **Long-range entanglement**

- genuine topological order allowed in (2+1)D, (3+1)D
- robust against any perturbation
- Ex: fractional quantum Hall effect, toric code...

See e.g. X.-G. Wen's book

✓ **Short-range entanglement**

- without symmetry, all states are connected to a trivial product state
- with protecting symmetries, various topological phases

Symmetry-protected topological (SPT) order

Topological phases in 1d

✓ **Only SPT is possible**

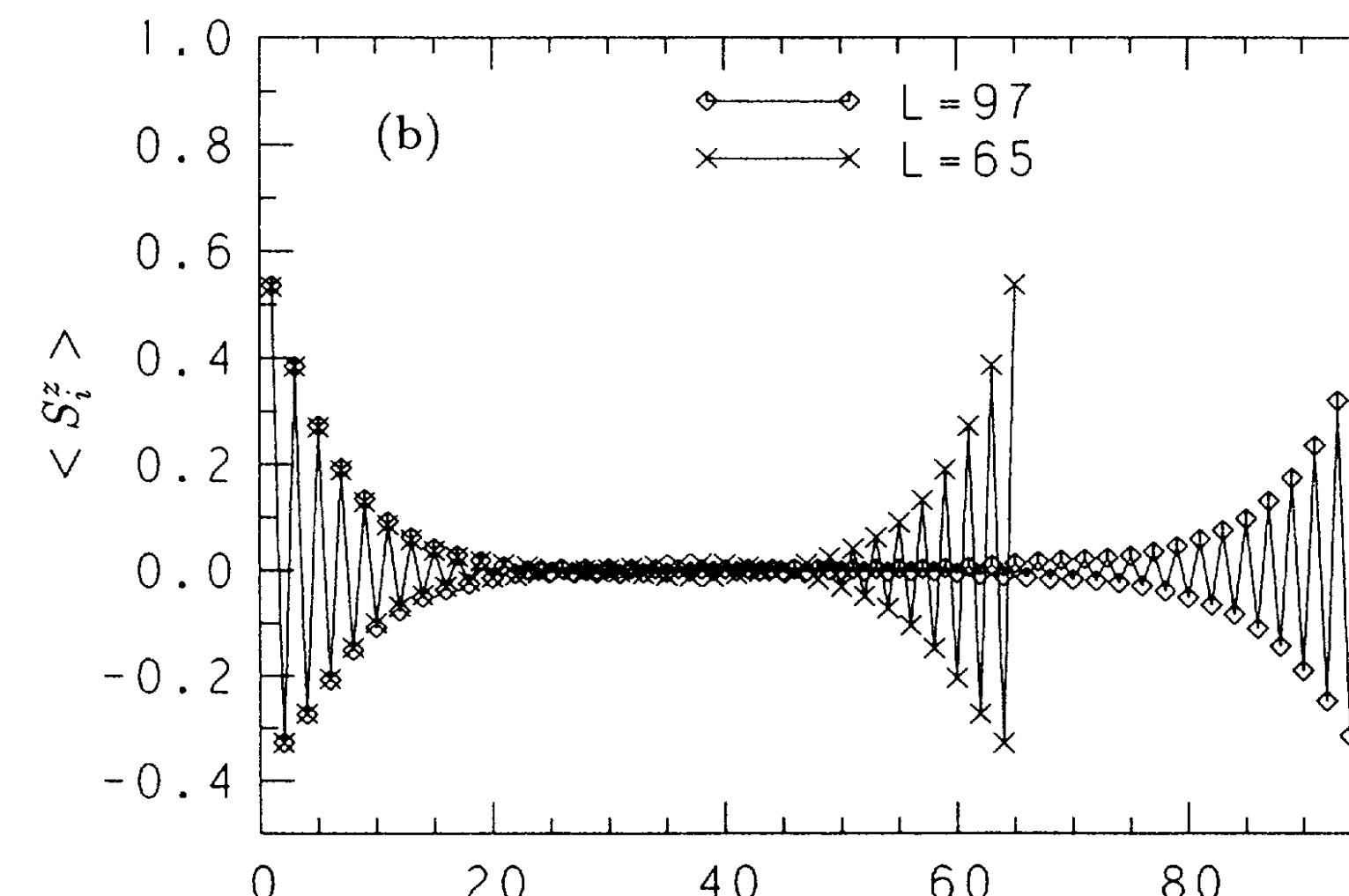
Verstraete et al '05; Chen, Gu & Wen '10

- protecting symmetry is mandatory
- only short-range entanglement and no topological degeneracy
- Different SPT phases cannot be connected adiabatically
- SPT phases are featureless in the bulk but exhibit various edge states

→ **Classification**

Chen et al. '11 Duivenvoorden and Quella '13

- Example: $S=1$ Heisenberg chain and its famous Haldane phase



Pollmann, Berg, Turner, Oshikawa '12

Emergent $S=1/2$ edge states can be measured !

QMC: Miyashita & Yamamoto '93

1D SPT phase: the Haldane phase

Spin-1 AF Heisenberg spin chain: **Haldane phase** $\Delta \simeq 0.4104327J$

AKLT wave function exact ground state:

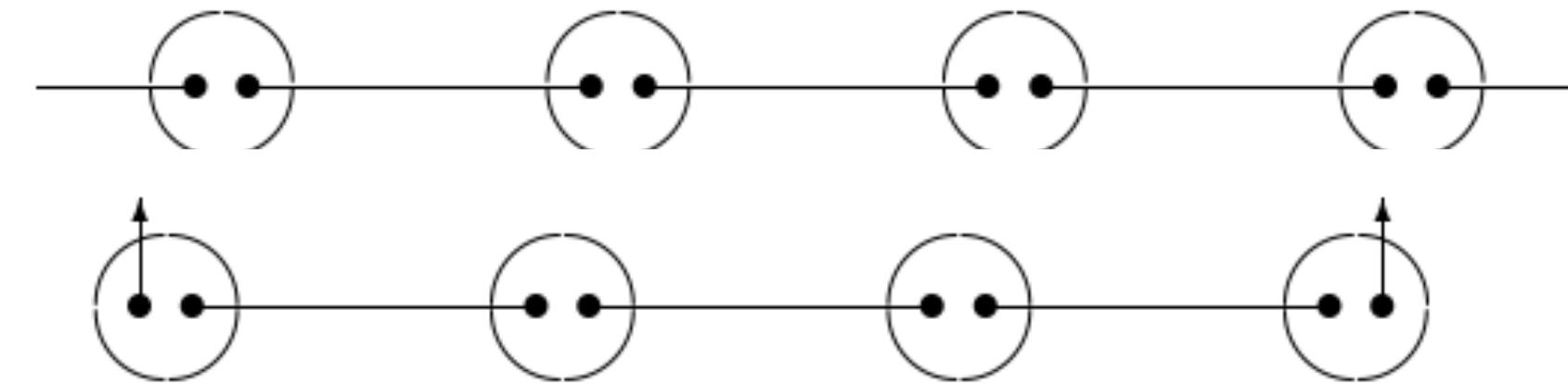
$$\mathcal{H}_{AKLT} = J \sum_i \left[\vec{S}_i \cdot \vec{S}_{i+1} + \frac{1}{3} (\vec{S}_i \cdot \vec{S}_{i+1})^2 \right]$$

Affleck, Kennedy, Lieb, Tasaki '88

Edge states (spin-1/2):

Non degenerate GS with PBC

4-fold degenerate GS with OBC



SPT phase protected by T, parity, pi-rotations

Pollmann et al. '12

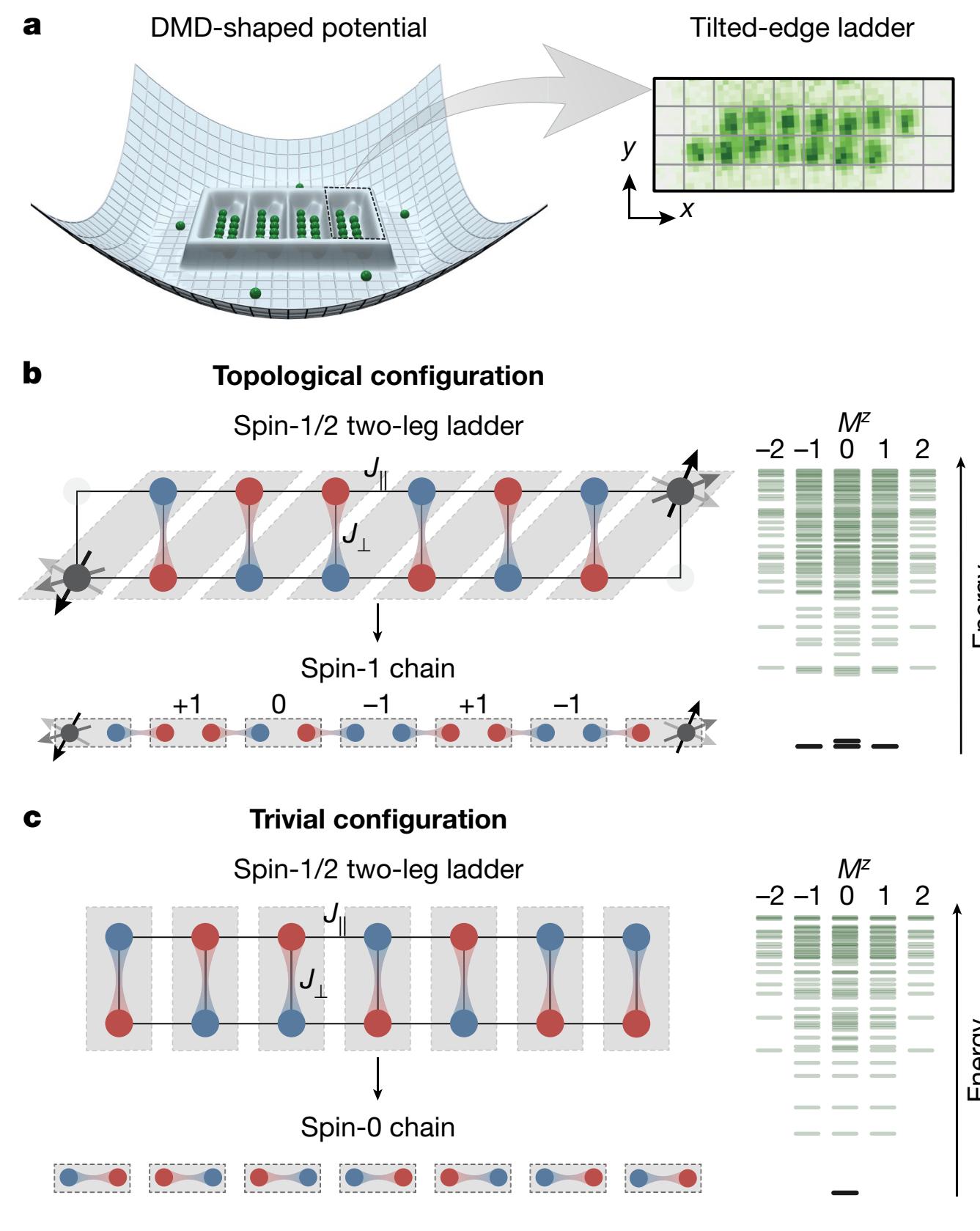
Haldane phase S odd: SPT phase

Haldane phase S even: **not** a SPT phase

Quantum simulator: Fermi-Hubbard SU(2) ladder

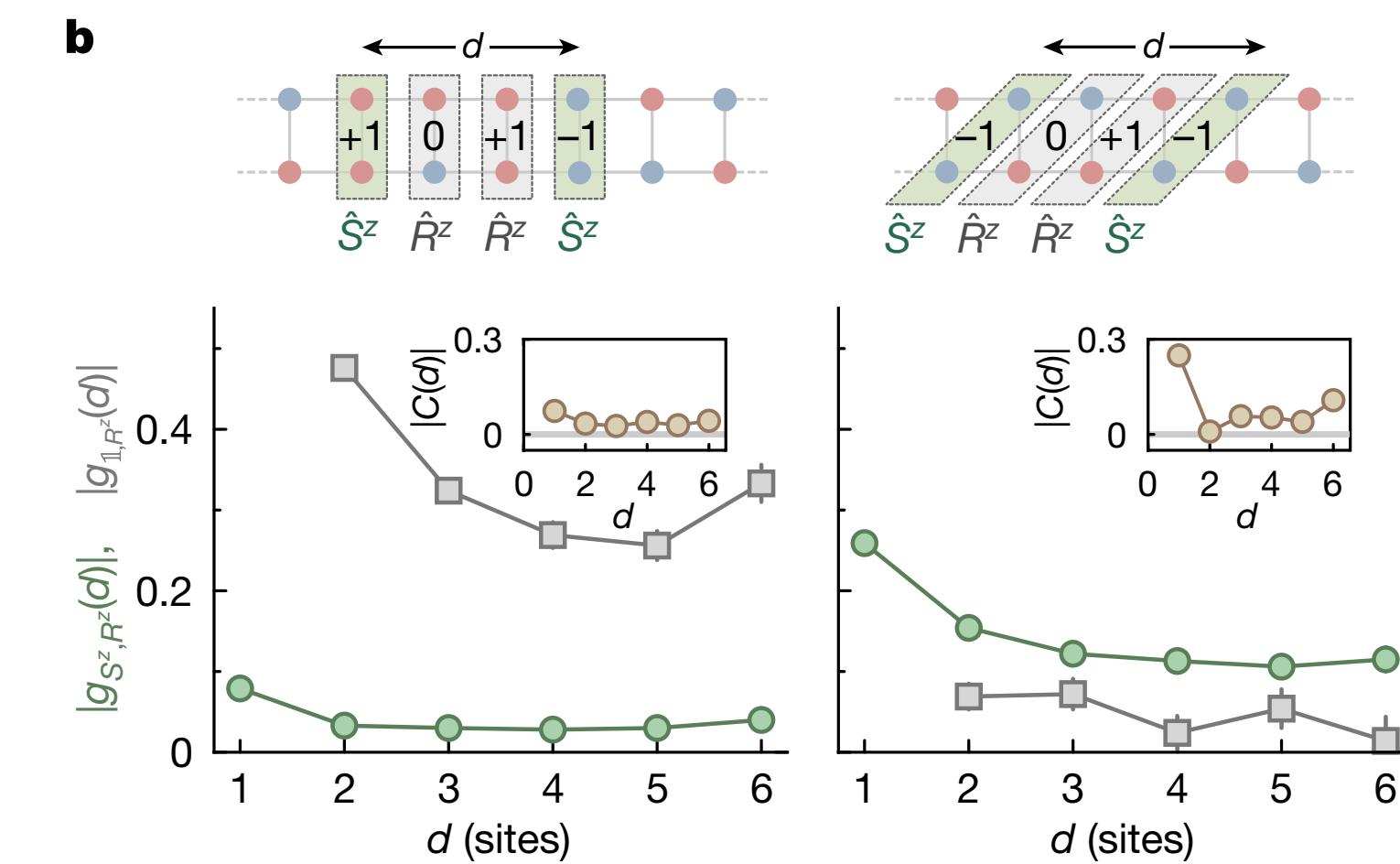
Group of I. Bloch, *Nature* (2022)

Measurement of « hidden » order



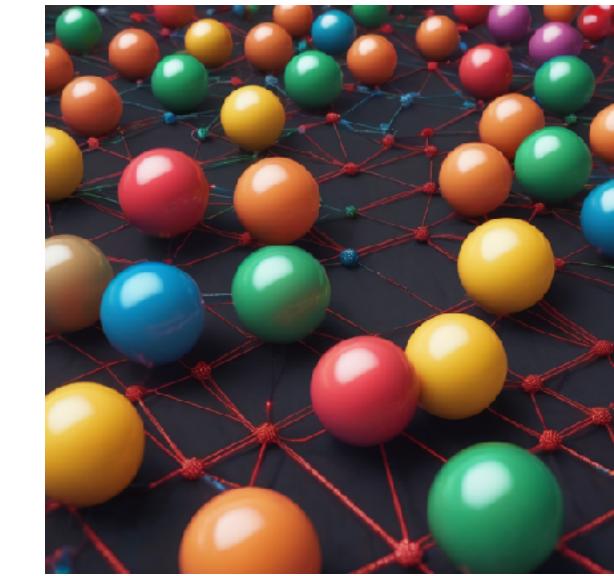
String order parameter

$$\langle S_i^z \left(\prod_{k=i+1}^{j-1} S_k^z \right) S_j^z \rangle$$



Note that the edge state is a physical spin

Outline



- 1) How can we realize **SU(N) SPT phases** in 1d ?
- 2) How can we realize **chiral SU(N) spin liquids** in 2d ?

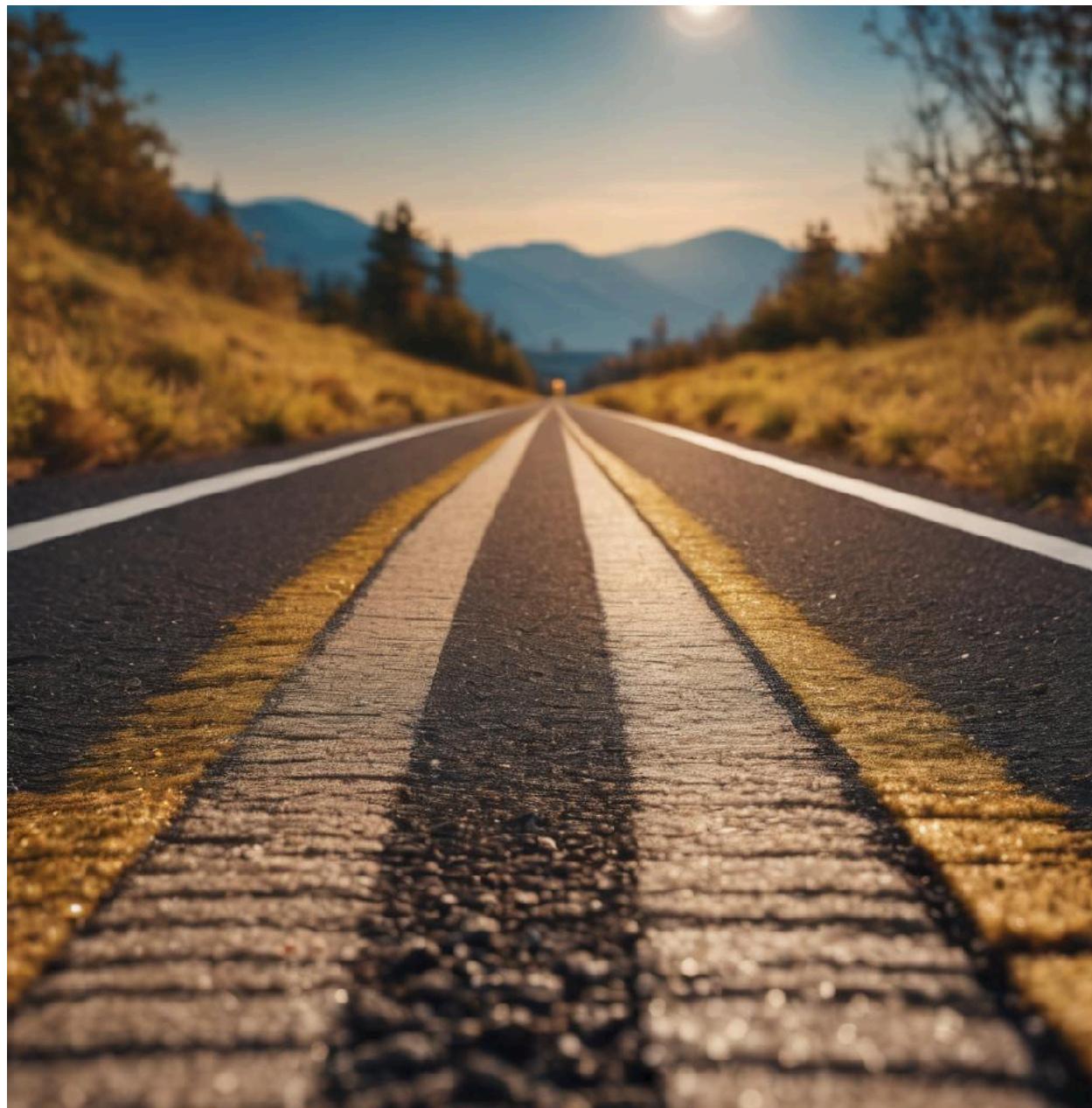
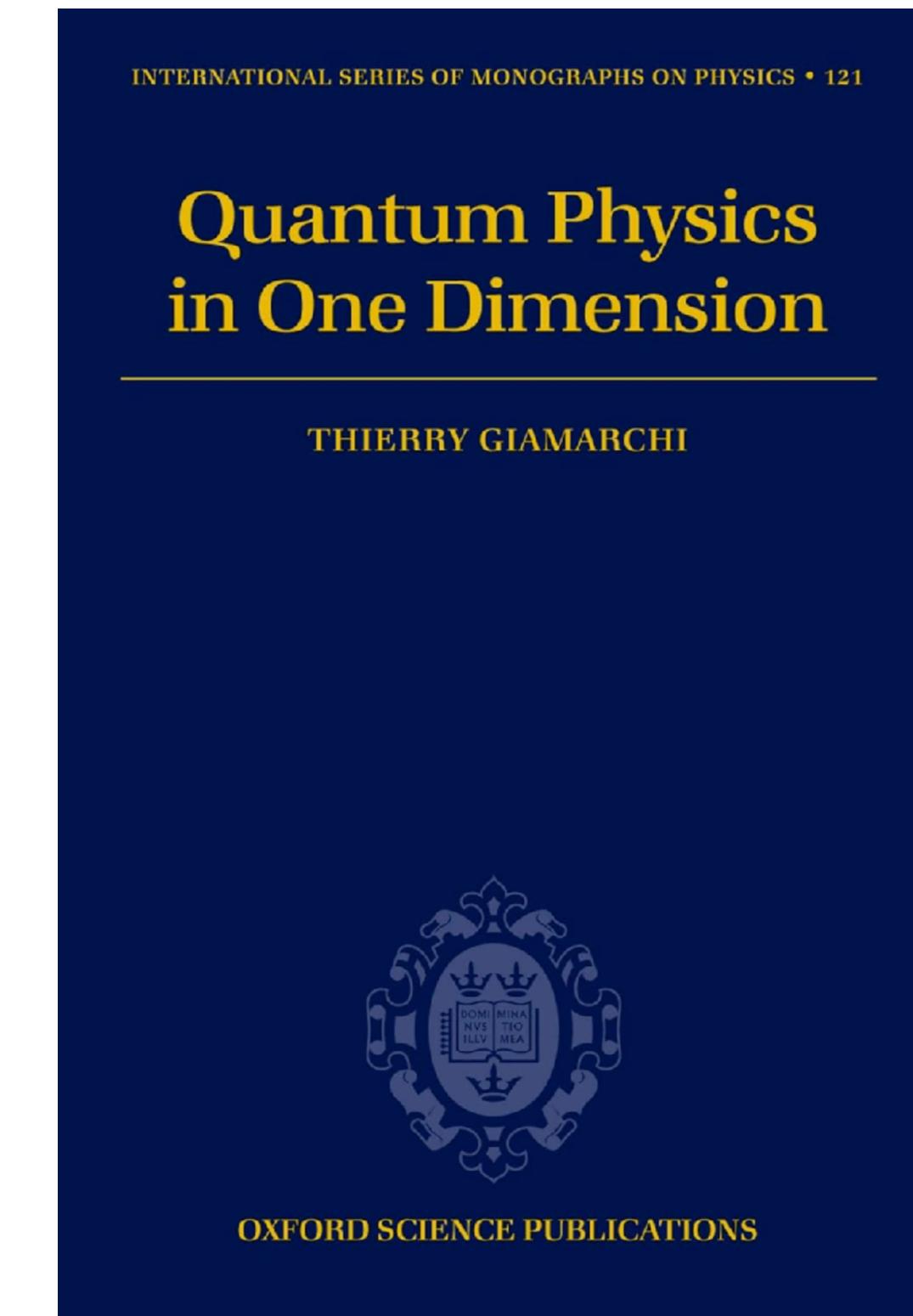
Disclaimer:

This talk will be about **exact** SU(N) microscopic models with equal population per color

But it could be interesting to investigate imbalanced populations, SU(N) symmetry breaking (e.g. in Lithium) etc.

“Simple” $SU(N)$ chains

One-dimensional world

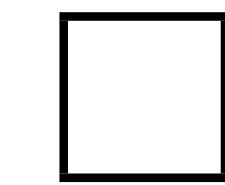


Field theory, bosonization, integrable models,
density-matrix renormalization group (DMRG)

SU(N) Hubbard model: Mott phase

SU(N) degree of freedom = « spin » = « color »

Filling 1 particle per site: fundamental representation of SU(N)



$$\mathcal{H} = J \sum_i P_{i,i+1} \quad P_{i,i+1} = \frac{1}{N} + \sum_{A=1}^{N^2-1} S_i^A S_{i+1}^A$$

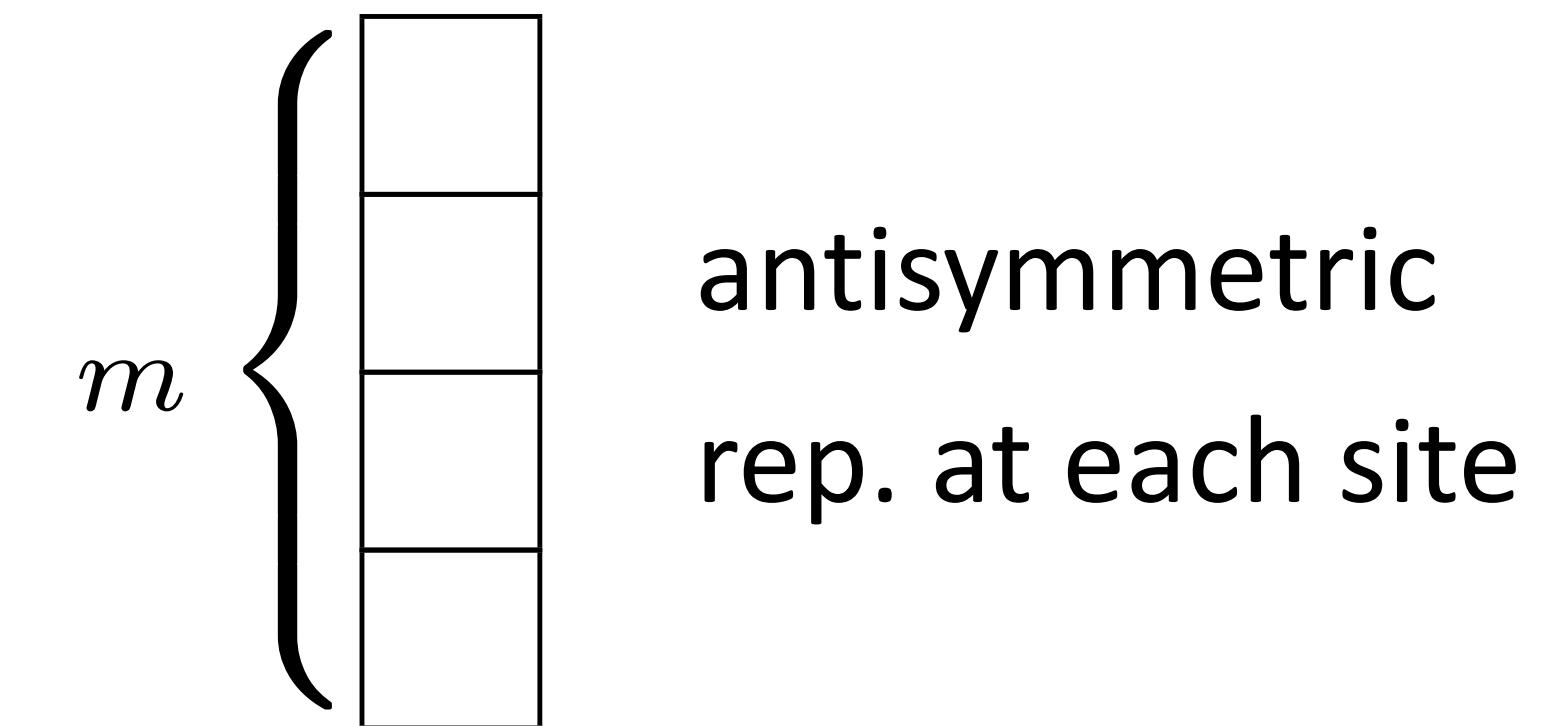
$$J = 2t^2/U$$

- ✓ Bethe-ansatz solution *Sutherland '75*
- ✓ $SU(N)_1$ Wess-Zumino-Witten CFT *Affleck '86 '88*
- ✓ stable fixed point of generic $SU(N)$ 1d gapless systems
- ✓ In the Hubbard case, no exact solution but it seems that there is a finite U BKT Mott transition *Assaraf et al. '99*

SU(N) Hubbard model: Mott phase

Filling m particles per site: in the large-U regime, Mott phase

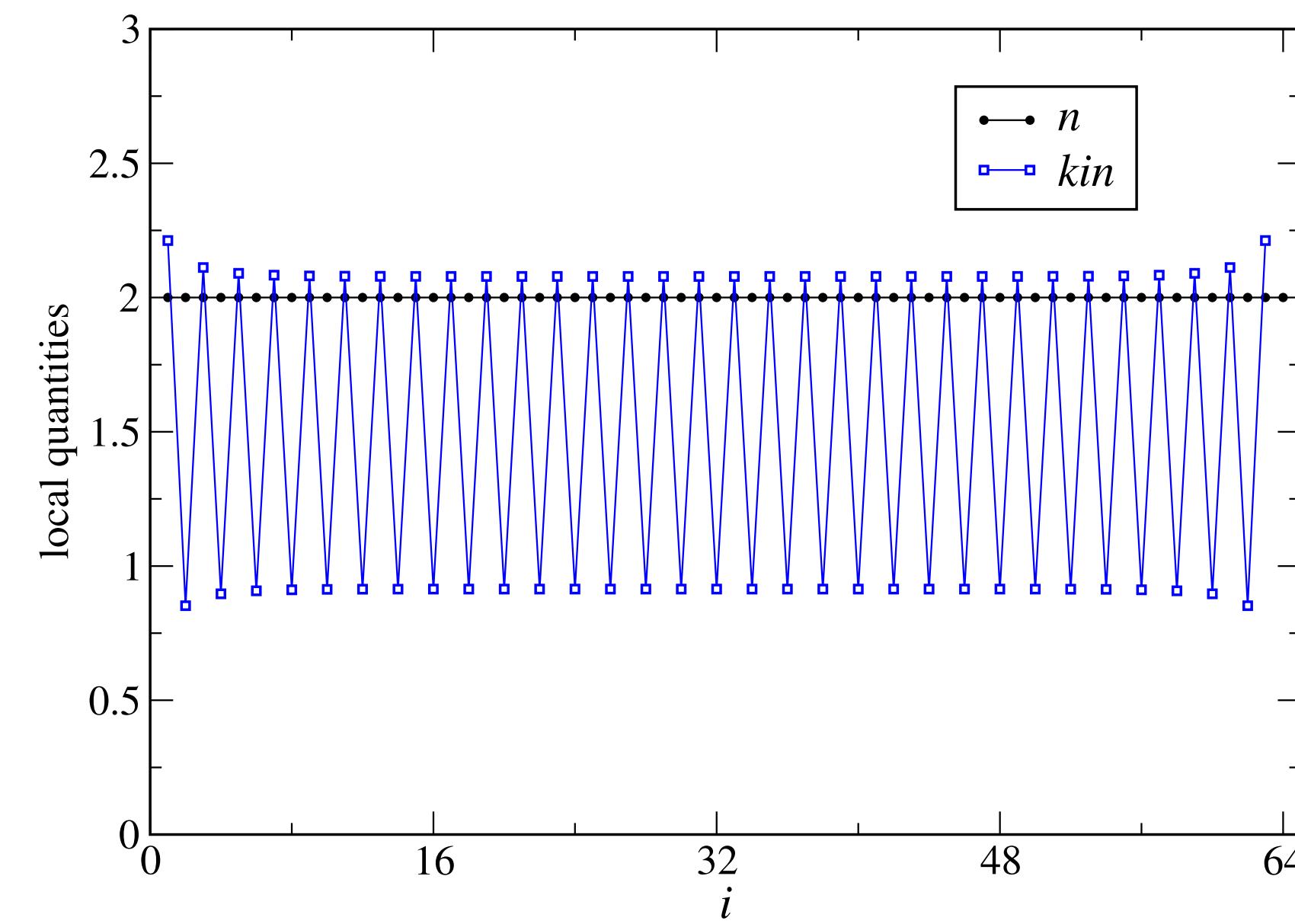
$$\mathcal{H} = J \sum_i \sum_{A=1}^{N^2-1} \mathcal{S}_i^A \mathcal{S}_{i+1}^A$$



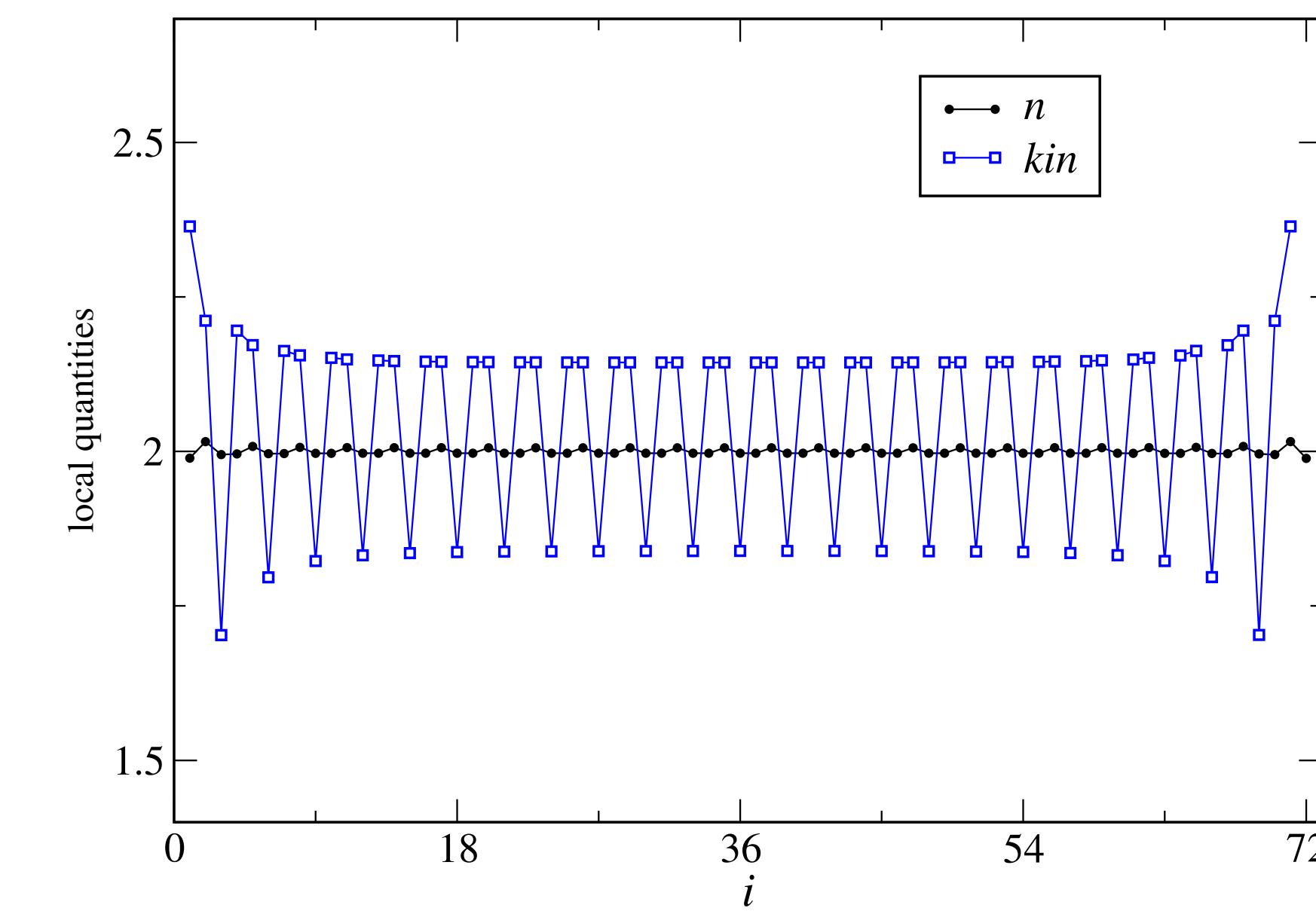
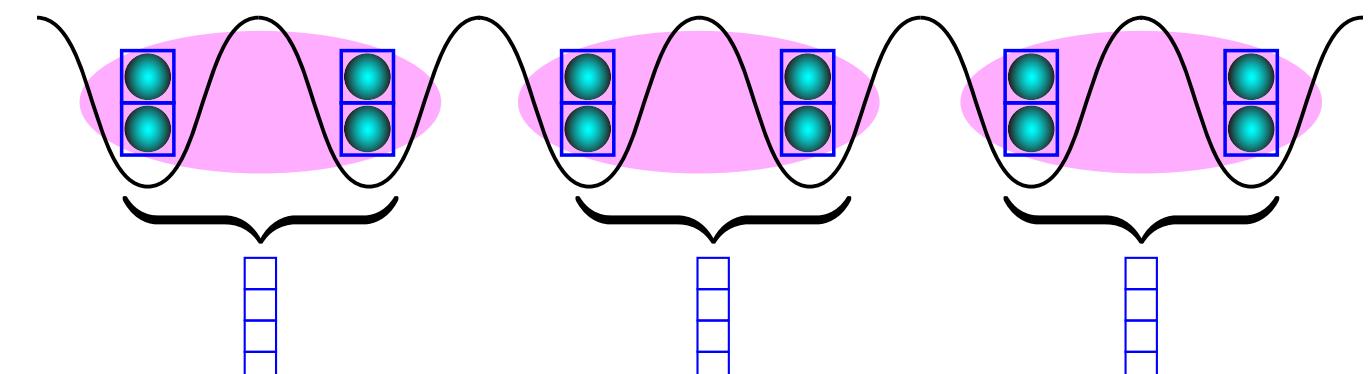
- ✓ CFT analysis *Affleck '88* *Lecheminant & Tsvelik '15*
- ✓ $SU(N)_1$ Wess-Zumino-Witten CFT if $\text{gcd}(m, N) = 1$
- ✓ if $N = pm$, $SU(N)_1$ WZW or translation symmetry breaking
- ✓ Numerics (variational Monte-Carlo) confirms this

Translation symmetry breaking

$SU(4) \ m=2$



$SU(6) \ m=2$



dimerization

trimerization

Capponi, Lecheminant & Totsuka '16

SU(N) Hubbard: incommensurate filling

No Umklapp processes: gapless charge mode, metallic behavior

U>0

all modes are gapless: N-component **Luttinger liquid**

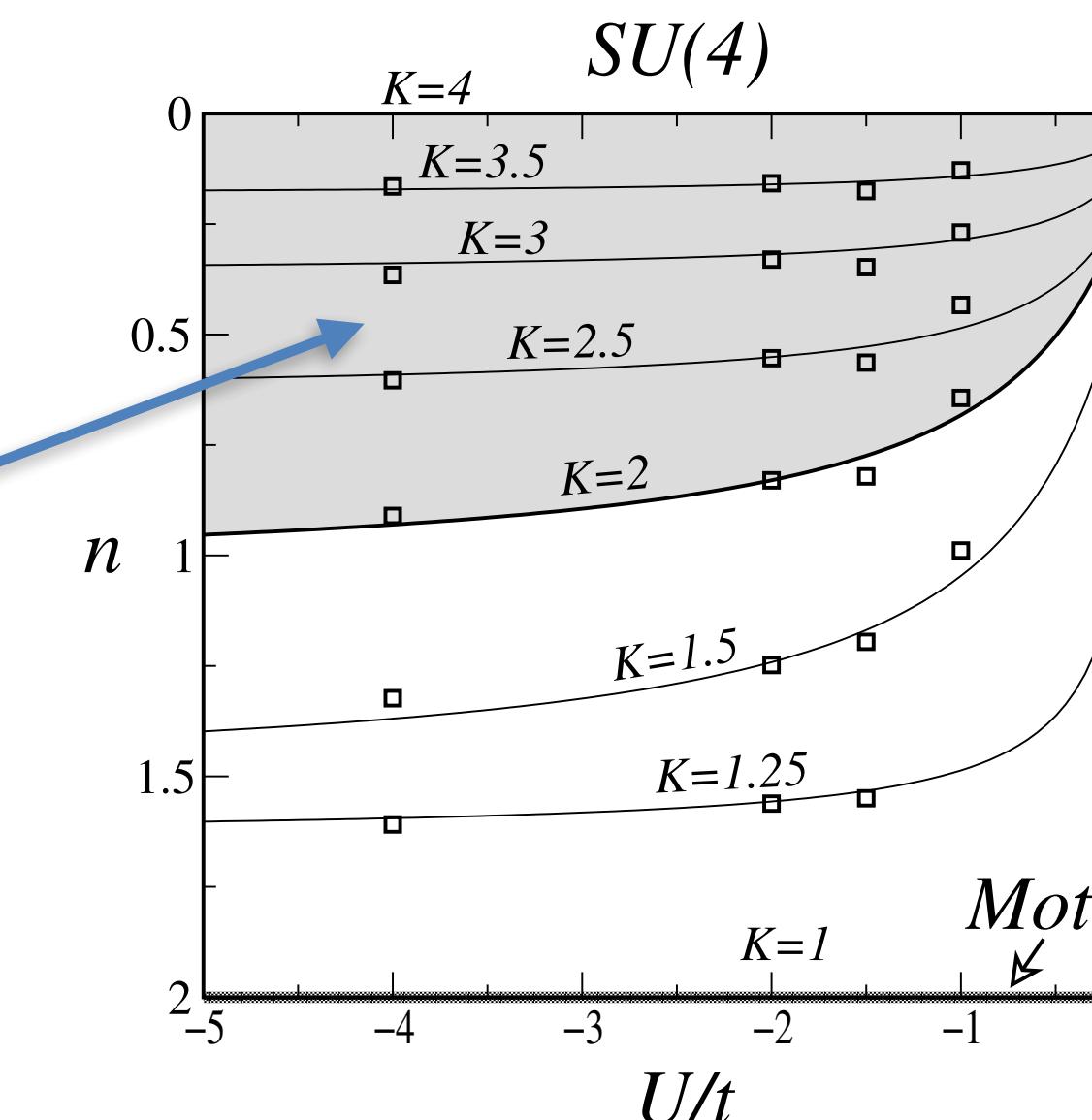
U<0

spin gap for the $SU(N)$ degrees of freedom; gapless charge
= Luther-Emery phase

$N > 2$: no singlet pairing is possible

$SU(N)$ singlet formed by N fermions: **molecular superfluid**

dominant molecular superfluid

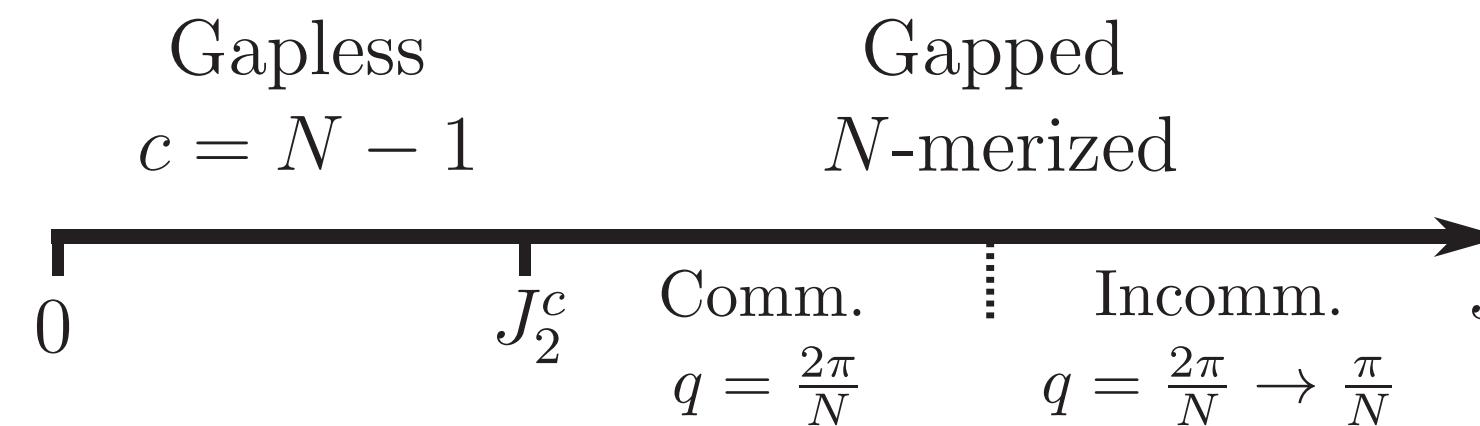


Capponi et al. '08

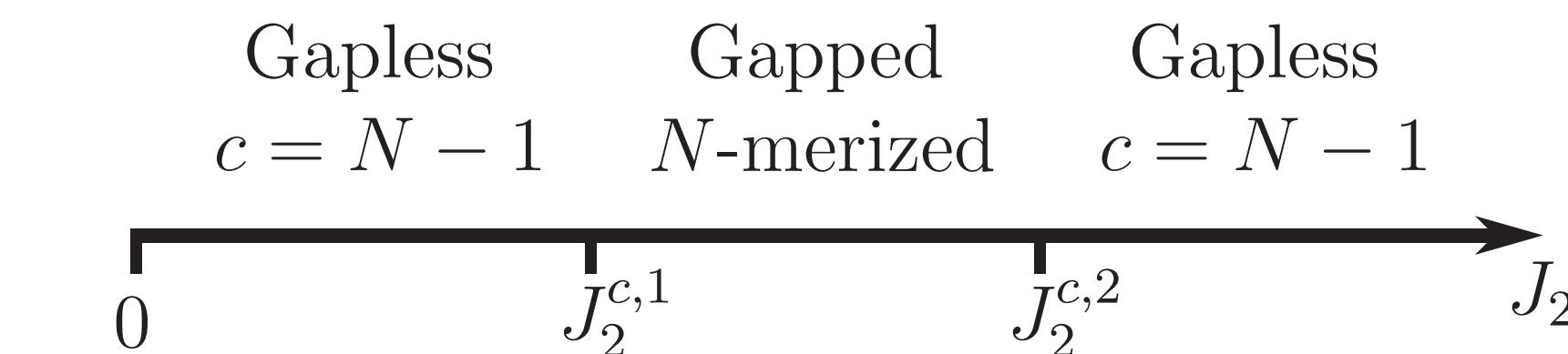
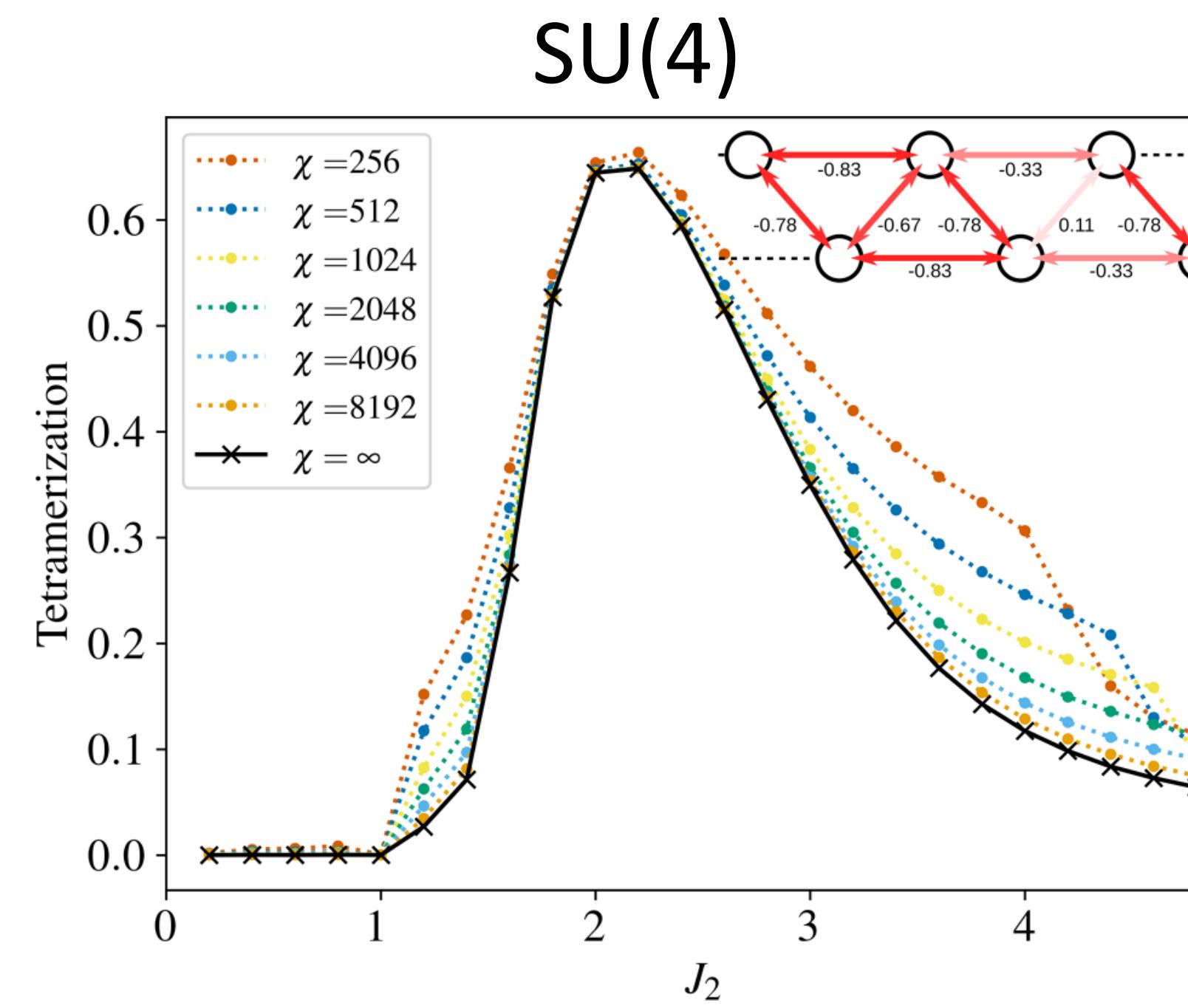
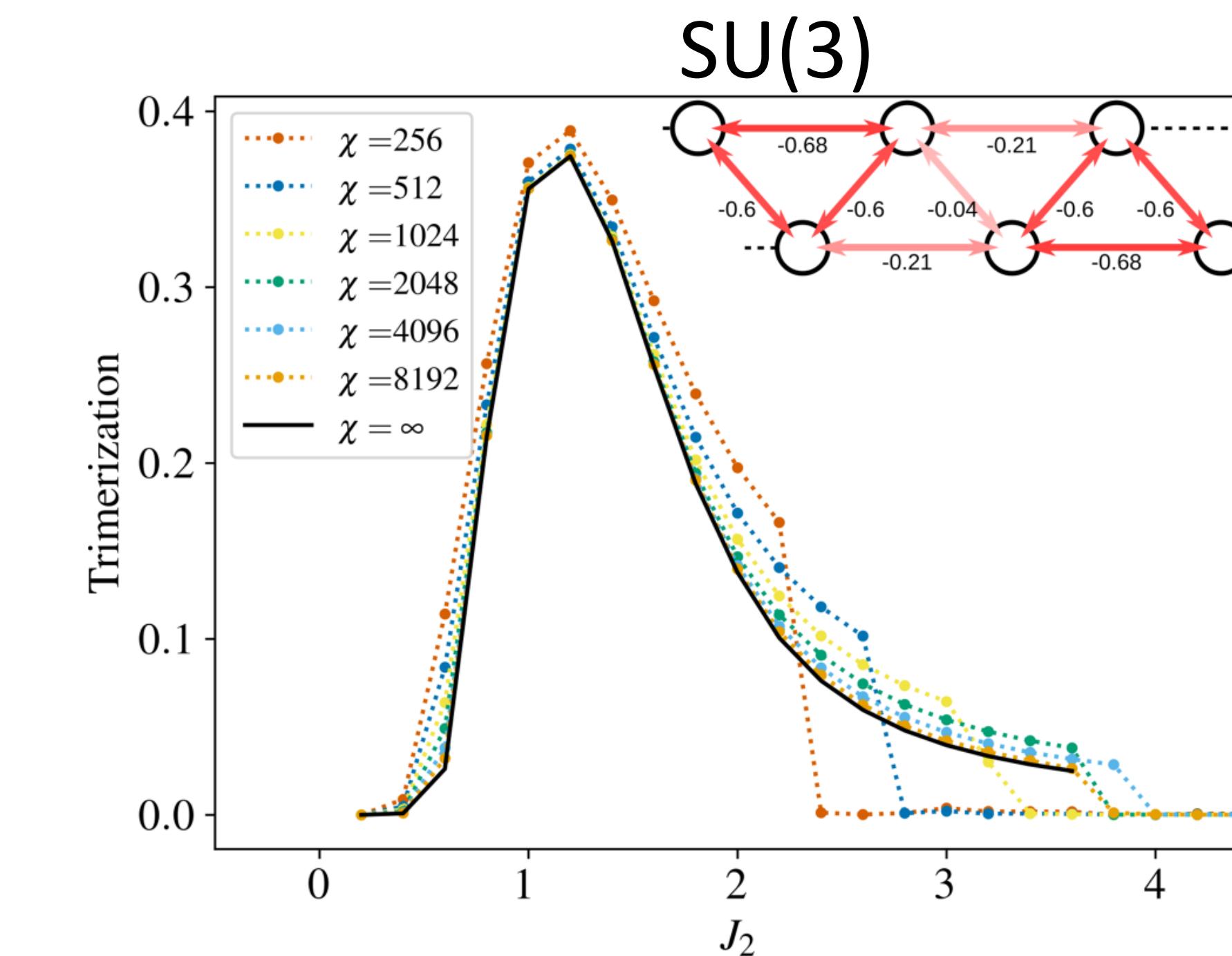
1d zigzag SU(N) chain

Herviou, Capponi, Lecheminant '23

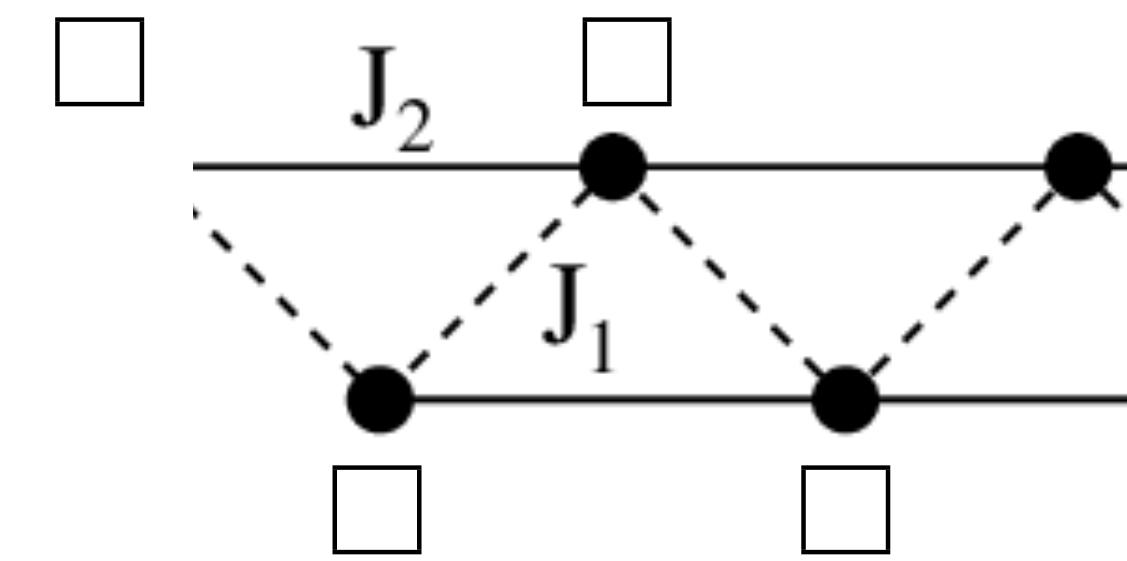
Even N



Odd N

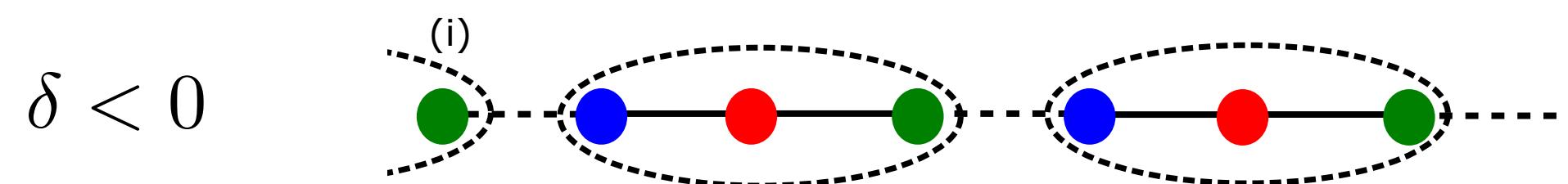


Take-home message: only trivial phases (no SPT)

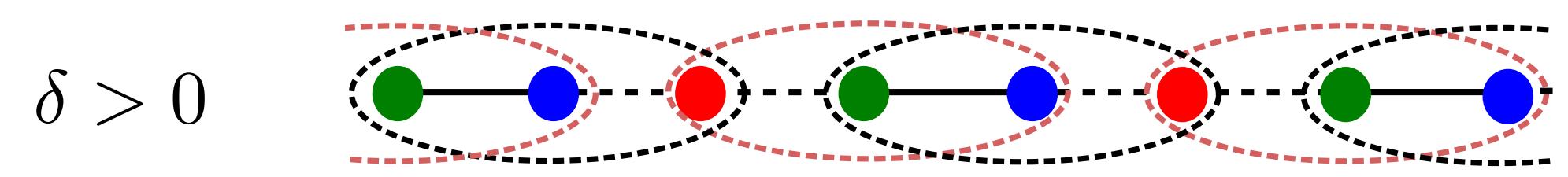


1d modulated SU(N) chain

Heisenberg couplings are $1 + \delta \cos\left(\frac{2\pi r}{N}\right)$ e.g. for N=3: $1 + \delta, 1 - \delta/2, 1 - \delta/2$



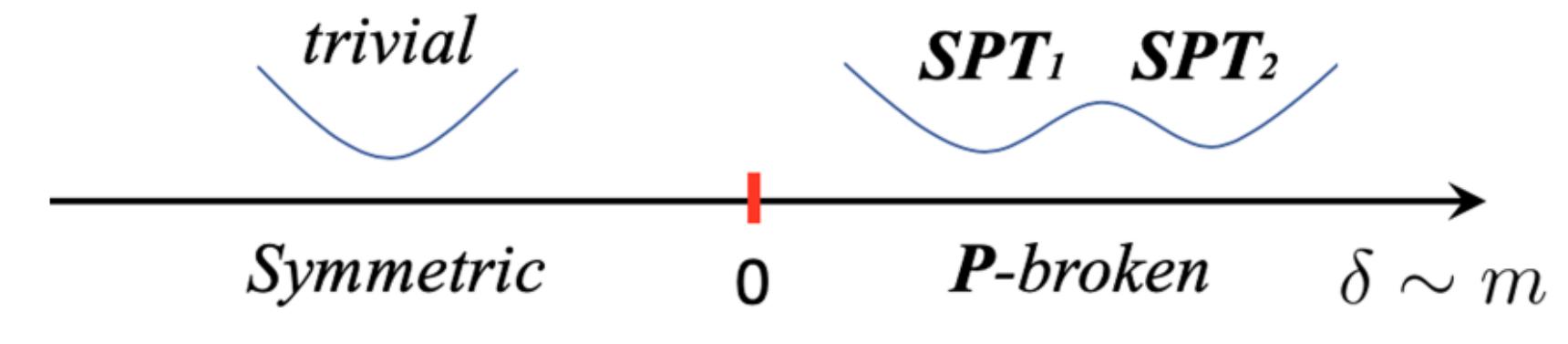
Trivial phase



SPT phase, breaks inversion sym

What is the nature of the transition at $\delta = 0$?

What is the nature of the excitations ?



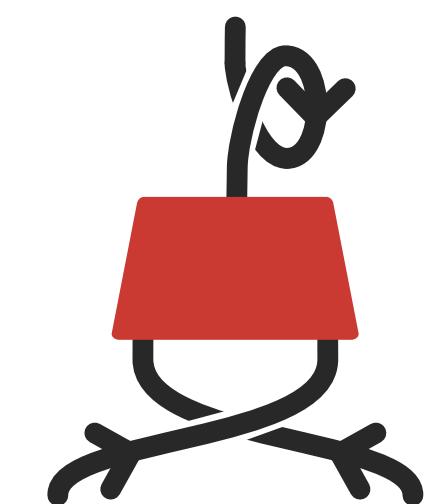
Bi, Lake, Senthil (2020)

PHYSICAL REVIEW B **111**, L020404 (2025)

Letter

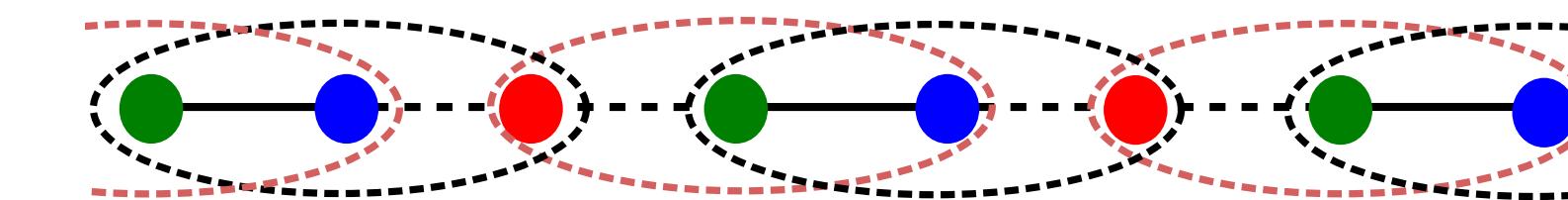
Non-Landau quantum phase transition in modulated SU(N) Heisenberg spin chains

Sylvain Capponi¹, Lukas Devos², Philippe Lecheminant³, Keisuke Totsuka⁴, and Laurens Vanderstraeten¹



TensorKit.jl

SU(3) chain with modulation



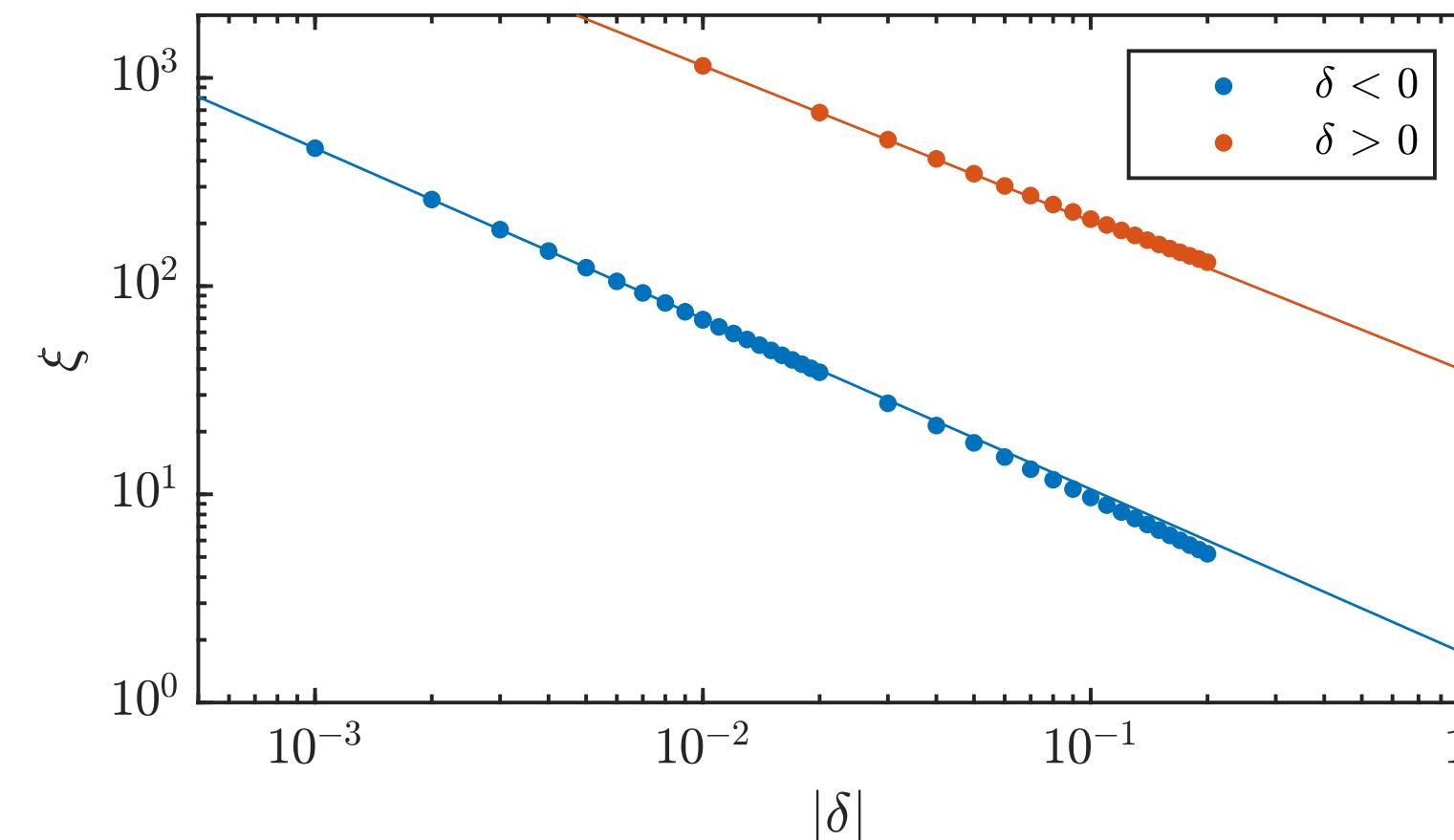
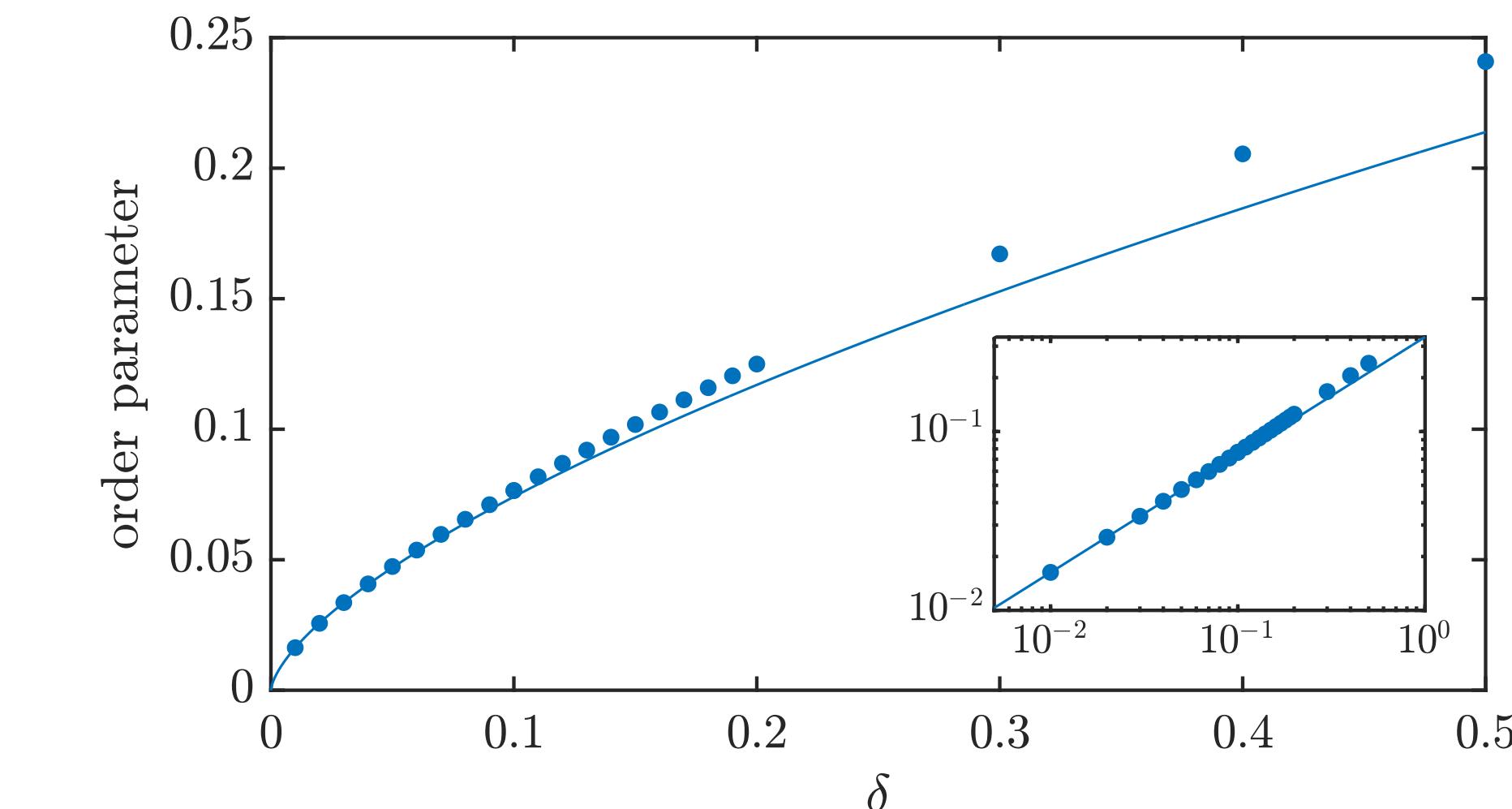
Strong-coupling: it maps onto a $\mathbf{3} - \bar{\mathbf{3}}$ chain, known to be dimerized

Afflect '90

Field-theory predicts opening of a spectral gap $\Delta \sim |\delta|^{N/(N+1)}$

Despite the Z2 inversion symmetry breaking, the phase transition is not Ising-like ($c=1/2$)
but belongs to the $SU(N)_1$ universality class with central charge $c=N-1$

iDMRG results using $SU(3)$

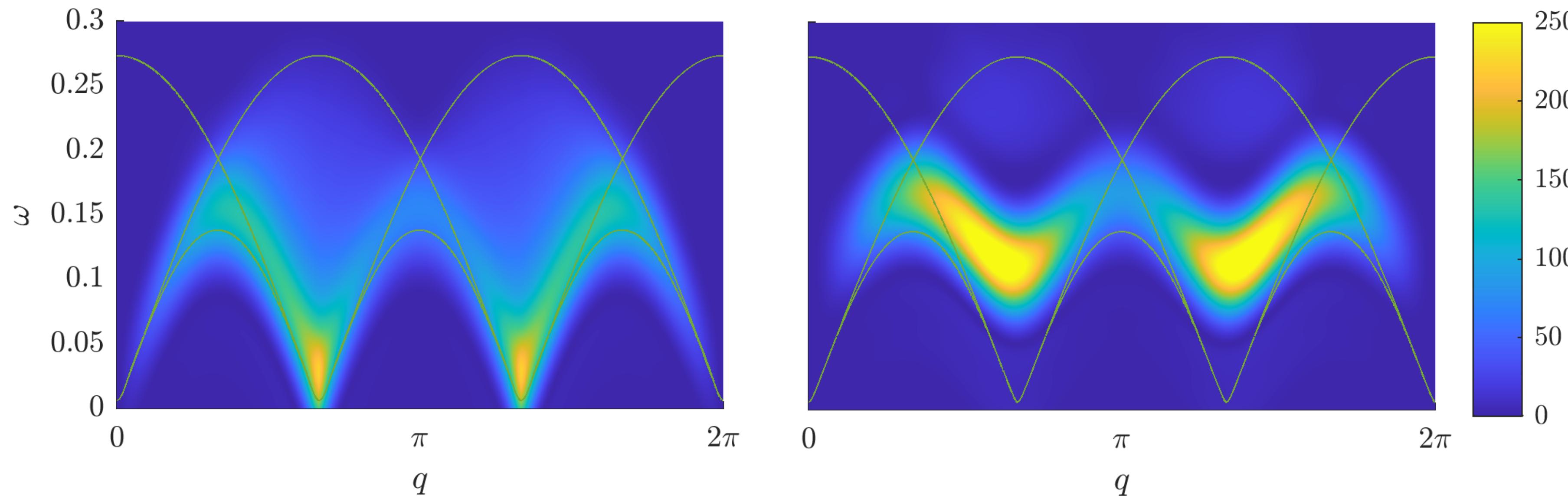


SU(3) chain: spectral functions

Using MPS excitation ansatz, one can compute the spectral functions

$$S(q, \omega) = \int_{-\infty}^{+\infty} dt e^{i\omega t} \langle \Psi_0 | e^{-iHt} S_{-q}^A e^{iHt} S_q^A | \Psi_0 \rangle$$

Vanderstraeten, Verstraete et al.



Compatible with a 2-spinon continuum
 $\delta > 0$

(Small) Explicit symmetry breaking
Spinons are confined into bound states

Conclusion about 1d

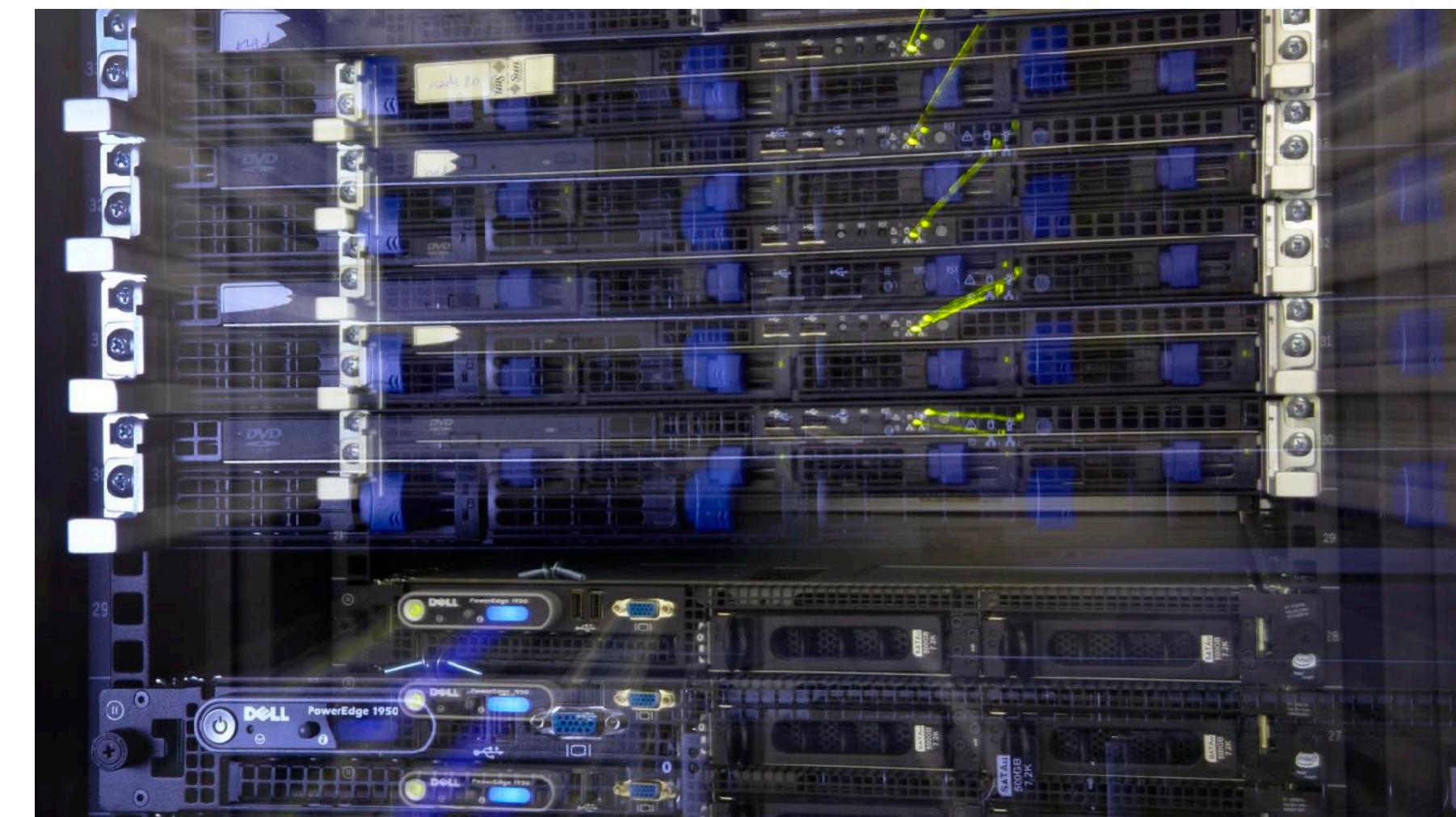
- Often, $SU(N)$ models have nontopological groundstates
- Some realistic *microscopic* $SU(N)$ models can stabilize all SPT phases
- Some SPT phases also break inversion symmetry breaking (chiral)
- A simple modulated $SU(N)$ chain exhibits a non-Landau quantum phase transition
- **Perspective:** quantum phase transition between a trivial phase and an SPT is conjectured to have central charge $c \geq \log_2 d$

Verresen, Moessner, Pollmann (2017)

Going to two dimensions

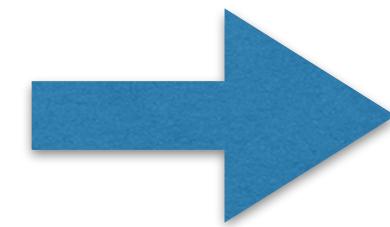
Quite fun !

But challenging too...



Topological phases of matter

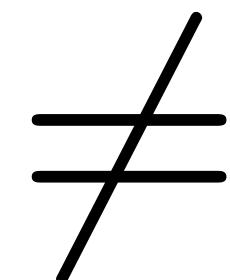
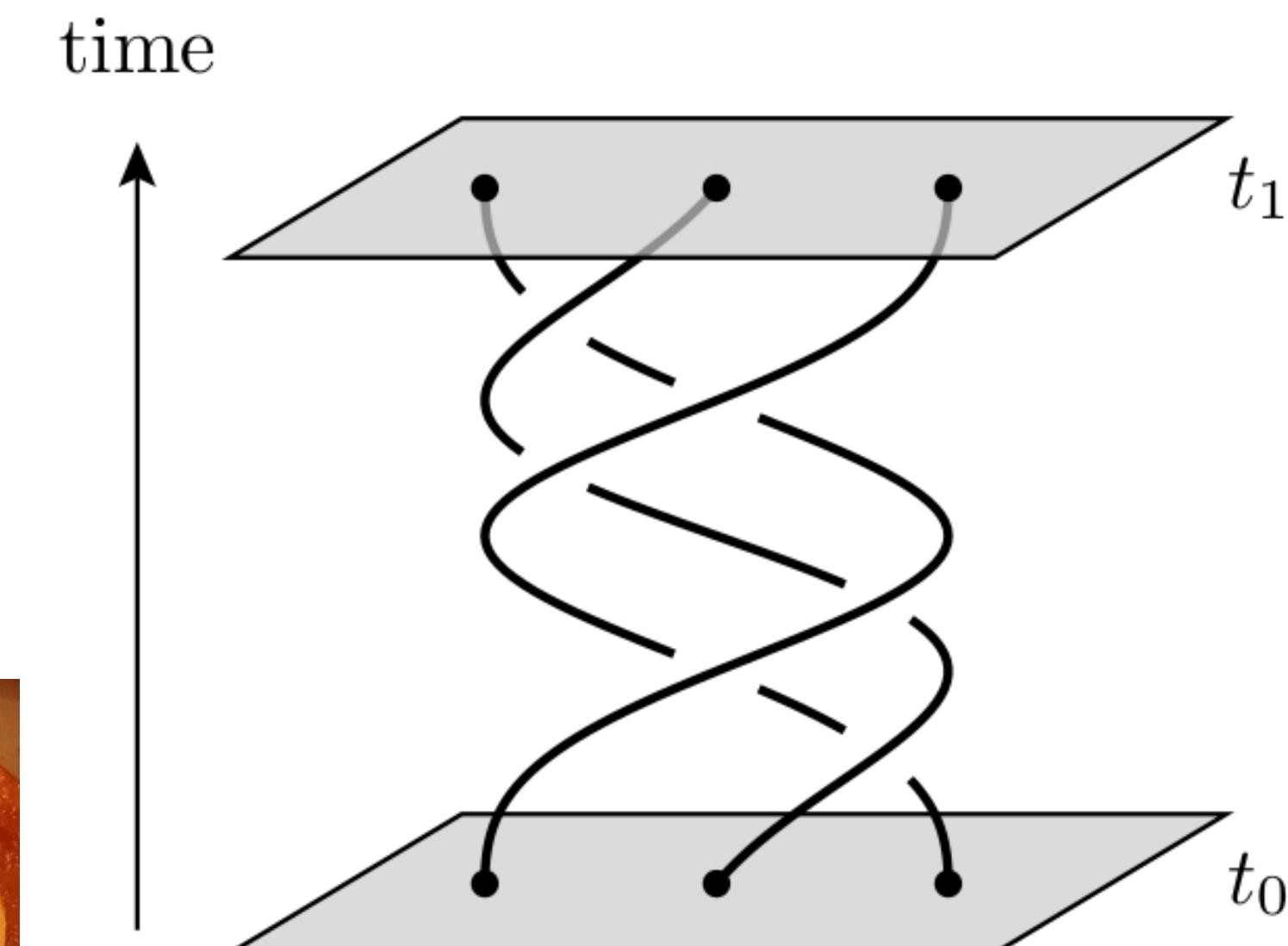
- Robustness of topological states



Topological quantum computation (no error correction needed !)

- Quasiparticles are anyons (fractional statistics) i.e. not necessarily bosons or fermions (spin statistics theorem breaks down in 2+1D)
- Excitations can be abelian or not

topological quantum field theory
(e.g. Chern-Simons),
braid group, fusion rules...



Chiral topological spin liquids

Chiral topological phase is found in the fractional quantum Hall (FQH) effect

topological phases, exotic excitations
(abelian or not)

unconventional superconductor when doped

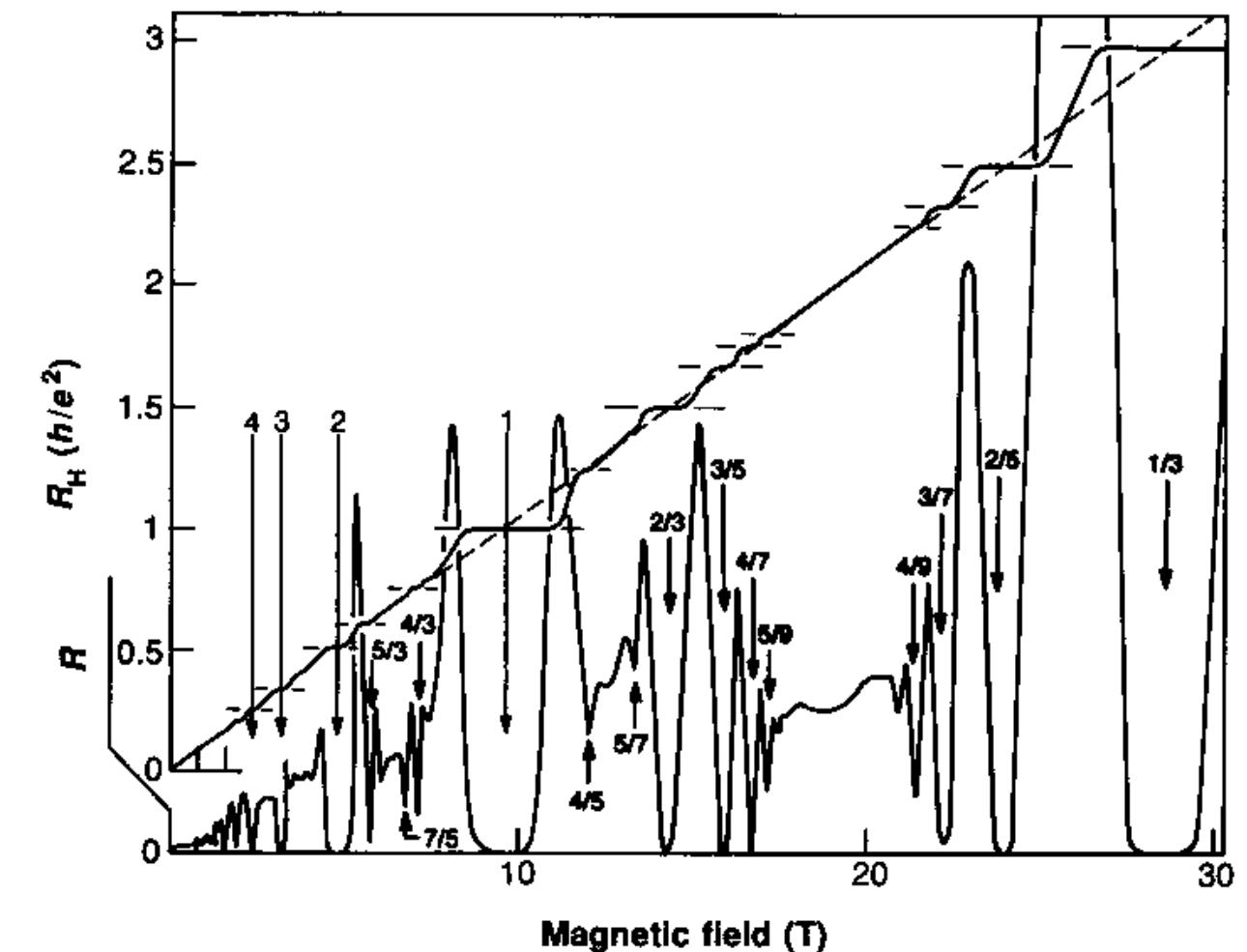


Fig. 2. Composite view showing the Hall resistance R_H and longitudinal

Is it possible to reach the same physics without Landau levels, on a lattice ?

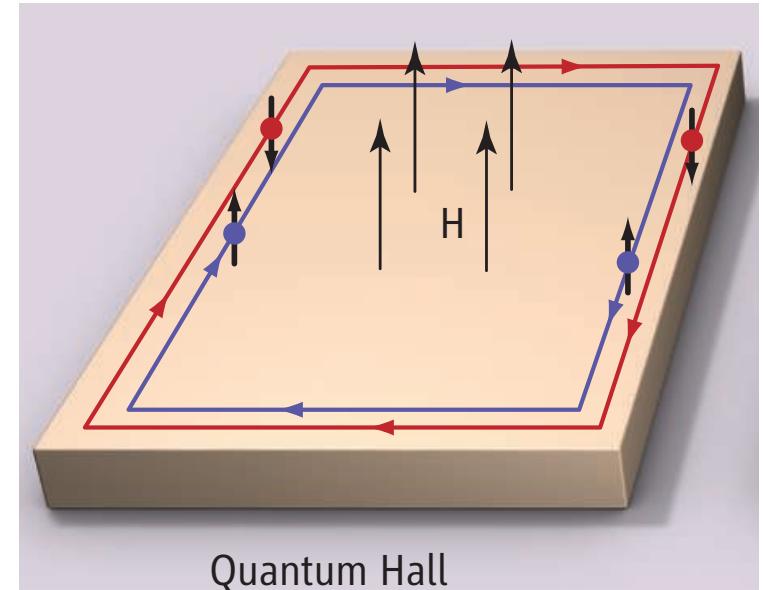
Mimic an effective magnetic field,
flat bands etc.

Fractional Chern insulators

Look for lattice models with similar
wavefunctions

Chiral spin liquids (CSL)

= lattice analogue of FQH states



Low-energy physics described by 2+1 Chern-Simons theory

$\nu = \frac{1}{2}$ FQH state

lattice spin $S=1/2$ model

incompressible (gapped) in the bulk

same

charged $e/2$ fractional excitation

neutral $s=1/2$ fractional excitation

robust gapless chiral edge states

same

$SU(2)_1$ CFT

triangular lattice:

Kalmeyer-Laughlin, 1987

Abelian CSL in spin-1/2 SU(2) models on frustrated lattices breaks T

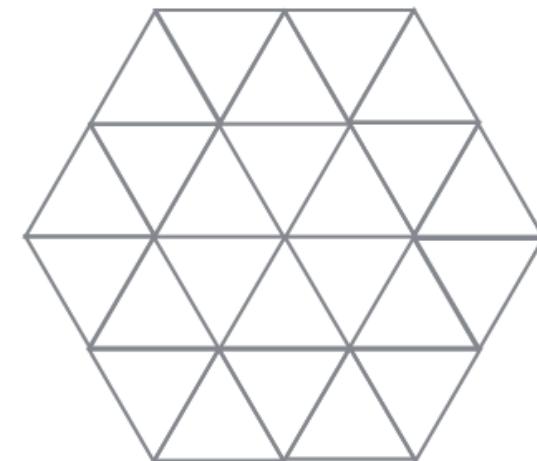
S=1/2 on triangular lattice

PHYSICAL REVIEW B **96**, 075116 (2017)

Global phase diagram and quantum spin liquids in a spin- $\frac{1}{2}$ triangular antiferromagnet

Shou-Shu Gong,¹ W. Zhu,² J.-X. Zhu,^{2,3} D. N. Sheng,⁴ and Kun Yang⁵

$$H = J_1 \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j + J_2 \sum_{\langle\langle i,j \rangle\rangle} \vec{S}_i \cdot \vec{S}_j + J_\chi \sum_{\triangle/\nabla} (\vec{S}_i \times \vec{S}_j) \cdot \vec{S}_k$$

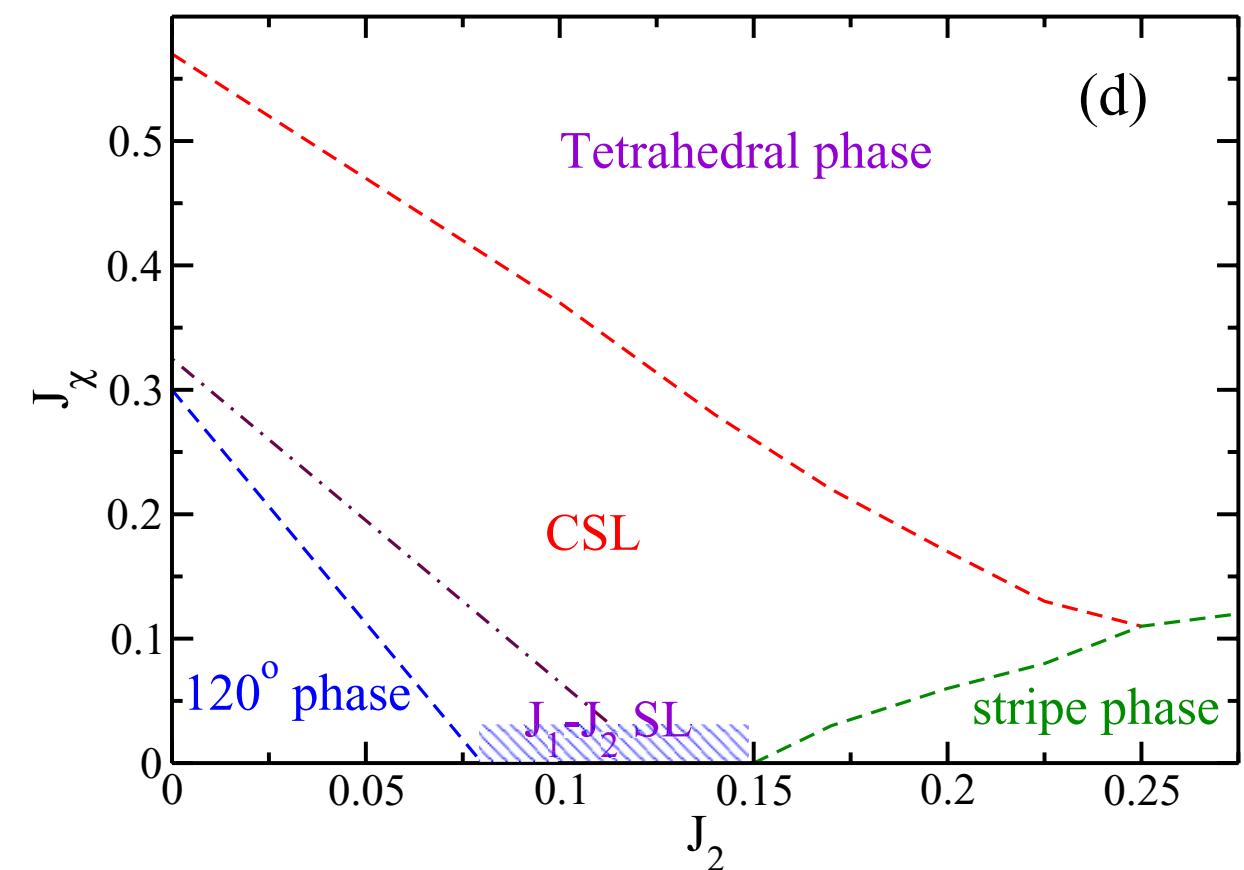


PHYSICAL REVIEW B **95**, 035141 (2017)

Chiral spin liquid and quantum criticality in extended $S = \frac{1}{2}$ Heisenberg models on the triangular lattice

Alexander Wietek* and Andreas M. Läuchli

DMRG

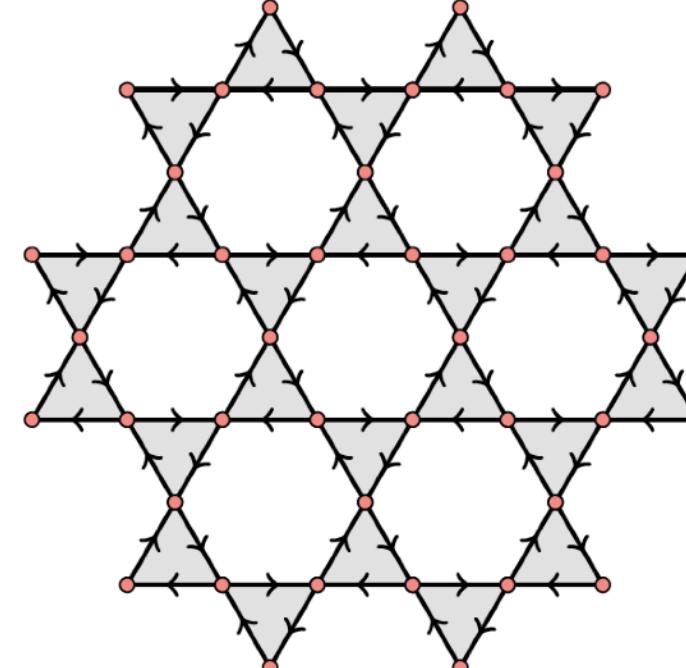


S=1/2 on kagome lattice

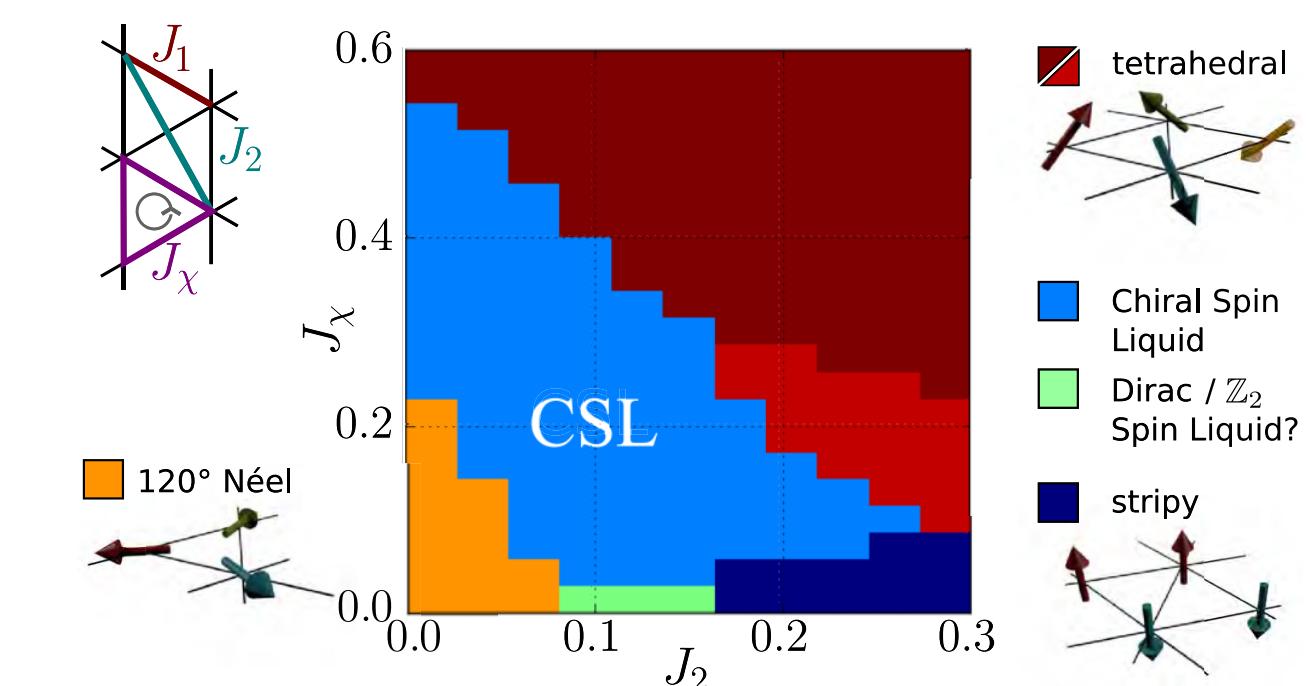
DMRG

Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator

B. Bauer¹, L. Cincio², B.P. Keller³, M. Dolfi⁴, G. Vidal², S. Trebst⁵ & A.W.W. Ludwig³



ED



S=1/2 on frustrated square lattice

PEPS

PHYSICAL REVIEW B **96**, 121118(R) (2017)

Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states

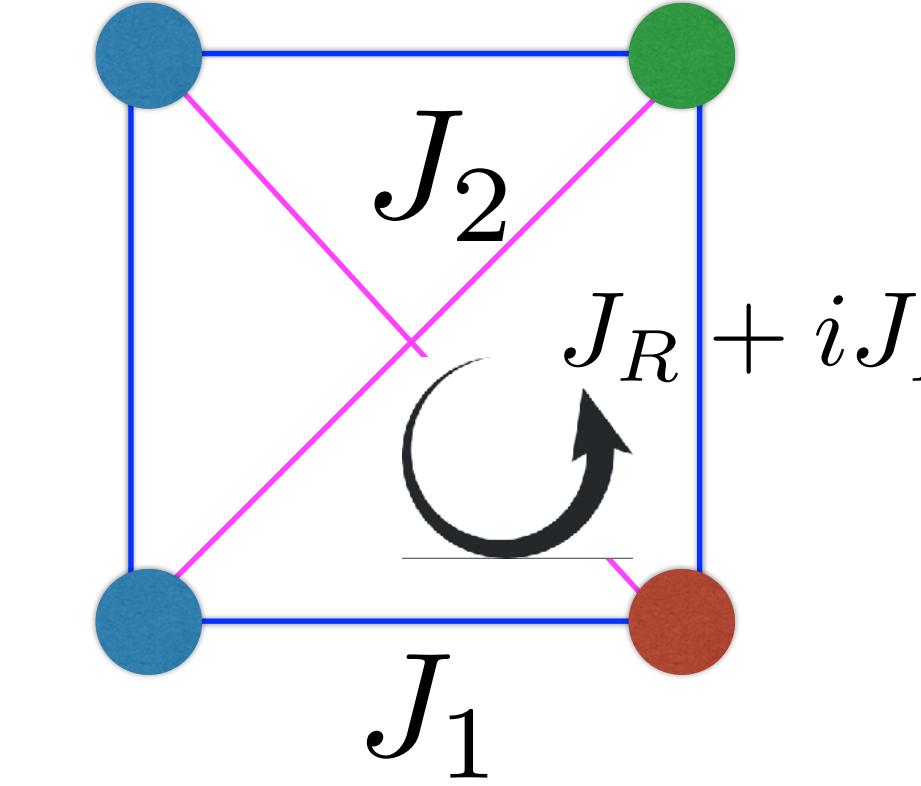
Didier Poilblanc

SU(N) extension

$$H = J_1 \sum_{\langle i,j \rangle} P_{ij} + J_2 \sum_{\langle\langle k,l \rangle\rangle} P_{kl} + J_R \sum_{\triangle ijk} (P_{ijk} + P_{ijk}^{-1}) + i J_I \sum_{\triangle ijk} (P_{ijk} - P_{ijk}^{-1})$$

Square lattice, C4 symmetry

PHYSICAL REVIEW B **104**, 235104 (2021)



imaginary 3-site permutation
explicitly breaks T and P

Abelian $SU(N)_1$ chiral spin liquids on the square lattice

Ji-Yao Chen ,^{1,2} Jheng-Wei Li ,³ Pierre Nataf,⁴ Sylvain Capponi ,⁵ Matthieu Mambrini ,⁵ Keisuke Totsuka,⁶ Hong-Hao Tu ,⁷ Andreas Weichselbaum,⁸ Jan von Delft,³ and Didier Poilblanc⁵

PRL **117**, 167202 (2016)

PHYSICAL REVIEW LETTERS

week ending
14 OCTOBER 2016

See also on the triangular lattice:

Chiral Spin Liquids in Triangular-Lattice $SU(N)$ Fermionic Mott Insulators with Artificial Gauge Fields

Pierre Nataf,¹ Miklós Lajkó,² Alexander Wietek,³ Karlo Penc,^{4,5} Frédéric Mila,¹ and Andreas M. Läuchli³

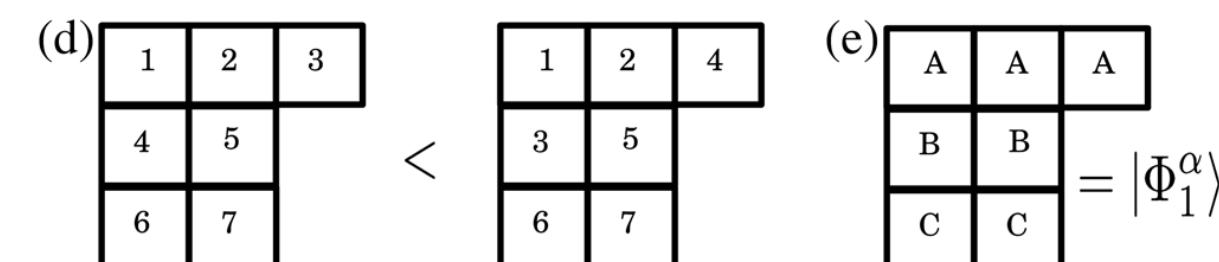
Numerical methods for SU(N)

... an introduction

Analytics: large-N, mean-field, parton wavefunctions

- **Exact diagonalization** (U(1)+lattice symmetries or SU(N) symmetry)

using standard Young tableaux



PRL 113, 127204 (2014)

PHYSICAL REVIEW LETTERS

week ending
19 SEPTEMBER 2014

Exact Diagonalization of Heisenberg SU(N) Models

Pierre Nataf and Frédéric Mila

$SU(N)$	n	$f^{[k, \dots, k]}$	$\frac{(n-1)!}{k!^{N-k}}$	\mathcal{E}_{GS}
$SU(5)$	25 (tilted)	701149020	2.5×10^{13}	-1.154324
$SU(5)$	25 (5×5)	701149020	2.5×10^{13}	-1.164712
$SU(5)$	20	1662804	1.5×10^{10}	-1.215377
$SU(8)$	16	1430	5.1×10^9	-1.572223
$SU(10)$	20	16796	1.2×10^{14}	-1.589218

using $SU(N)$ $U(1)$ (N-1 Cartan)

Numerical methods for SU(N)

... an introduction

Analytics: large-N, mean-field, parton wavefunctions

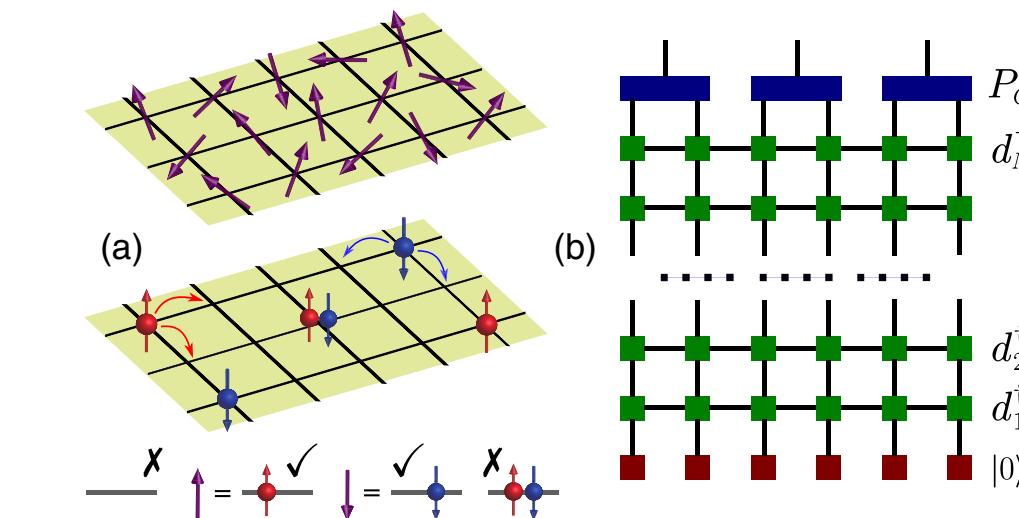
- Exact diagonalization (U(1)+lattice symmetries or SU(N) symmetry)
- **DMRG** (U(1) or SU(N) symmetry) + parton wavefunction

Projected Fermi sea

has a tensor network representation

MPO: D=2

using MPO-MPS compression \rightarrow MPS



PHYSICAL REVIEW LETTERS 124, 246401 (2020)

Tensor Network Representations of Parton Wave Functions

Ying-Hai Wu¹, Lei Wang,^{2,3} and Hong-Hao Tu^{4,*}

Numerical methods for SU(N)

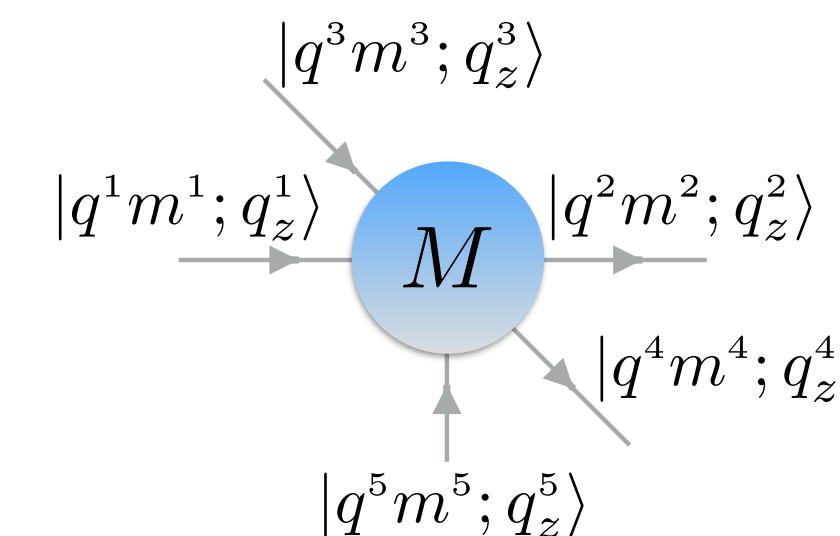
.... an introduction

Analytics: large-N, mean-field, parton wavefunctions

- Exact diagonalization (U(1)+lattice symmetries or SU(N) symmetry)
- DMRG (U(1) or SU(N) symmetry) + parton wavefunction
- **PEPS** using SU(N) symmetric tensors + lattice point-group symmetry

PHYSICAL REVIEW B 94, 205124 (2016)

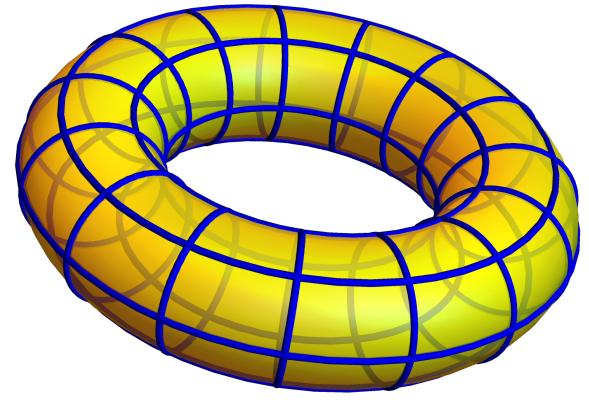
Both DMRG and PEPS can use SU(N) symmetry, e.g. **QSpace** or **TensorKit** libraries



Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

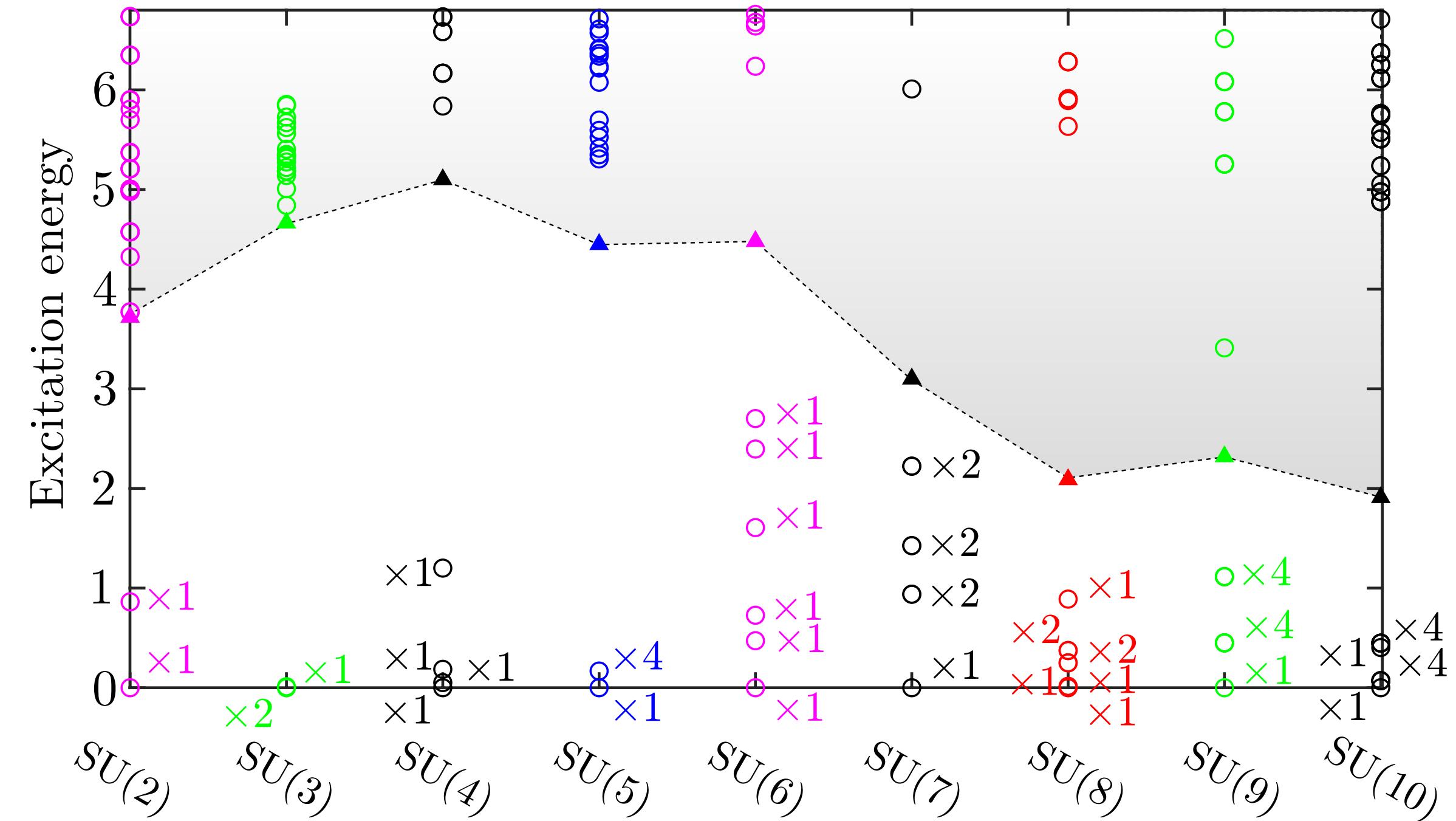
Matthieu Mambrini,¹ Román Orús,² and Didier Poilblanc¹

Exact Diagonalization on torus



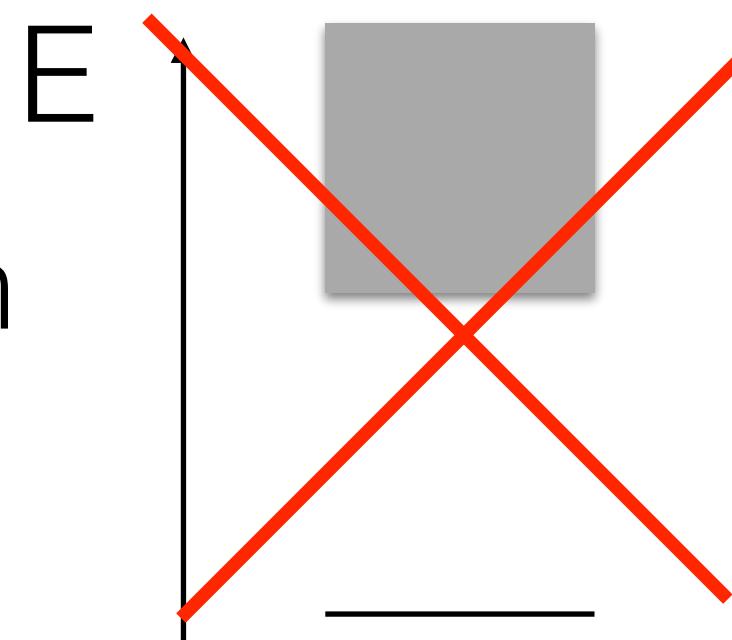
Predictions:

- If $\# \text{sites} = kN$: singlet ground-state, degeneracy on a torus = N



 In 2d: generalization of Hastings-Oshikawa-Lieb-Schultz-Mattis theorem forbids a non-degenerate gapped state

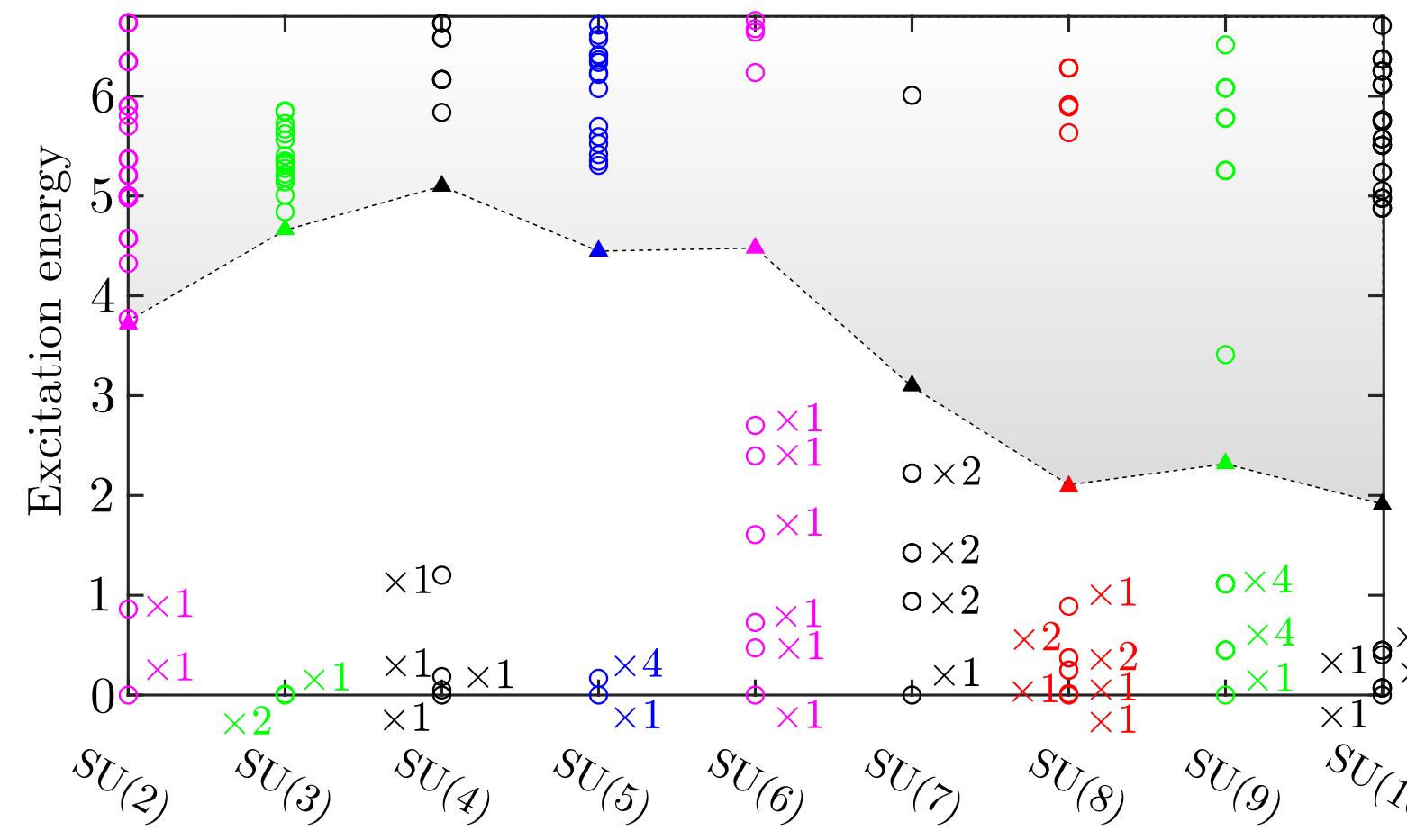
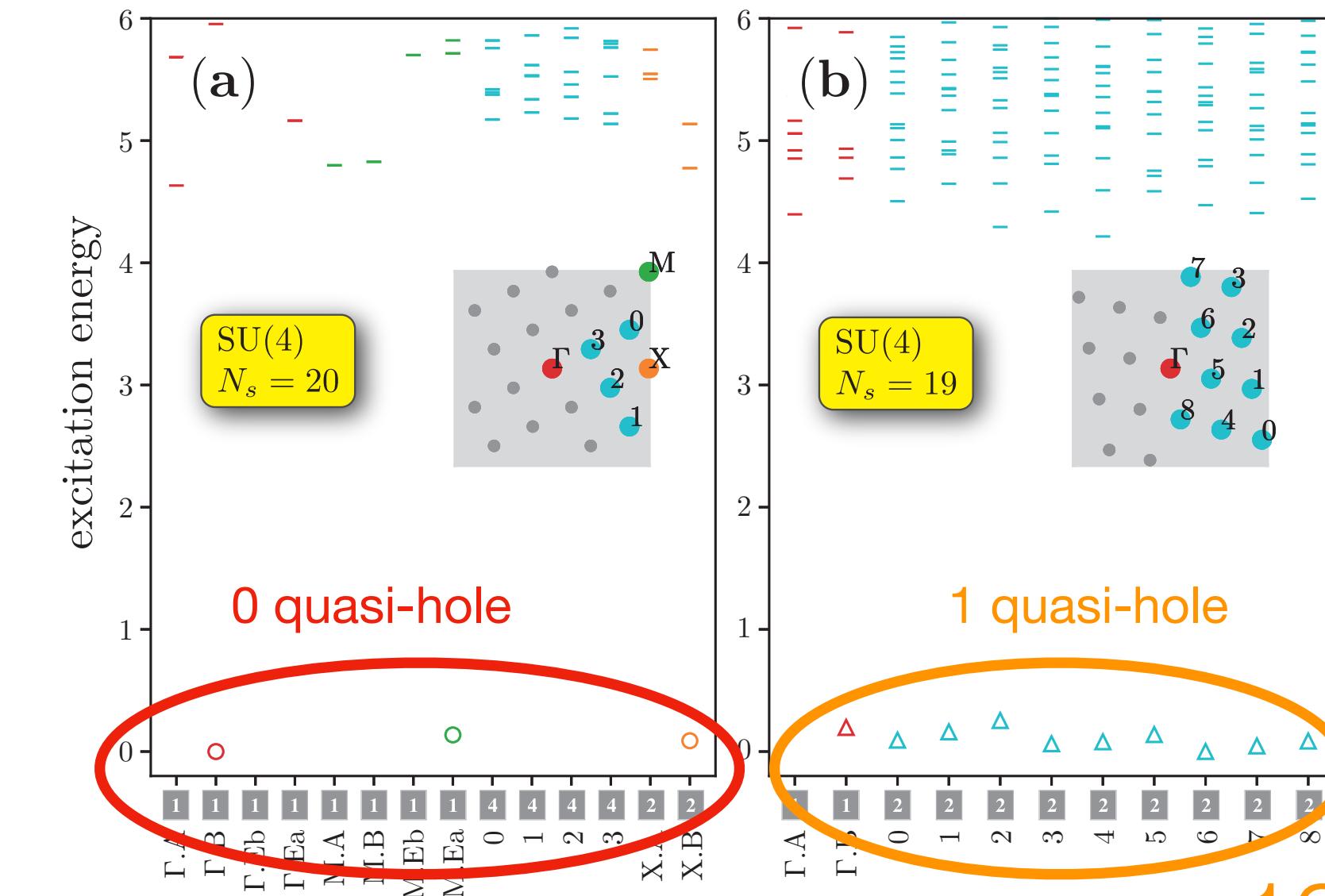
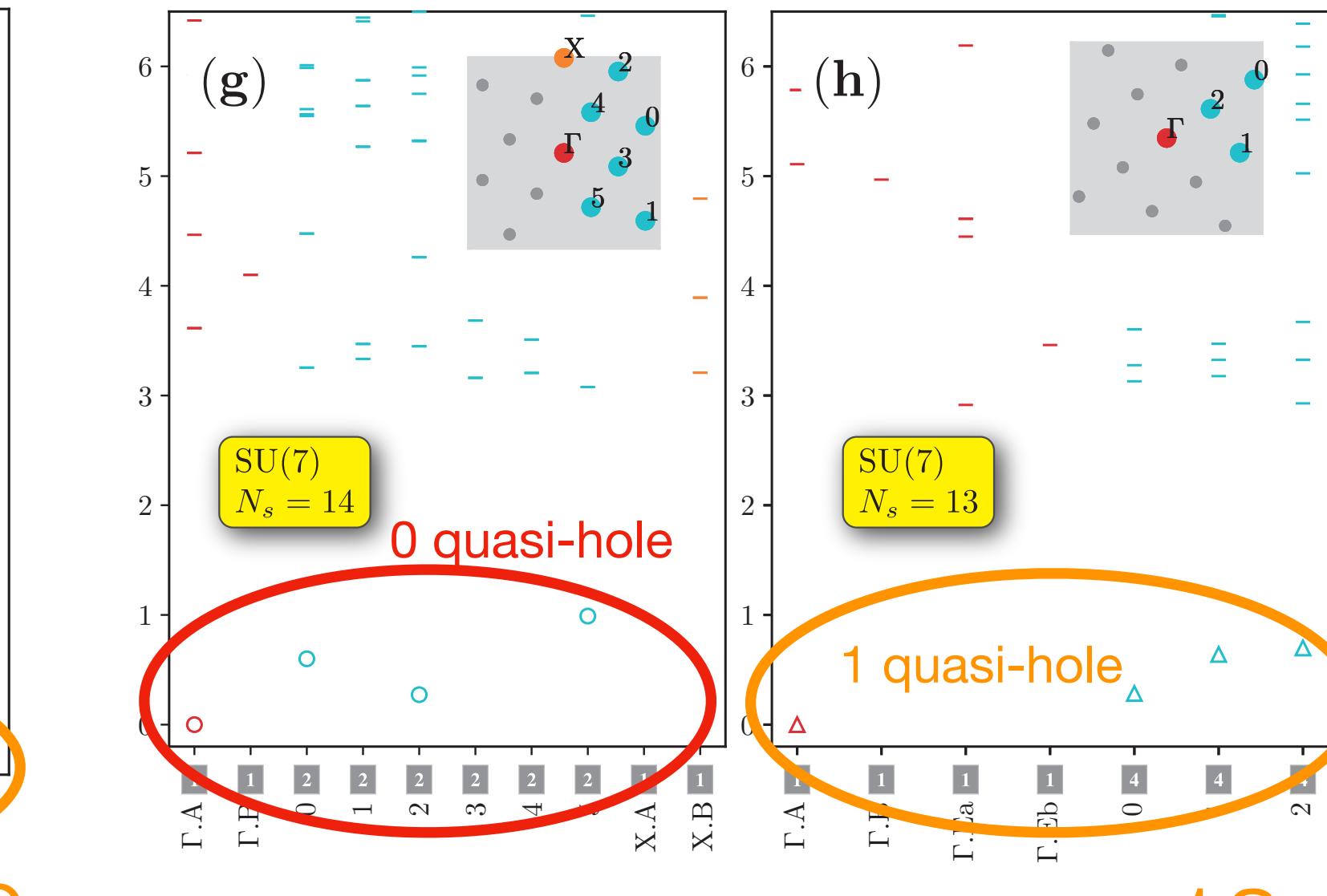
gapless **or** discrete symmetry breaking **or** topological



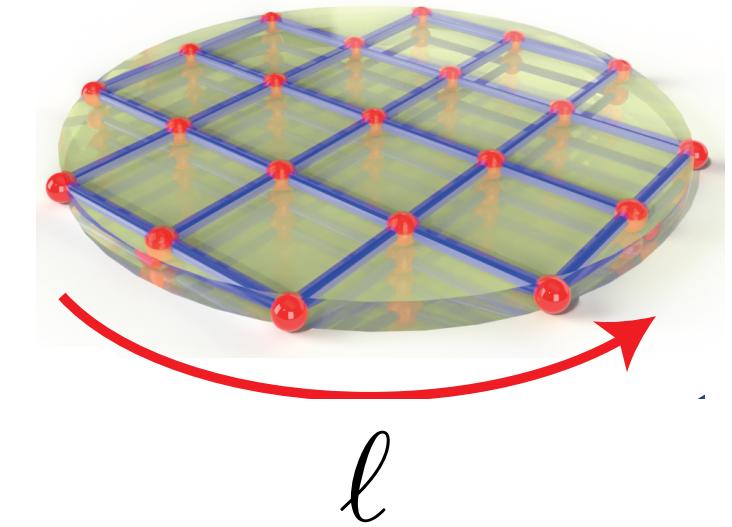
Exact Diagonalization on torus

Predictions:

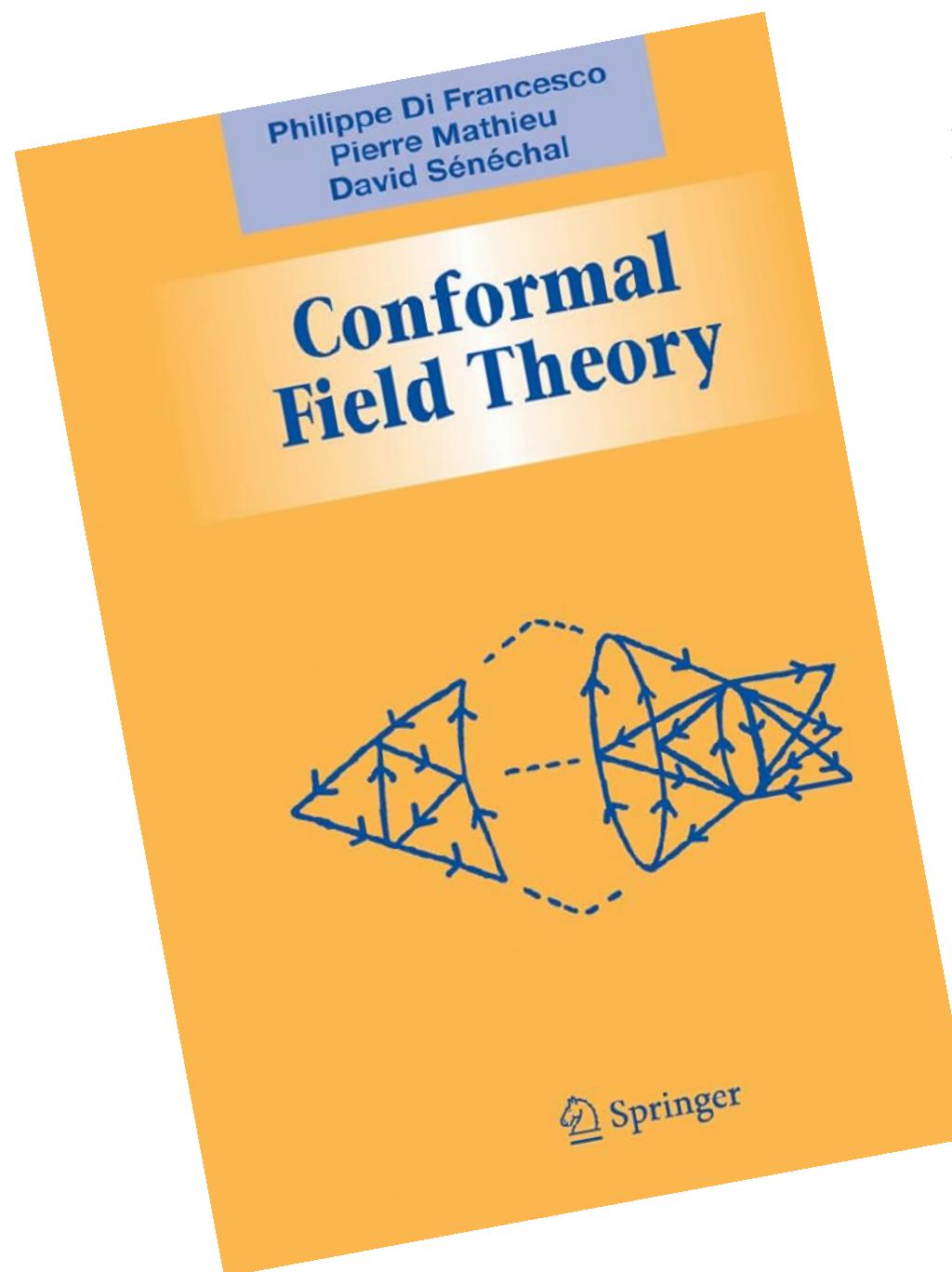
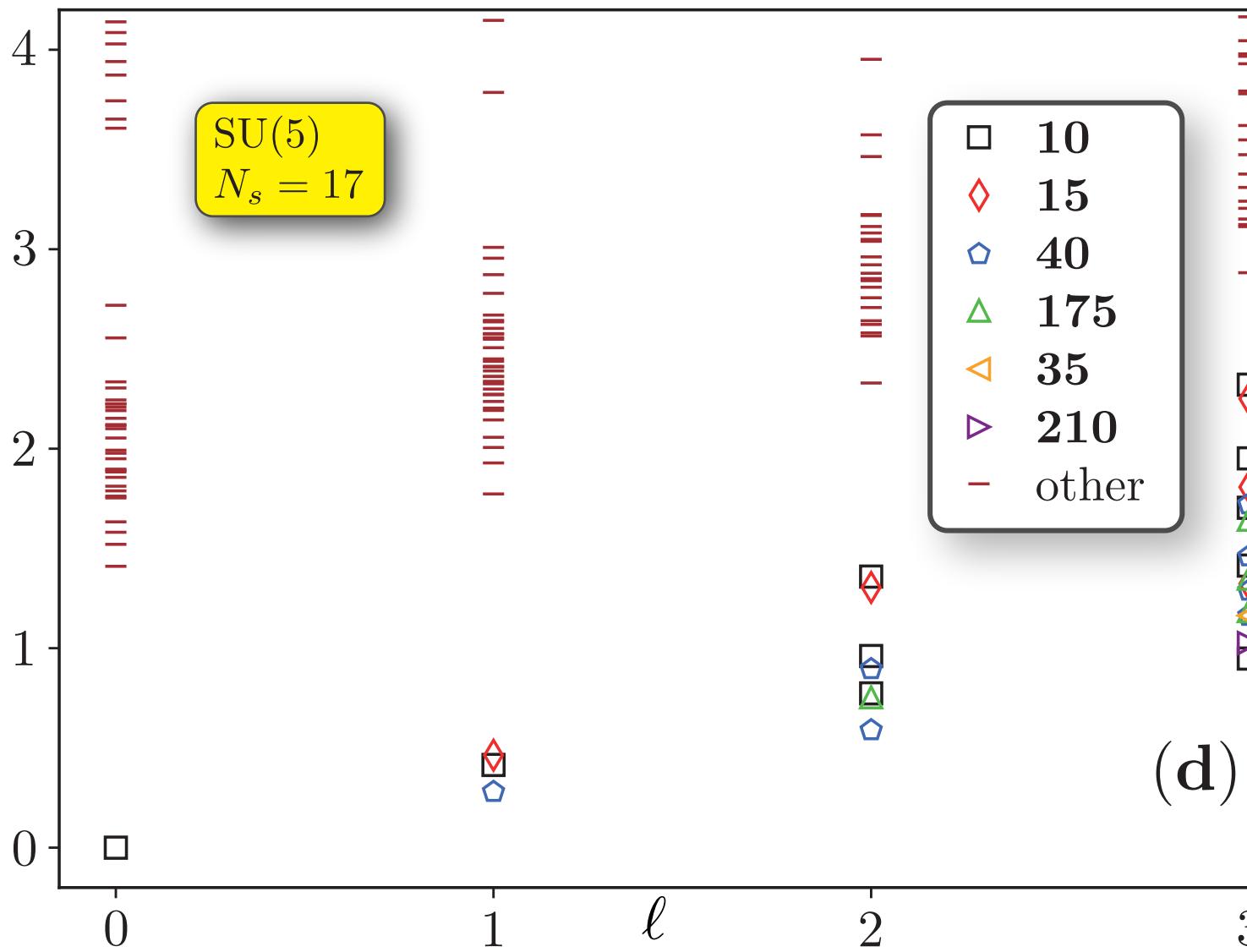
- If $\# \text{sites} = kN$: singlet ground-state degeneracy on a torus = N
- Lattice momenta can be obtained from a generalized Pauli principle
Haldane, Bernevig, Regnault,....
- Quasi-hole counting: $\text{deg} = \# \text{sites}$, 1 per momentum sector



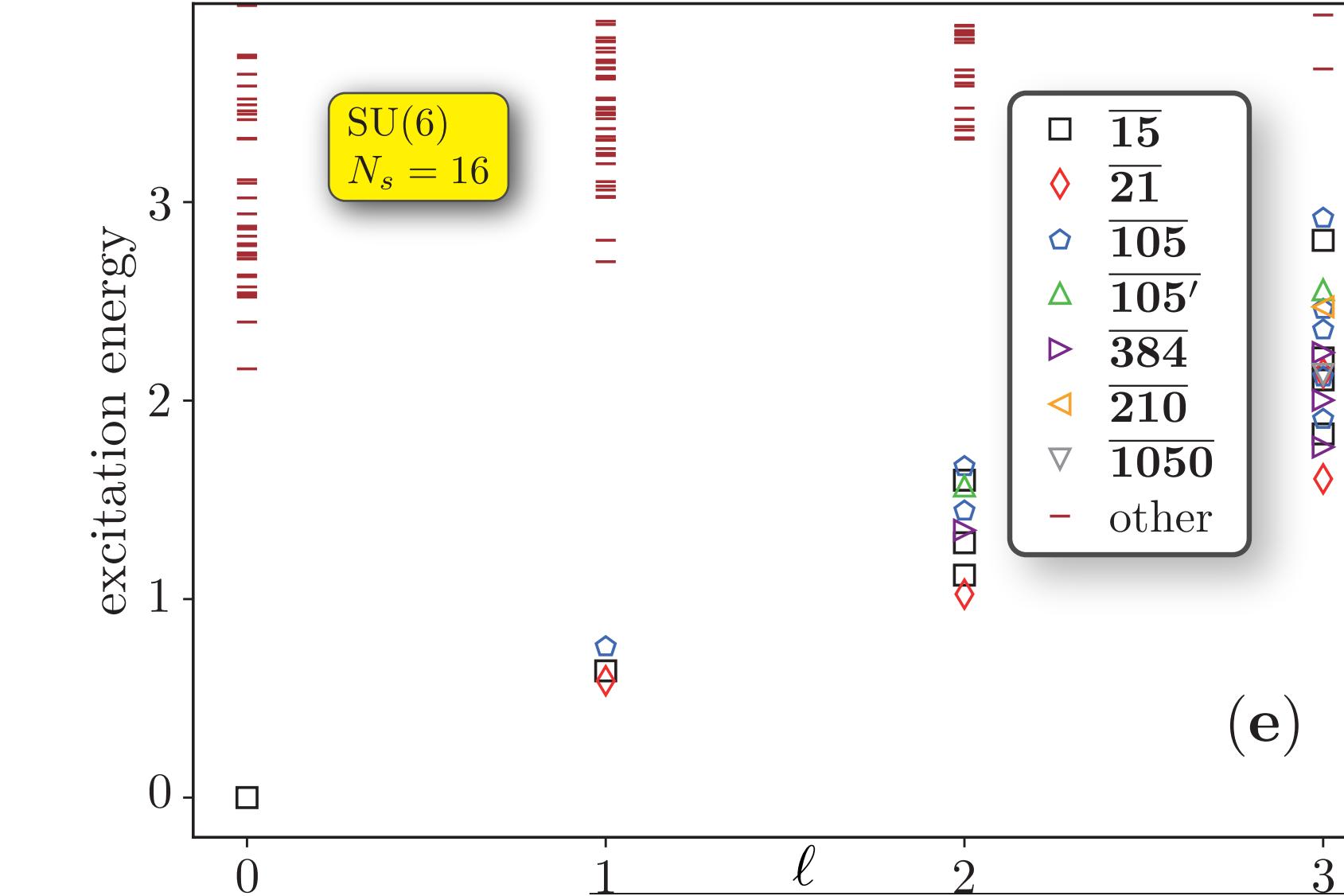
Exact Diagonalization on open cluster



- $SU(N)_1$ chiral CFT counting (number of sites = N_s)



(d)



(e)

$l - l_0$	Order	Irreps / Multiplicities
0	$q^{3/5}$	$\mathbf{1} \begin{smallmatrix} 10 \\ \square \end{smallmatrix}$
1	$q^{8/5}$	$\mathbf{1} \begin{smallmatrix} 10 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 15 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 40 \\ \square \end{smallmatrix}$
2	$q^{13/5}$	$\mathbf{3} \begin{smallmatrix} 10 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 15 \\ \square \end{smallmatrix} \oplus \mathbf{2} \begin{smallmatrix} 40 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 175 \\ \square \end{smallmatrix}$
3	$q^{18/5}$	$\mathbf{5} \begin{smallmatrix} 10 \\ \square \end{smallmatrix} \oplus \mathbf{3} \begin{smallmatrix} 15 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 35 \\ \square \end{smallmatrix} \oplus \mathbf{4} \begin{smallmatrix} 40 \\ \square \end{smallmatrix} \oplus \mathbf{3} \begin{smallmatrix} 175 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 210 \\ \square \end{smallmatrix}$

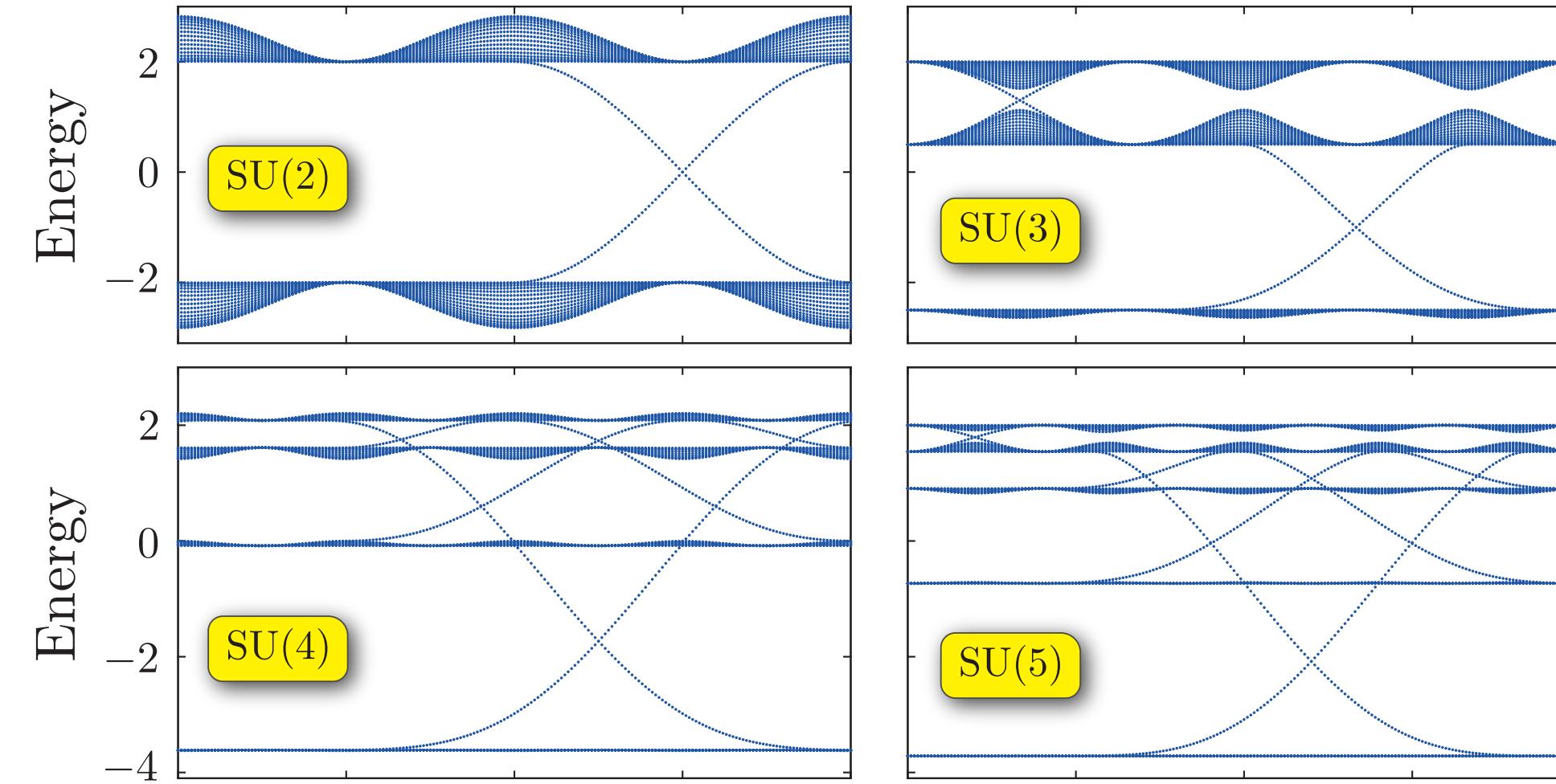
perfect
agreement !

$l - l_0$	Order	Irreps / Multiplicities
0	$q^{2/3}$	$\mathbf{1} \begin{smallmatrix} 15 \\ \square \end{smallmatrix}$
1	$q^{5/3}$	$\mathbf{1} \begin{smallmatrix} 15 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 21 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 105 \\ \square \end{smallmatrix}$
2	$q^{8/3}$	$\mathbf{3} \begin{smallmatrix} 15 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 21 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 105' \\ \square \end{smallmatrix} \oplus \mathbf{2} \begin{smallmatrix} 105 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 384 \\ \square \end{smallmatrix}$
3	$q^{11/3}$	$\mathbf{5} \begin{smallmatrix} 15 \\ \square \end{smallmatrix} \oplus \mathbf{3} \begin{smallmatrix} 21 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 105' \\ \square \end{smallmatrix} \oplus \mathbf{5} \begin{smallmatrix} 105 \\ \square \end{smallmatrix} \oplus \mathbf{3} \begin{smallmatrix} 210' \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 384 \\ \square \end{smallmatrix} \oplus \mathbf{1} \begin{smallmatrix} 1050 \\ \square \end{smallmatrix}$

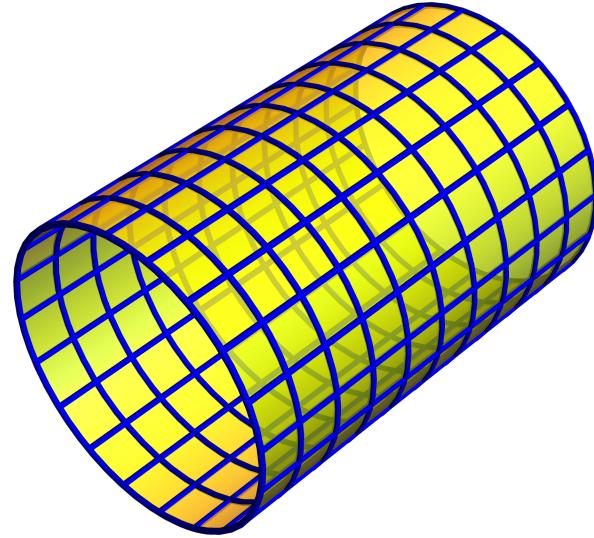
DMRG

Wu, Wang, Tu, PRL 124, 246401 (2020)

- Parton construction is useful to boost DMRG convergence

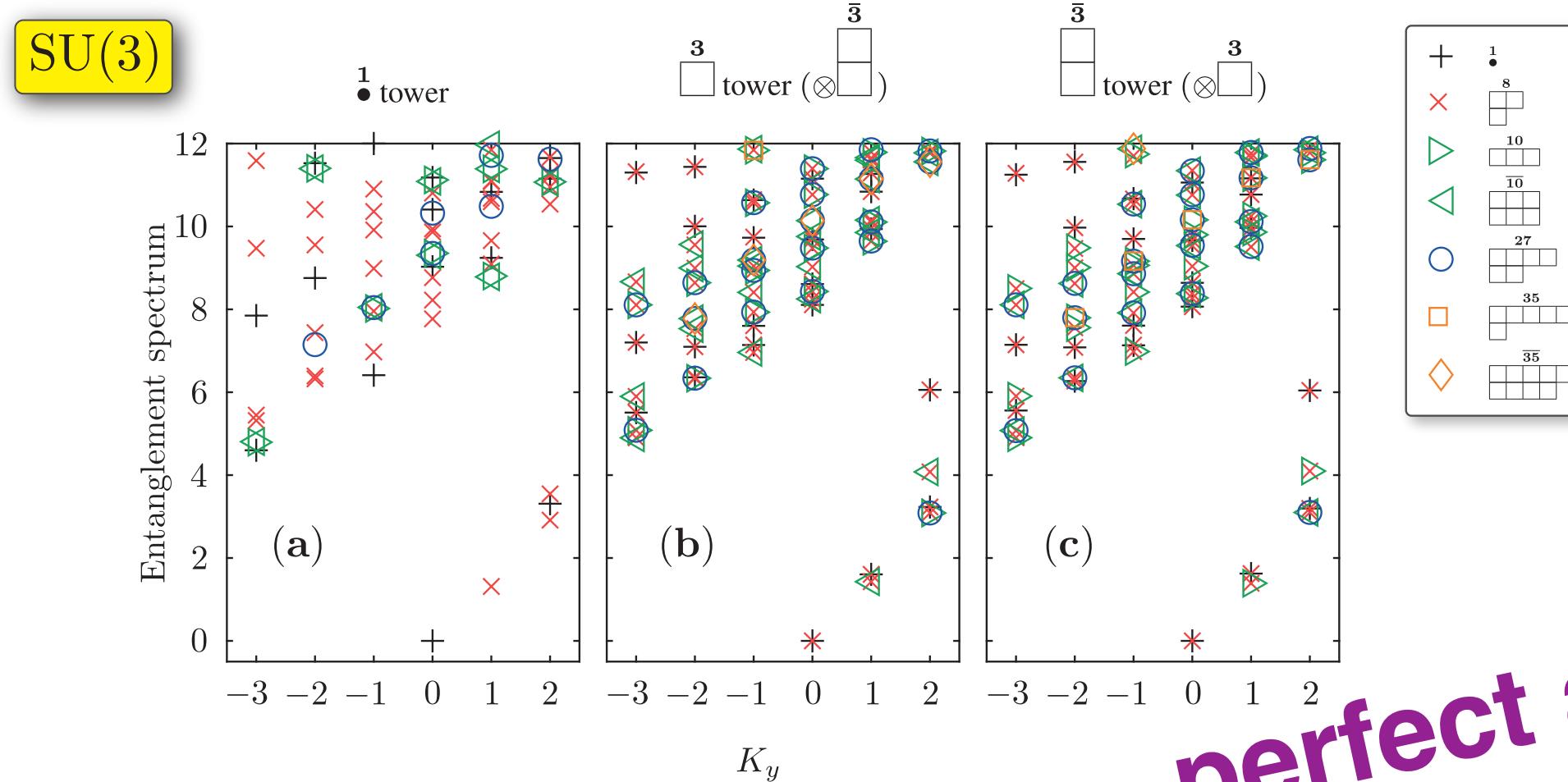


Spectrum on cylinder vs K_y
Exact zero-mode edge states

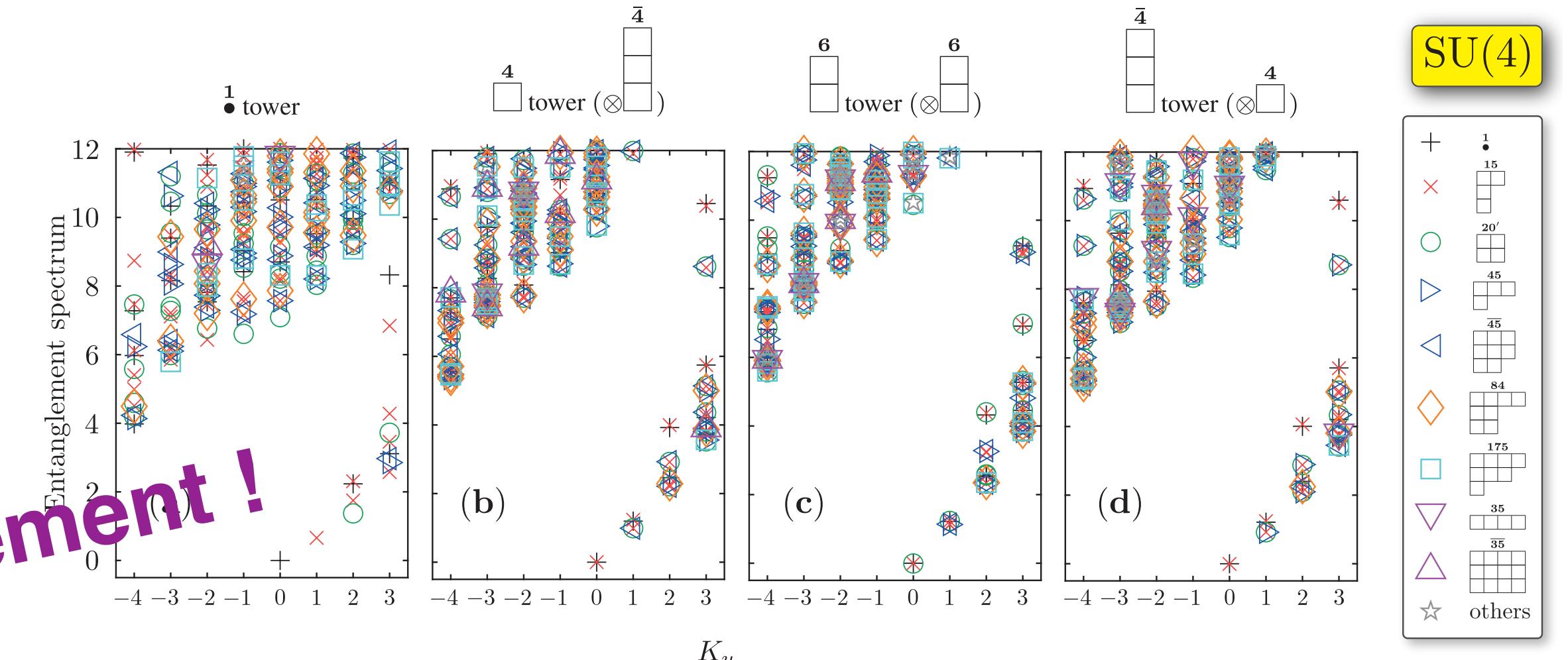


Construct N different minimally entangled states to target different excitations

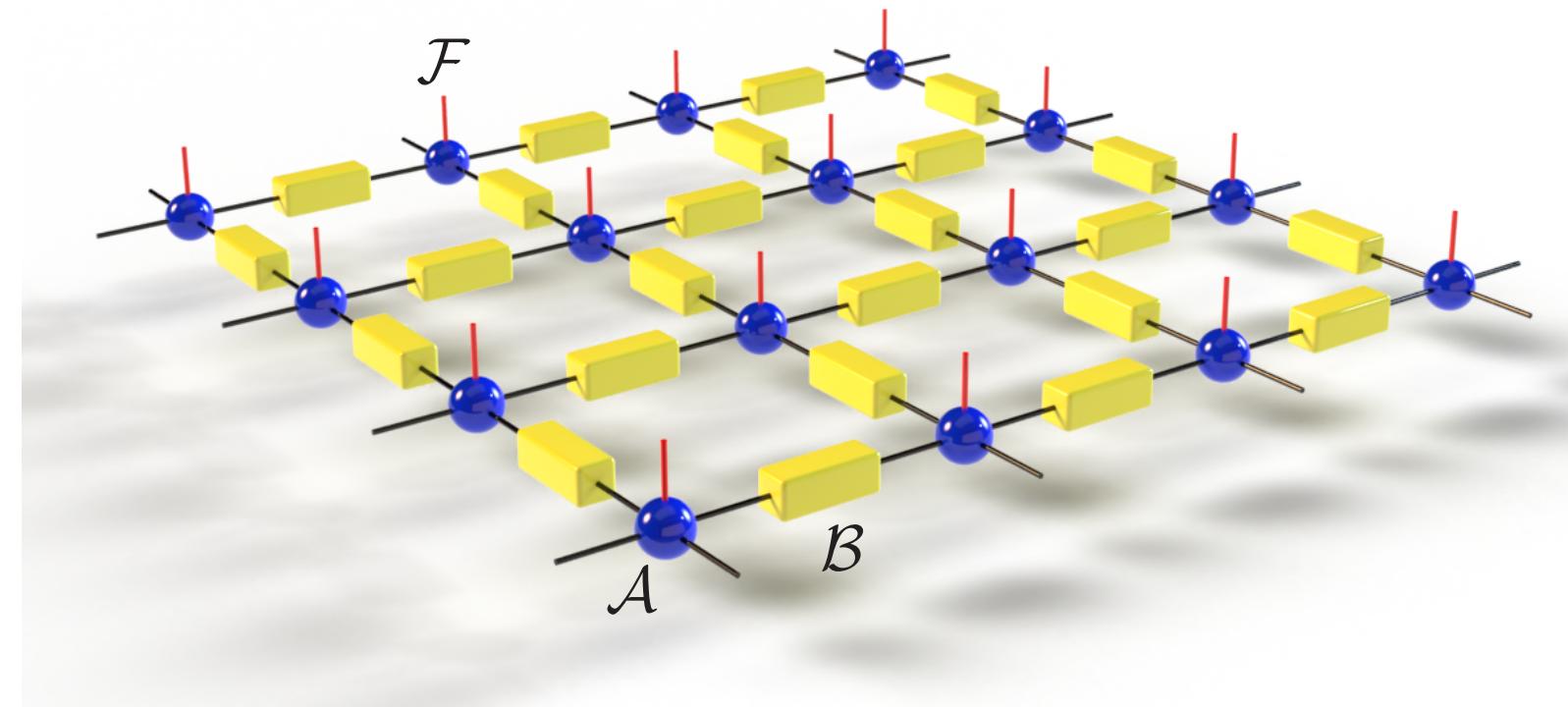
- Probe entanglement spectrum as fingerprint of topological order



perfect agreement !



PEPS



- Symmetric PEPS construction

virtual space: $\mathcal{V}_N = \bullet \oplus \square \oplus \cdots \oplus \left. \begin{array}{c} \square \\ \square \\ \vdots \\ \square \end{array} \right\} N-1$

$$\mathcal{A} : (\mathcal{V}_N)^{\otimes z} \rightarrow \mathcal{F} \quad \mathcal{B} : (\mathcal{V}_N)^{\otimes 2} \rightarrow \bullet$$

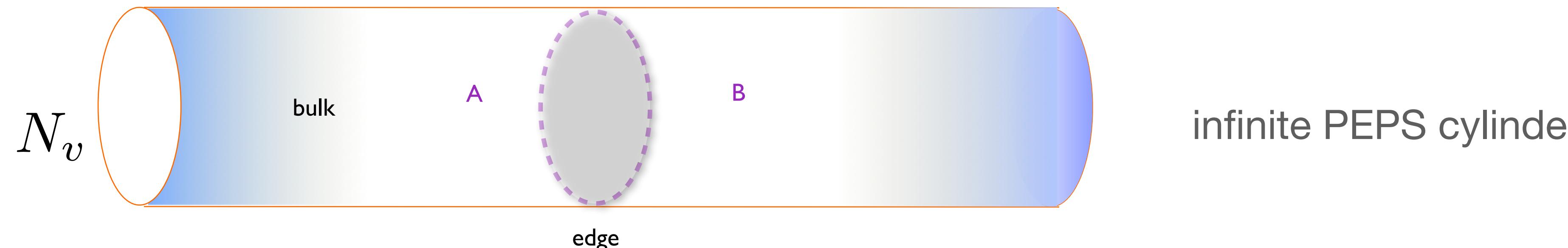
CSL breaks P and T but not PT

$$\mathcal{A} = \mathcal{A}_R + i\mathcal{A}_I = \sum_{a=1}^{N_R} \lambda_a^R \mathcal{A}_R^a + i \sum_{b=1}^{N_I} \lambda_b^I \mathcal{A}_I^b$$

Tensor is a linear combination of point-group SU(N) symmetric ones

- Optimization is performed using CTMRG

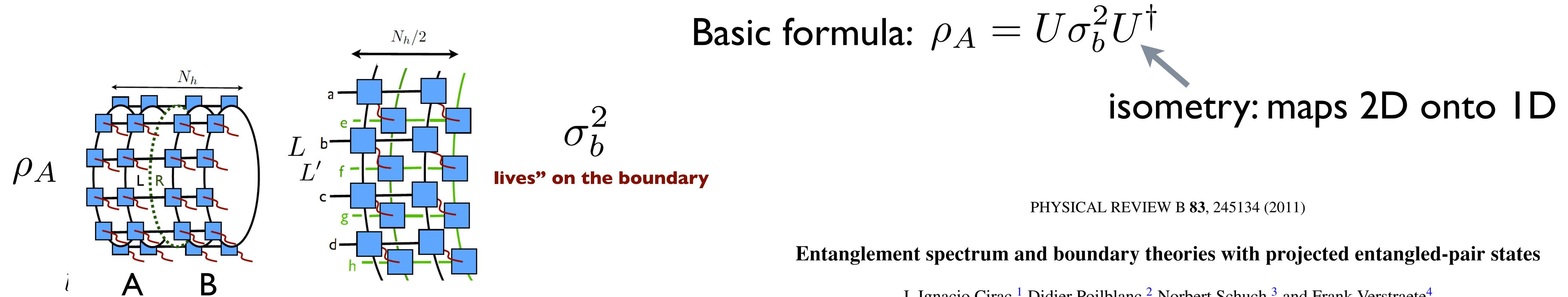
PEPS: entanglement spectrum



$$\rho_A = \text{Tr}_B |\Psi\rangle\langle\Psi| \quad \text{reduced density matrix}$$

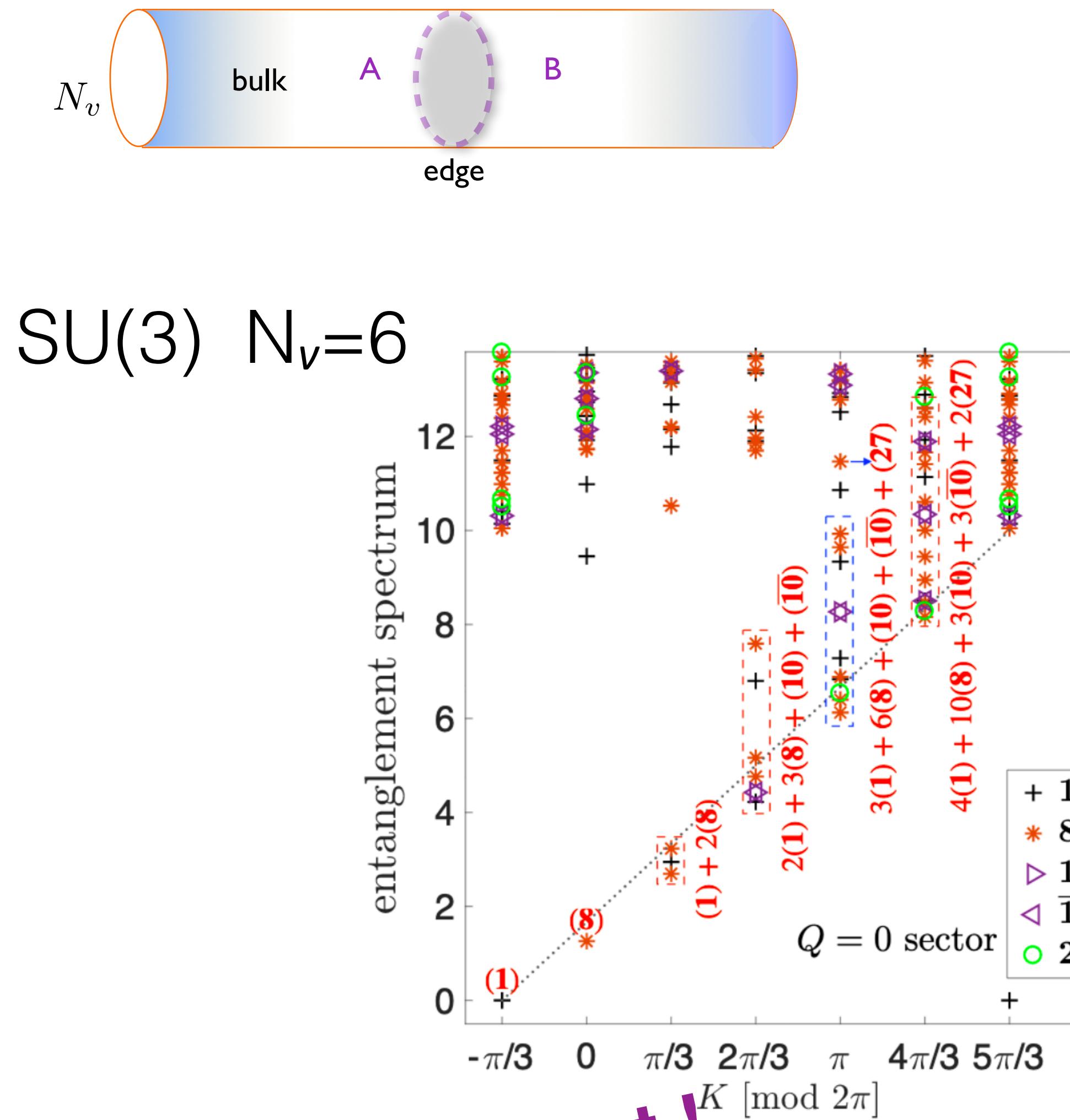
Li & Haldane '08

Entanglement spectrum is identical to a CFT boundary spectrum
a.k.a. holographic bulk-edge correspondence



PEPS: entanglement spectrum

infinite PEPS cylinder

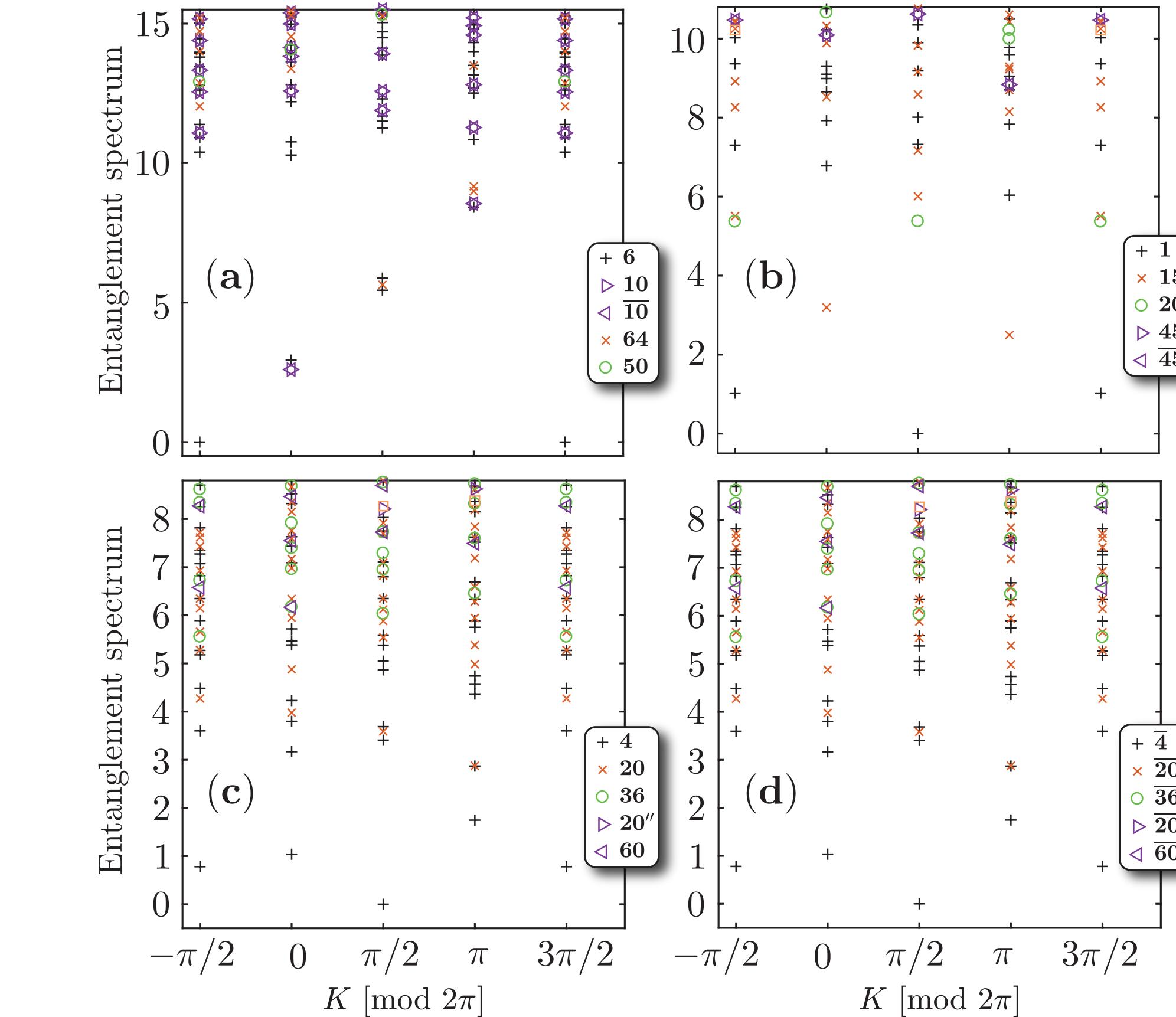


perfect agreement !

$SU(4)$, $N_v=4$, full $SU(N)$ symmetry

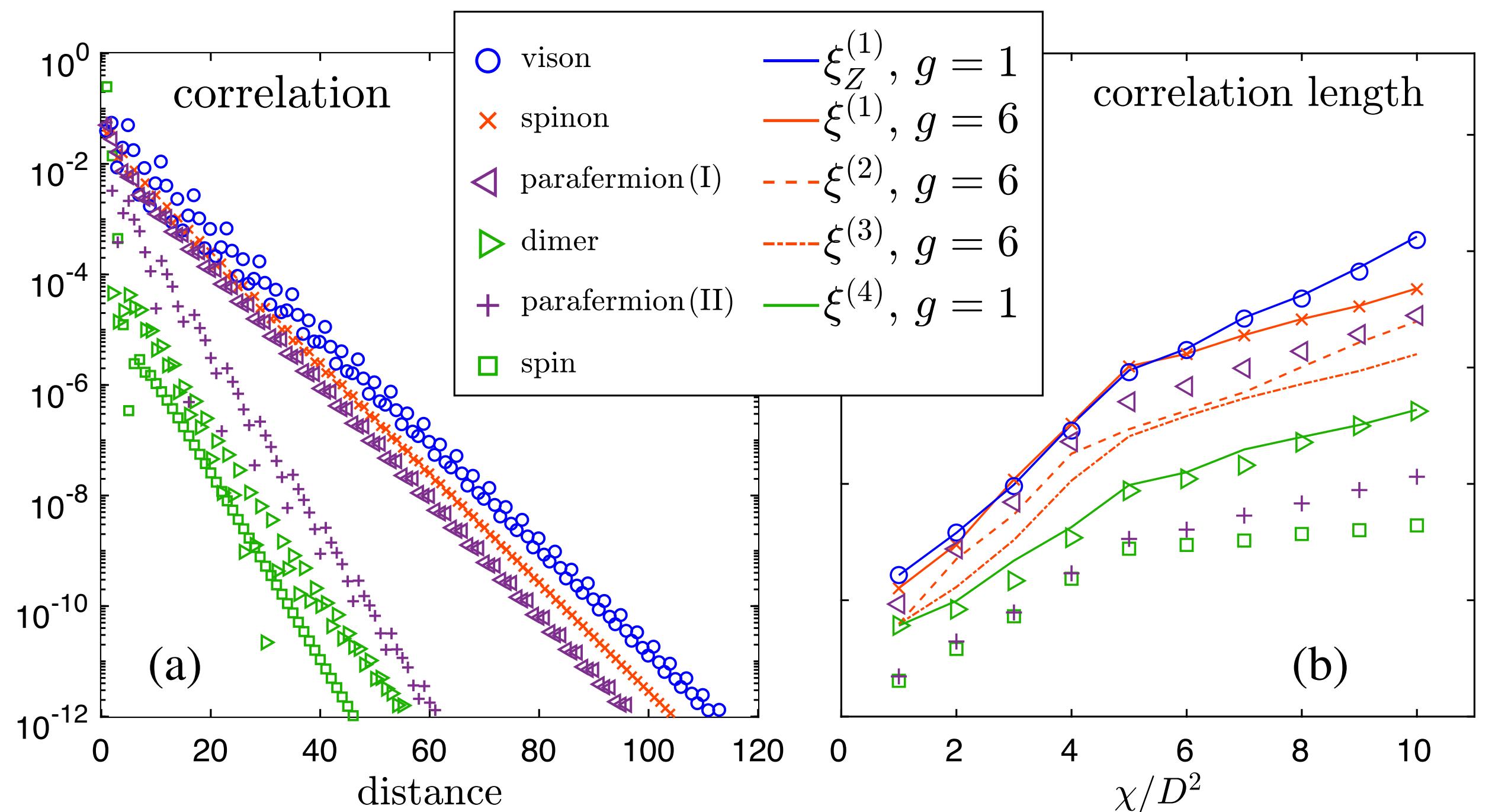
$D=15$

$\chi = 1350$



PEPS: correlation lengths

SU(3)



Correlations in the bulk

Correlation length directly from transfer matrix

No saturation so presumably **gapless state** !?

No-go theorem for a free-fermion PEPS to have a bulk gap Dubail & Read '15
Also true in the interacting case Li, Lin, McGreevy, Shi '25

Abelian CSL: spontaneous T-breaking

Topological CSL can also be found in the **absence** of explicit T-breaking

PRL **112**, 137202 (2014)

PHYSICAL REVIEW LETTERS

week ending
4 APRIL 2014

PHYSICAL REVIEW B **92**, 125122 (2015)

Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model

Yin-Chen He,¹ D. N. Sheng,² and Yan Chen^{1,3}

SU(2)
Heisenberg

Nature of chiral spin liquids on the kagome lattice

Alexander Wietek,^{*} Antoine Sterdyniak, and Andreas M. Läuchli

PHYSICAL REVIEW X **10**, 021042 (2020)

Quantum Spin Liquid with Emergent Chiral Order in the Triangular-lattice Hubbard Model

Bin-Bin Chen,^{1,2} Ziyu Chen,¹ Shou-Shu Gong,^{1,*} D. N. Sheng,³ Wei Li,^{1,4,†} and Andreas Weichselbaum^{5,2,‡}

SU(2)
Hubbard

An $SU(4)$ chiral spin liquid and quantized dipole Hall effect in moiré bilayers

Ya-Hui Zhang¹, D. N. Sheng², and Ashvin Vishwanath¹

Chiral Spin Liquid Phase of the Triangular Lattice Hubbard Model: A Density Matrix Renormalization Group Study

Aaron Szasz^{1,2,3,*}, Johannes Motruk,^{1,2} Michael P. Zaletel,^{1,2,4} and Joel E. Moore^{1,2}

Non-abelian case: $SU(2)$

non abelian FQHS

Moore-Read
Read-Rezayi

incompressible (gapped) in the bulk

Spin analogue ?

non abelian fractional excitation

Parent Hamiltonian approach

gapless chiral edge states

$SU(2)_k$ CFT

Coupled wire construction

These topological phases can host $SU(2)_k$ non-abelian anyons !

Moore-Read state corresponds to **spin-1** lattice model

New Journal of Physics

The open access journal at the forefront of physics

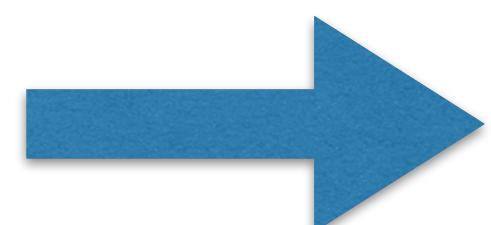
Deutsche Physikalische Gesellschaft **DPG**
IOP Institute of Physics

Published in partnership
with: Deutsche Physikalische
Gesellschaft and the Institute
of Physics

FAST TRACK COMMUNICATION

Exact parent Hamiltonians of bosonic and fermionic Moore-Read
states on lattices and local models

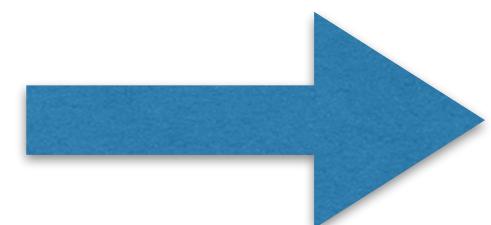
Ivan Glasser¹, J Ignacio Cirac¹, Germán Sierra^{2,3} and Anne E B Nielsen¹



truncated approximate spin-1
model on the square lattice

Proposed parent Hamiltonian
is rather complicated,
long-range

$$\begin{aligned} H = & J_1 \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle\langle k,l \rangle\rangle} \mathbf{S}_k \cdot \mathbf{S}_l \\ & + K_1 \sum_{\langle i,j \rangle} (\mathbf{S}_i \cdot \mathbf{S}_j)^2 + K_2 \sum_{\langle\langle k,l \rangle\rangle} (\mathbf{S}_k \cdot \mathbf{S}_l)^2 \\ & + K_c \sum_{\square} [\mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k) + \mathbf{S}_j \cdot (\mathbf{S}_k \times \mathbf{S}_m) \\ & + \mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_m) + \mathbf{S}_i \cdot (\mathbf{S}_k \times \mathbf{S}_m)], \end{aligned}$$



numerics needed

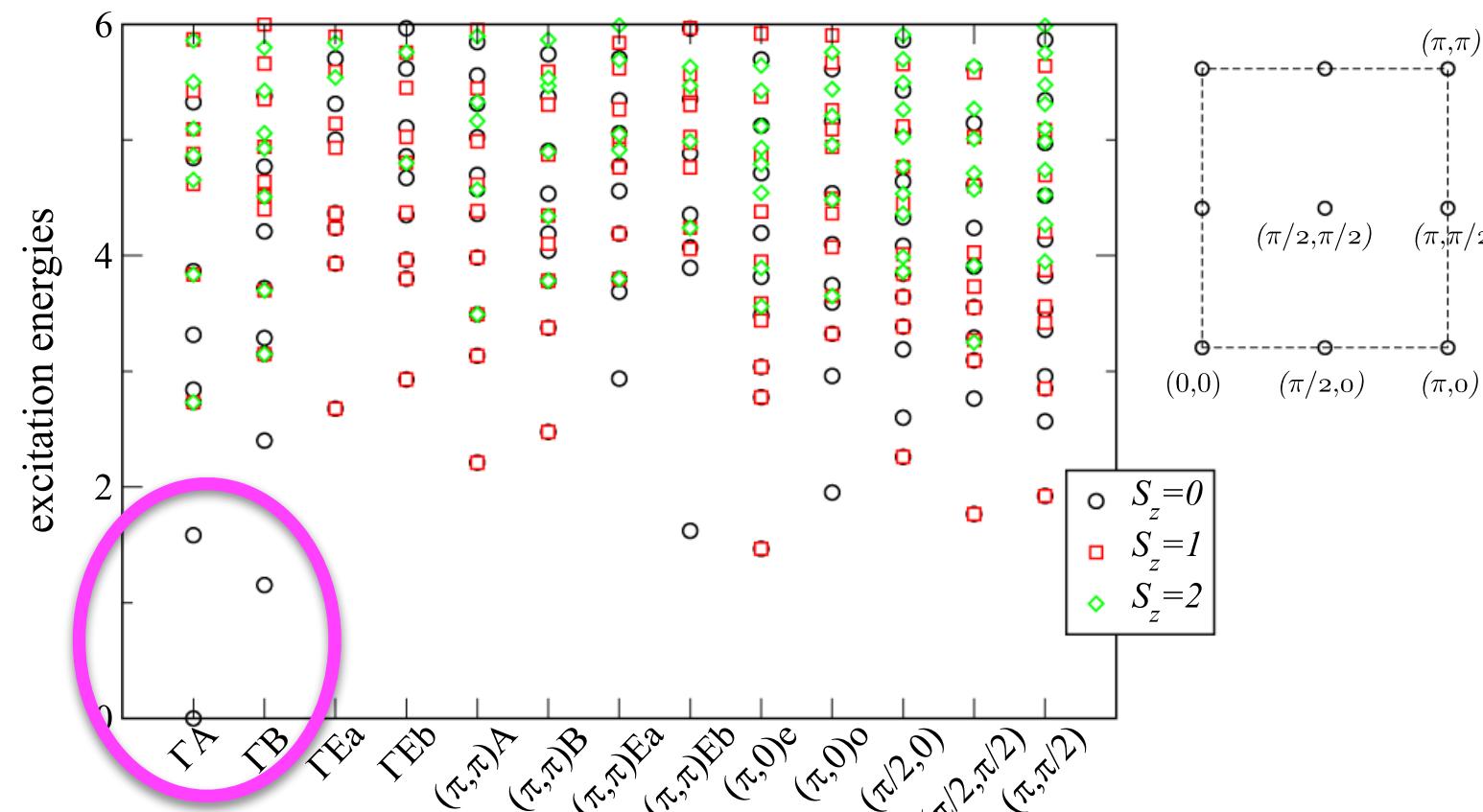
Combined ED/DMRG/PEPS study

PHYSICAL REVIEW B 98, 184409 (2018)

Non-Abelian chiral spin liquid in a quantum antiferromagnet revealed by an iPEPS study

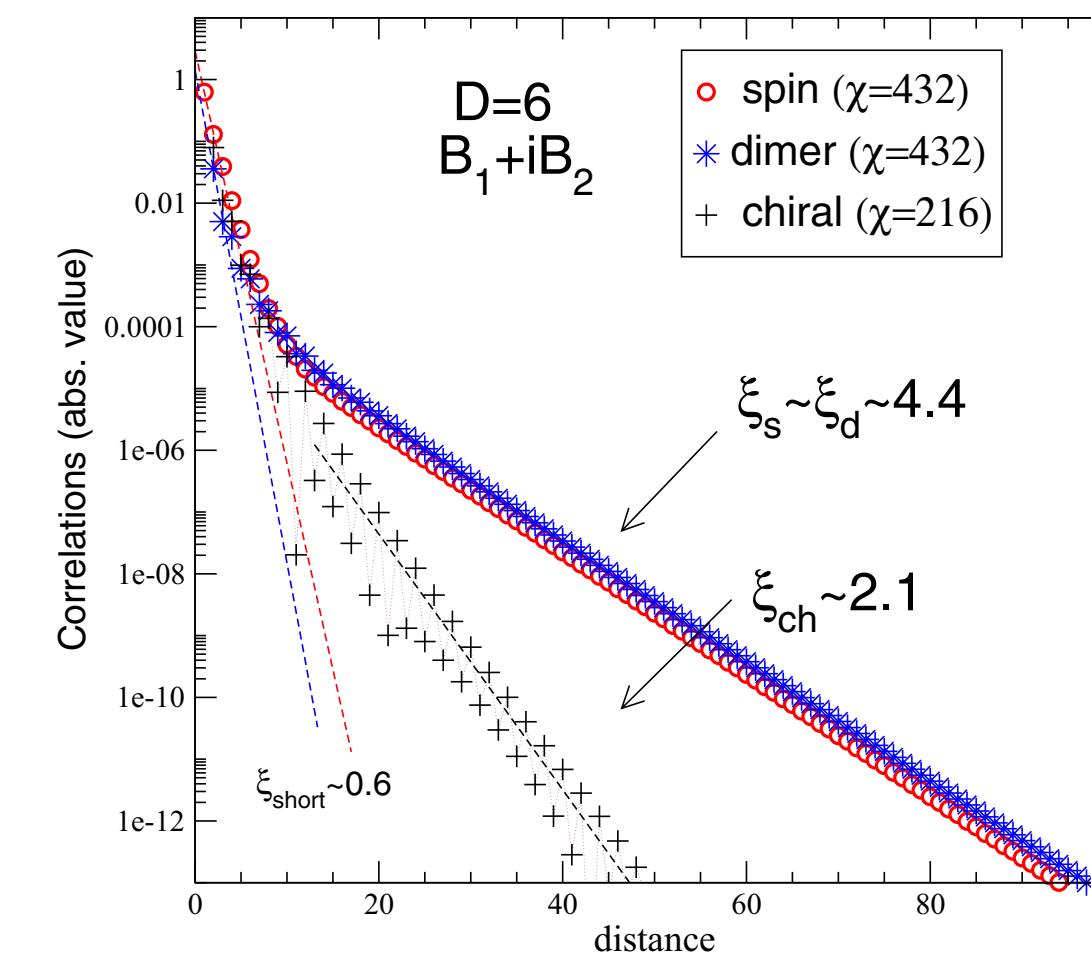
Ji-Yao Chen,¹ Laurens Vanderstraeten,² Sylvain Capponi,¹ and Didier Poilblanc^{1,3}

ED on a torus



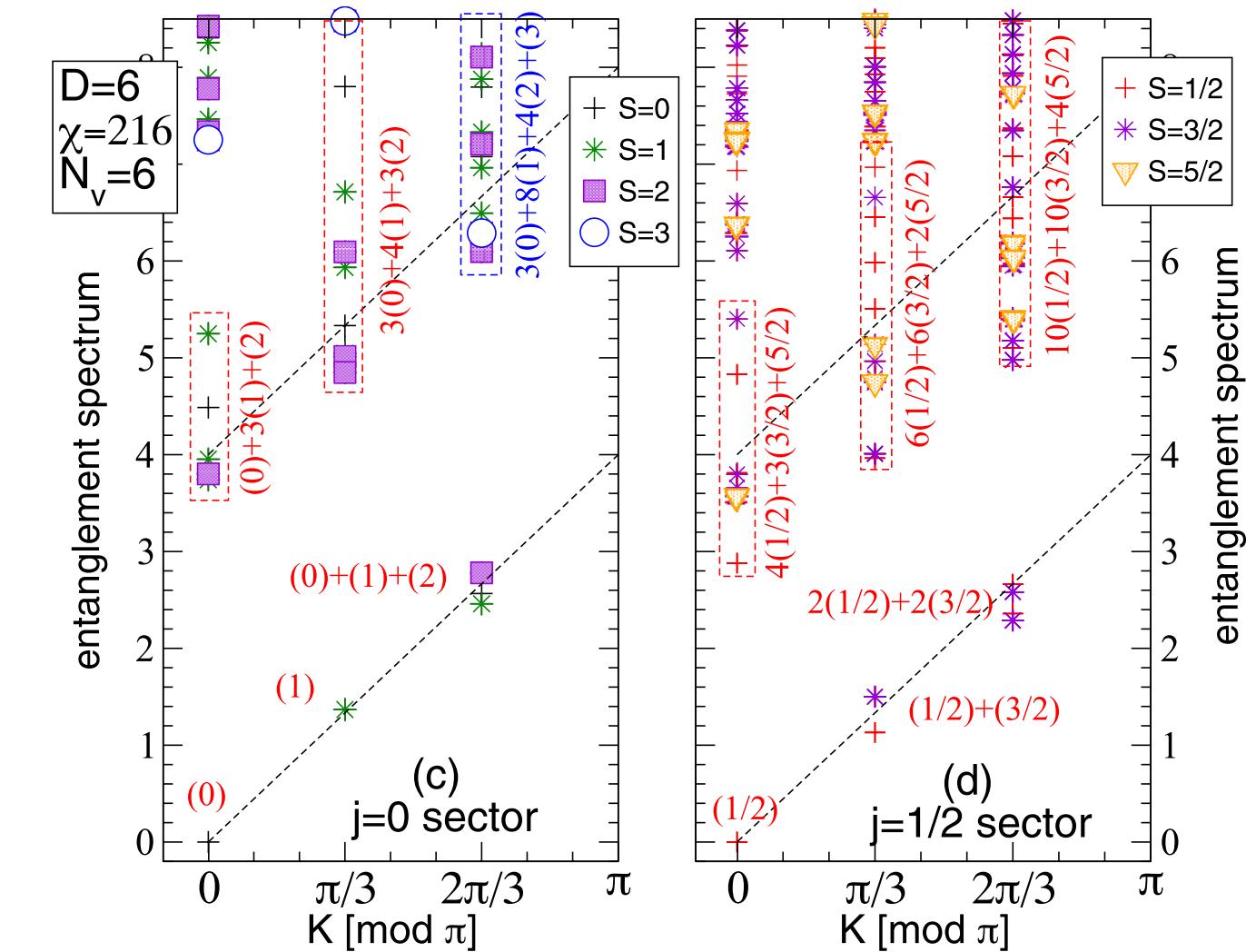
3 states

PEPS bulk correlation



gossamer critical tail

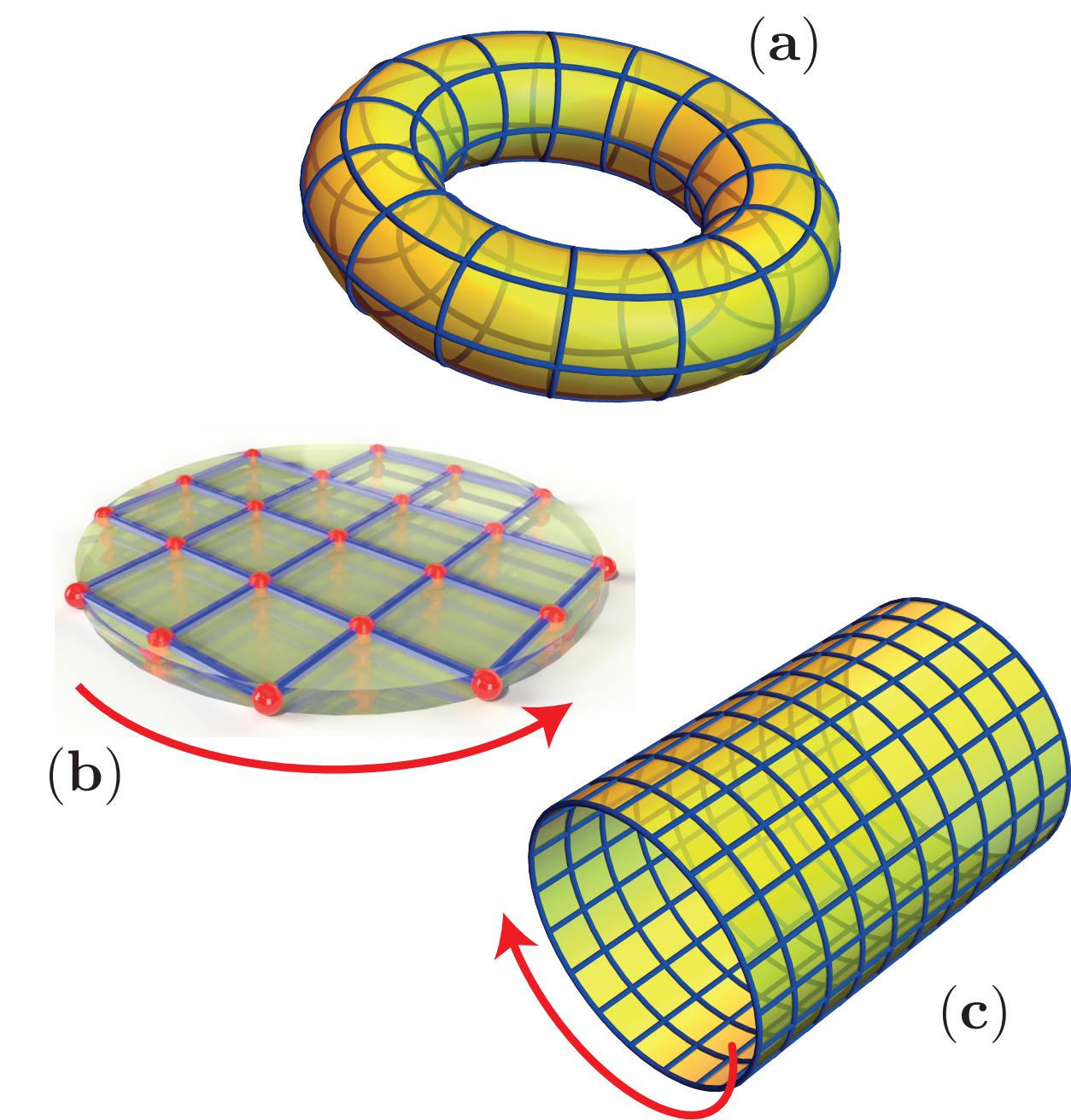
PEPS edge entanglement



agrees with **SU(2)₂** WZW

c=3/2

Conclusion and outlook



- Simple $SU(N)$ spin models hosting **topological chiral spin liquids**
- Important to combine different numerical techniques to validate all properties
- Characterization of edge states and entanglement properties
- Also non-Abelian CSL with $SU(2)_2$, $SU(2)_3$, $SU(3)_2$, etc... edges physics

Luo, Huang, Sheng, Zhu '23