

Vacancy-induced local moment instability of RVB spin liquids

Kedar Damle (TIFR-Mumbai)

1

Advanced School and Conference on Quantum Matter (ICTP Dec 2025)

unpublished:

Bhola, KD, arXiv:2311.05634v2 (2025); Ansari, Kundu, KD (in preparation)

recent:

Ansari, KD, PRL 132 226504 (2024)

Bhola, Biswas, Islam, KD, PRX 12, 021058 (2022)

KD, PRB 105 235118 (2022)

background:

Sanyal, KD, Chalker, Moessner PRL 127 127201 (2021)

Sanyal, KD, Motrunich, PRL 117 116806 (2016)

Antiferromagnetism and Frustration

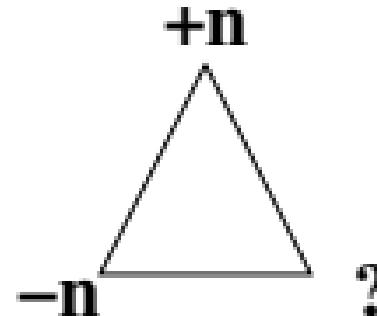
Bipartite lattices: A-sublattice spins point “up”, B-sublattice spins point “down”

up and down about what axis? Spontaneous symmetry breaking

Geometric frustration

Triangles in the nearest neighbor connectivity

Collinear antiferromagnet frustrated

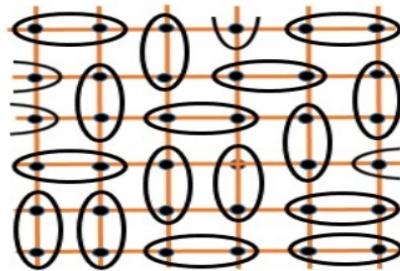


Higher orders in strong coupling expansion:

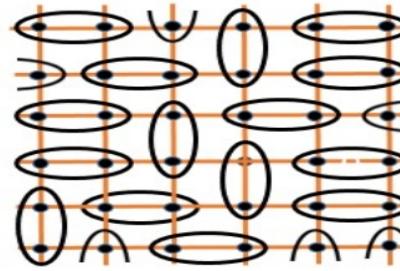
Four-spin couplings: Ring exchange around plaquettes

Simple antiferromagnetic state again frustrated.

Frustration induced quantum disordered states



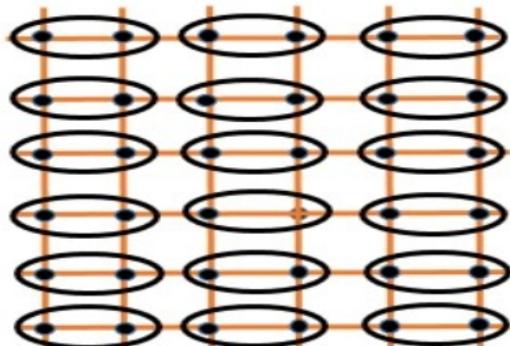
+



+

.....

Short-range resonating valence bond (sRVB) spin liquid



Valence bond solid (VBS)
(with spontaneous lattice symmetry breaking)

Our focus: Effect of quenched disorder aka dirt

Substitutional impurities, interstitial adatoms, structural defects...

Quenched (on electronic timescales).

Not to be confused with doping with mobile holes...

Our focus: Non-magnetic substitutional impurities--- e.g Zn for Cu, Ga for Cr

e.g. in Herbersmithite, SCGO...

Variety of effects

Weak disorder: Can be irrelevant for low energy properties (not always).

Strong disorder: new phases of matter (e.g. spin glasses)

Can probe correlations of underlying state (e.g. spin textures in frustrated magnets)

Quantum dimer model framework for RVB/VBS states

Rokhsar and Kivelson: Effective Hamiltonian living in subspace of singlets spanned by nn VB

$$H_{QDM} = -t(| = \rangle \langle \parallel | + | \parallel \rangle \langle = |) + \dots$$

More generally: Ring-exchange kinetic terms on “flippable” plaquettes, and local interactions

Additional terms incorporate the effect of matrix elements to further-neighbor singlet states

Z2 spin liquid example: Triangular QDM

Triangular lattice: Moessner-Sondhi (within QDM framework):

Triangular lattice QDM has truly quantum disordered phase

Short-range spin correlations, valence bond correlations, genuine Z2 spin liquid

(also for kagome lattice)

Language primer: Fully-packed dimers (perfect matchings)

Fully-packed hard-core dimer models in stat-mech: Match **each** site to an adjacent site monogamously

In graph theory/computer science: The perfect matching problem

Easy to see (for regular lattices like square, triangular, honeycomb, kagome...):

Extensive entropy of fully-packed dimer covers (perfect matchings)

(exact computation of entropy on planar graphs: Classic papers by Kasteleyn & Fisher)

(also exact results on special non-planar graphs: Chandra & Dhar)

QDM framework: Maximum matchings of disordered lattices

Basic question arises: Can a diluted lattice with even number of vertices be perfectly matched?

If bipartite, need $|A| = |B|$

But: generally not possible (even with $|A|=|B|$)

Then have *maximum matching* but not *perfect matching*

Maximum matchings have unmatched sites that host monomers

Generally, nonzero vacancy density implies nonzero density of monomers (multi-vacancy effect)

Non-bipartite case more subtle

Same question: Can a lattice with even number of vertices be perfectly matched?

Two classes of disordered lattices

Generic disordered case (e.g. site-diluted triangular lattice):

nonzero vacancy density implies nonzero density w of monomers (multi-vacancy effect)

Non-generic “claw-free” case (e.g. site-diluted kagome lattice):

Vanishing bulk density of monomers for arbitrary vacancy concentrations/correlations

Monomers correspond to “emergent” local moments in spin system

Each monomer corresponds to a disorder-induced “emergent” local moment
(purely kinematic effect, independent of VBS vs RVB nature of ground state)

Signature: Large intermediate temperature range with Curie tail in susceptibility

Quenched below scale set by residual interactions

$$\begin{aligned}\chi_{\text{imp}} &\sim \frac{\mathcal{C}}{T} \quad \text{for } J_{\text{eff}} \ll T \ll J \\ \mathcal{C} &\propto n_{\text{monomer}}\end{aligned}$$

But wait: This conclusion seems to rely too much on having only nearest-neighbor singlets?
Does it hold for more generic short-range RVB liquid?

To answer: large- N route to quantum dimer model

$$\begin{aligned} H &= J \sum_{\langle rr' \rangle} \vec{S}_r \cdot \vec{S}_{r'} + \dots \\ &= -J \sum_{\langle rr' \rangle} \left(\mathcal{P}_{rr'} - \frac{1}{4} \right) + \dots \end{aligned}$$

Enlarge symmetry group:

$$H = -\frac{J_m}{N} \sum_{\langle r_1 r_2 \rangle} \sum_{\alpha, \beta=1}^N |\alpha\rangle_{r_1} |\alpha\rangle_{r_2} \langle \beta|_{r_1} \langle \beta|_{r_2} + \dots ,$$

Affleck, Read, Sachdev, Auerbach, Penc, Mila, Coleman, Sandvik, Alet, Kawashima, Beach, Kaul... (1988 - now)

What's the enlarged symmetry?

$$\mathcal{A}_{\alpha\beta}(r) = -i(|\alpha\rangle_r\langle\beta|_r - |\beta\rangle_r\langle\alpha|_r) \quad \forall \text{ pairs } \alpha < \beta$$

$$\mathcal{S}_{\alpha\beta}(r) = (|\alpha\rangle_r\langle\beta|_r + |\beta\rangle_r\langle\alpha|_r) \quad \forall \text{ pairs } \alpha < \beta$$

$$\mathcal{Q}_{\alpha\alpha}(r) = (|\alpha\rangle_r\langle\alpha|_r - 1/N) \quad \forall \alpha = 1 \dots N-1$$

$$\mathcal{A}_{\alpha\beta}^{\text{tot}} = \sum_r \mathcal{A}_{\alpha\beta}(r) \quad \text{SO(N) symmetry on any arbitrary lattice}$$

$$\mathcal{S}_{\alpha\beta}^{\text{tot}} = \sum_r (-1)^r \mathcal{S}_{\alpha\beta}(r) \quad \text{Bipartite case: Enhanced "staggered" SU(N) symmetry}$$

$$\mathcal{Q}_{\alpha\beta}^{\text{tot}} = \sum_r (-1)^r \mathcal{Q}_{\alpha\beta}(r)$$

Large N limit in pure case

Any perfect (fully packed) dimer cover is a ground state (each dimer interpreted as singlet state)

Leading 1/N corrections: Captured precisely by QDM Hamiltonian with ring-exchange

Higher orders in 1/N: Additional local terms in QDM Hamiltonian

(Affleck, Read, Sachdev, Kaul...)

Recover the same QDM framework---without nearest-neighbor singlet assumption.

Disordered case: Large N limit

Any maximum matching now gives a large-N ground state.

Monomers correspond to free moments (additional degeneracy)

Leading 1/N corrections: QDM Hamiltonian with ring-exchange + monomer kinetic energy terms

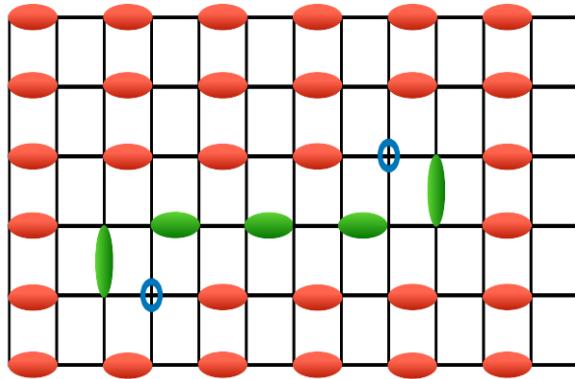
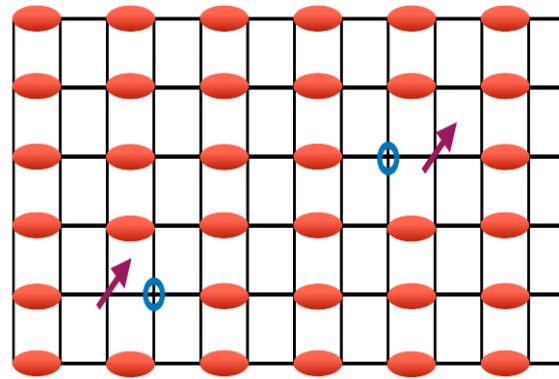
Higher orders in 1/N: Additional local terms in QDM Hamiltonian

Correspond to residual interactions between local moments... (?)

These control fate of system at lowest energies

So: Large N also gives maximally-packed QDM description of disorder effects in short-range RVB liquid

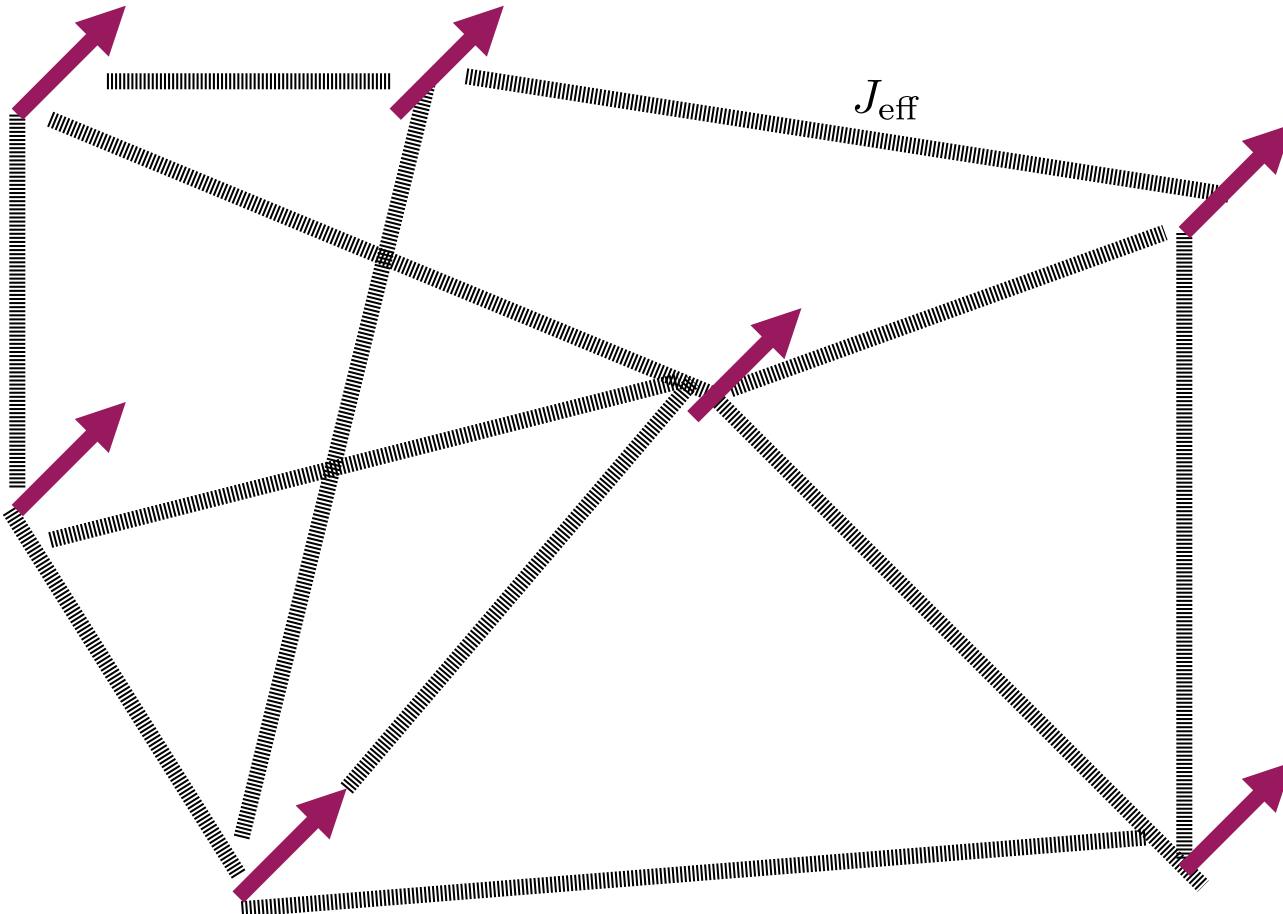
Contrast with VBS state



Each vacancy, even if isolated from other vacancies, seeds a local moment in a VBS state
(even when perfect matchings are possible, i.e even when there are no monomers)

In contrast, for sRVB case: Monomers of maximum matchings are sole mechanism

Summary: Distinct vacancy-induced local moment instabilities of RVB and VBS states



In RVB case, only if

$$w \neq 0$$

In VBS case, even when

$$w = 0 \text{ but } n_v \neq 0$$

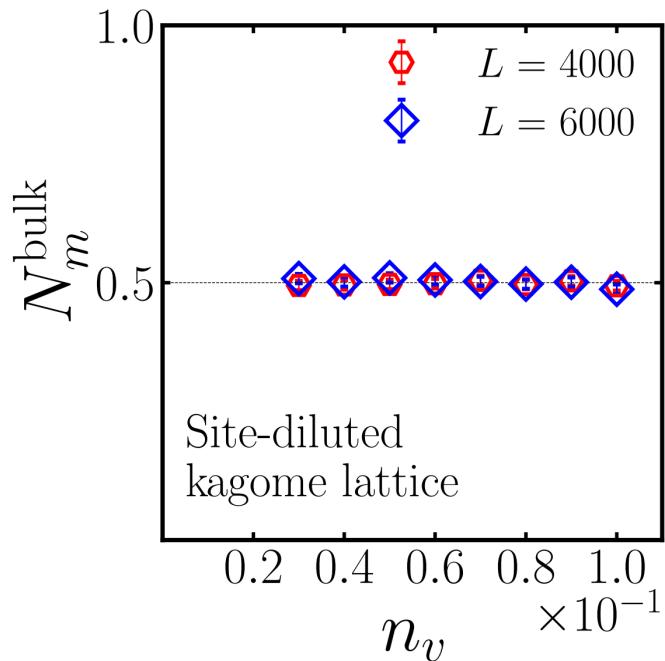
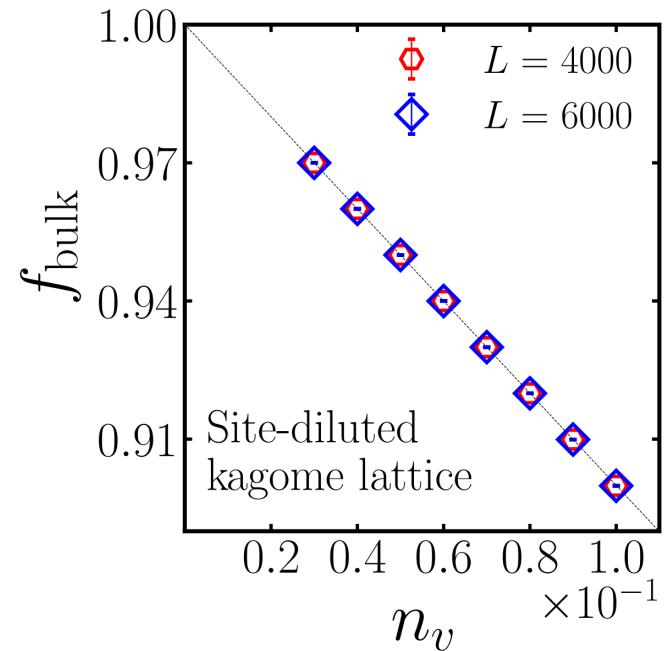
Striking implication: Stability of the kagome RVB liquid

$w=0$ in the thermodynamic limit of the diluted kagome lattice with nonzero vacancy density

Short-range RVB state stable to vacancy disorder on kagome lattice (!)

Generally true on all claw-free lattices (pyrochlore lattice, star lattice etc)

Explicit check for site-diluted kagome:



Any maximum matching has at most 1 monomer in each connected component of lattice(!)

Story so far:

VBS states always have vacancy-induced local moment instability (single-vacancy effect)

sRVB states have such an instability if maximum matchings have nonzero bulk monomer density. (multi-vacancy effect)

Key implication: Kagome sRVB liquid is stable

When there's an instability:

Nature of the actual many-body ground state controlled by random geometry of monomer-carrying regions

Motivates study of this random geometry

But first: key claims need computational test

Isolated vacancies do not seed local moments in sRVB states, but do so in VBS states.

Monomer-carrying regions of lattice correspond to local moments in both kinds of states

Primer: Computational tests

$O(N)$ models on non-bipartite lattices, $SU(N)$ models on bipartite lattices

Ideal unified test: χ^A (runs into computational difficulties)

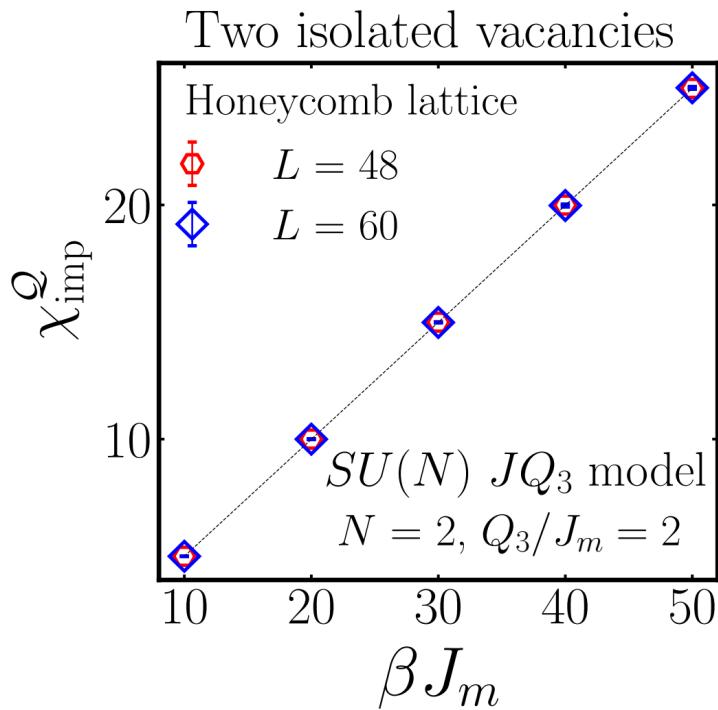
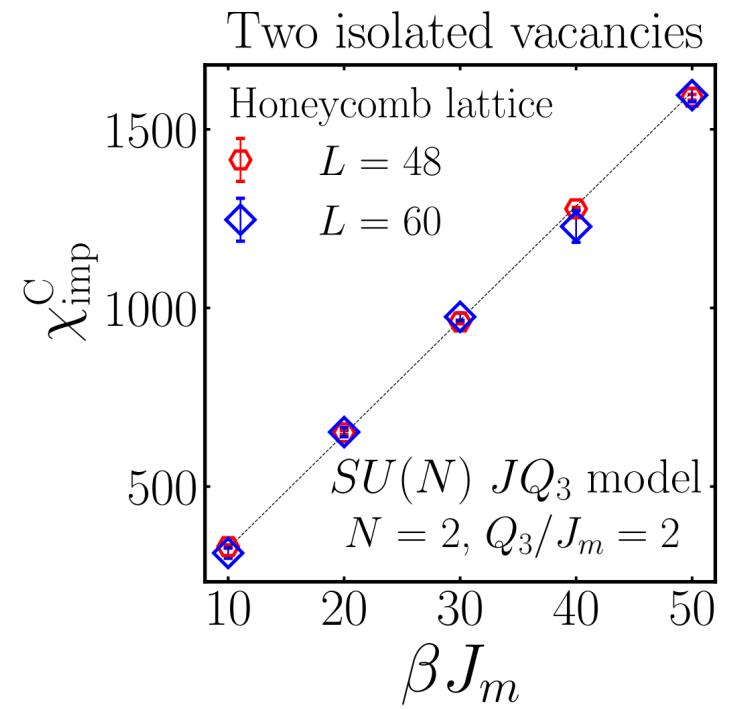
For $SU(N)$ systems, equivalent to checking: χ^Q

This is not defined for nonbipartite $O(N)$ models

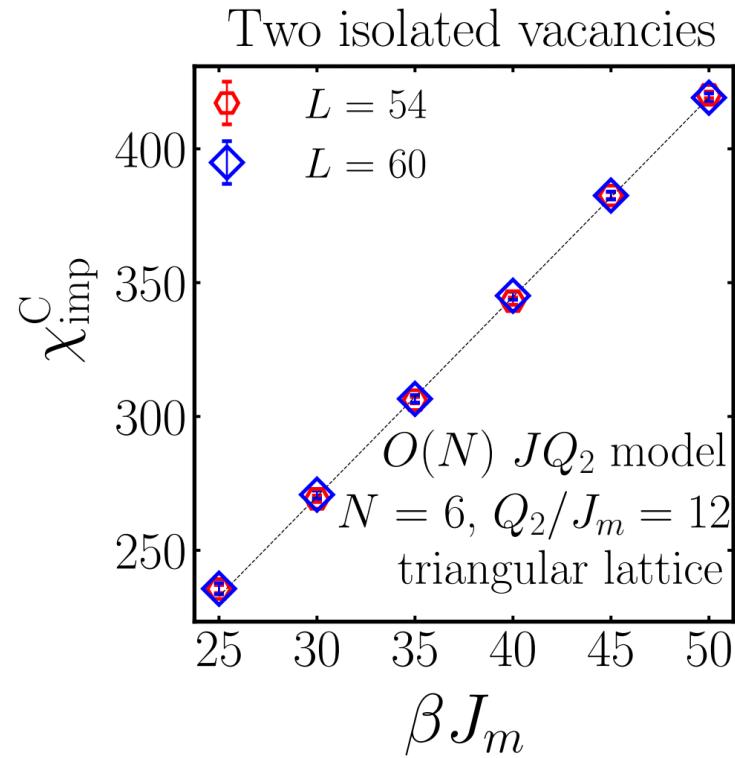
For $O(N)$ systems, can instead check: χ^C $C_{\alpha\alpha}^{\text{tot}} = \sum_r Q_{\alpha\alpha}(r)$

expected to be equivalent for $J_m \gg T \gg J_{\text{eff}}$

Isolated vacancies: VBS state (bipartite)

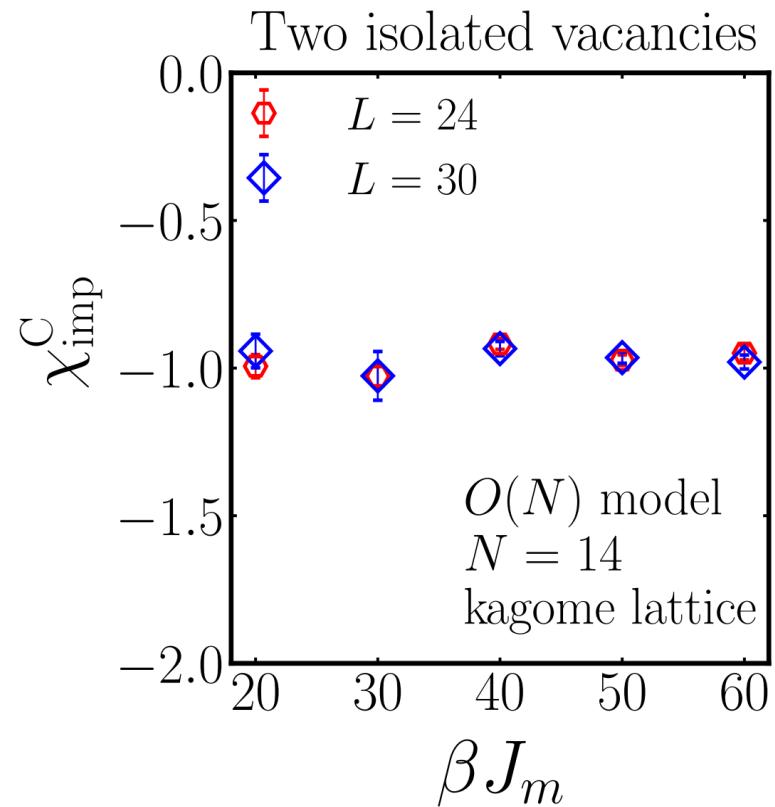


Isolated vacancies: VBS state (nonbipartite)

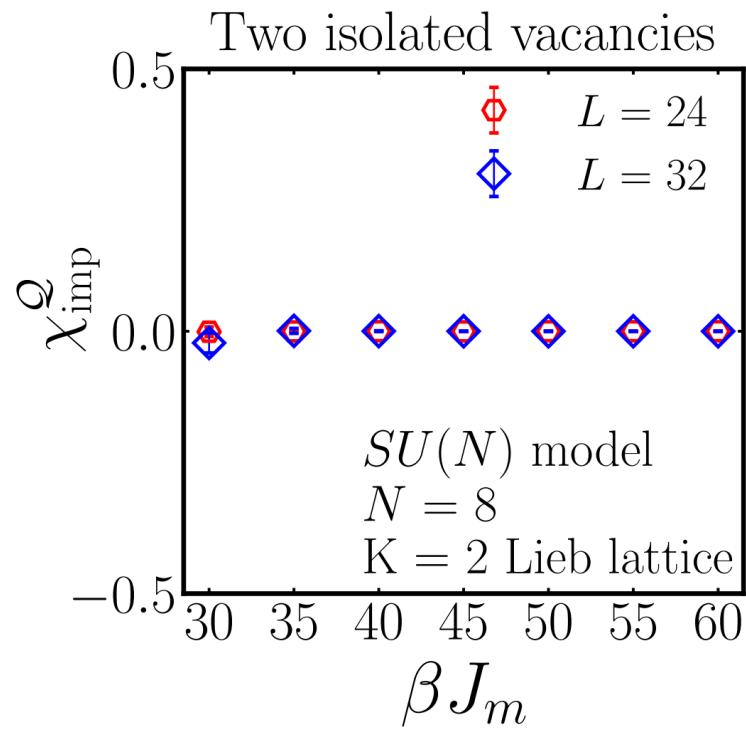
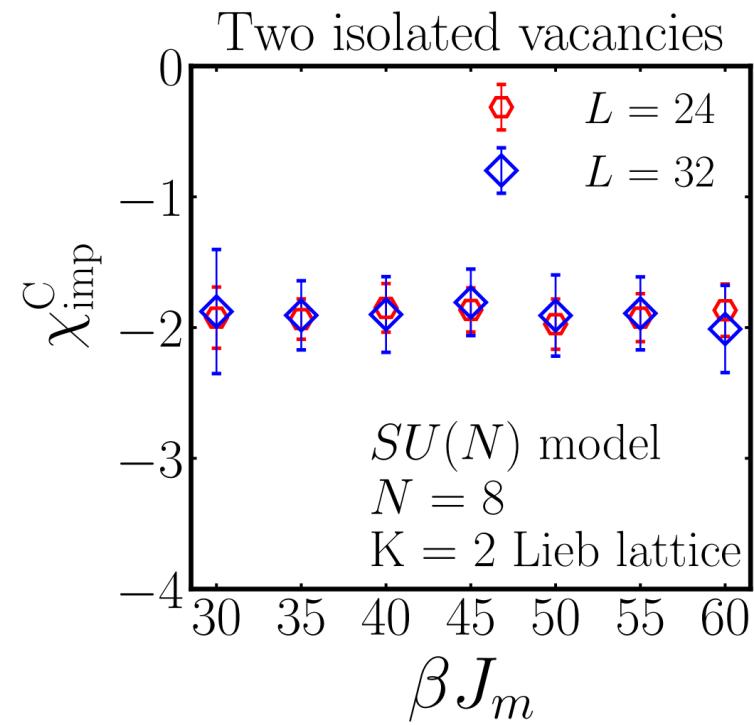


Isolated vacancies: kagome RVB state (non-bipartite)

RVB state established in Block,D'Emidio, Kaul 2020



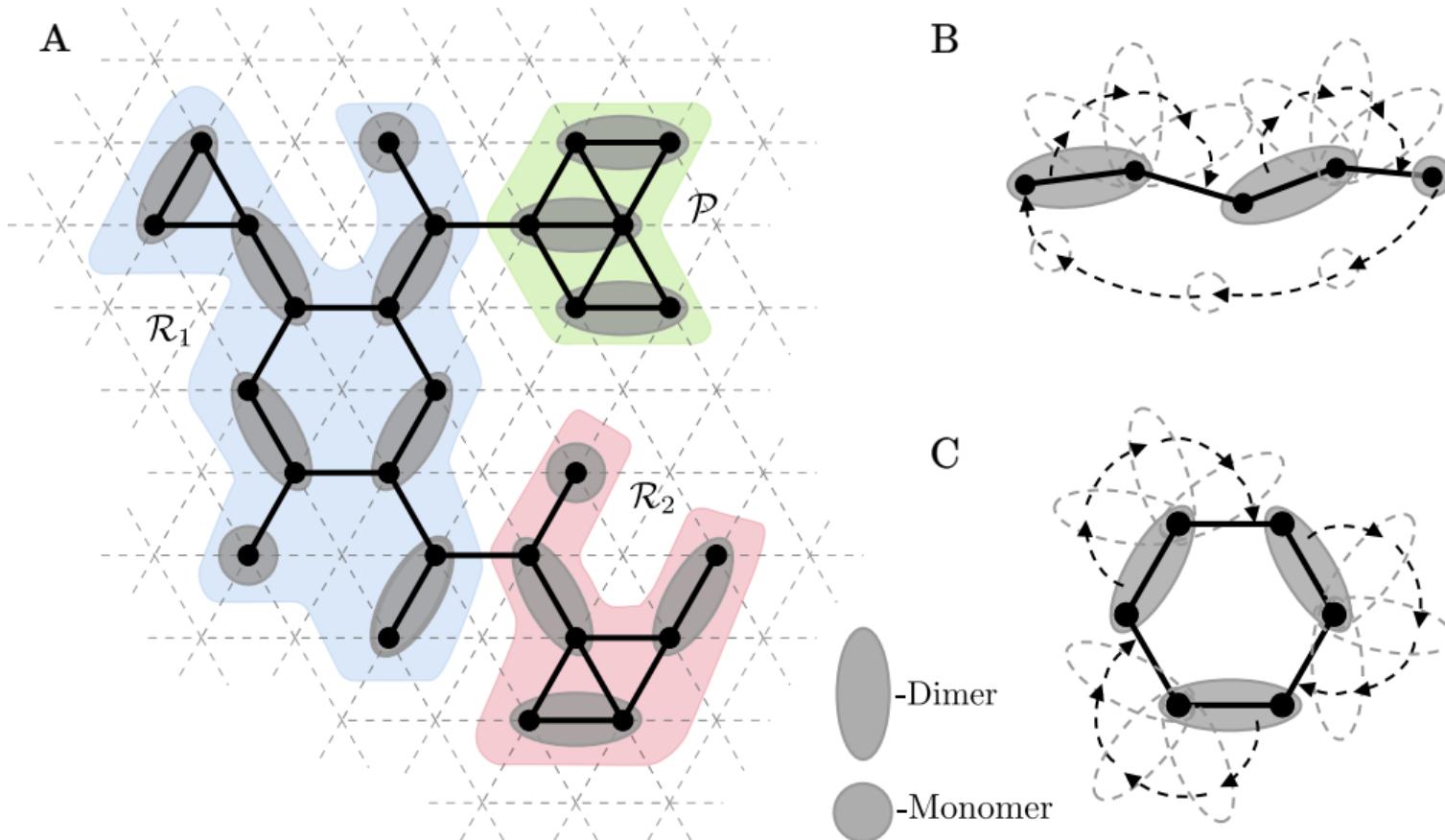
Isolated vacancies: sRVB regime (bipartite)



Where do the monomers live?

(Theory for geometry of monomer-carrying regions)

The setting: Maximum-density dimer packings of diluted lattices



Some conclusions (from pictures):

Pure case:

Most regular lattices have nonzero entropy density of fully-packed dimer coverings

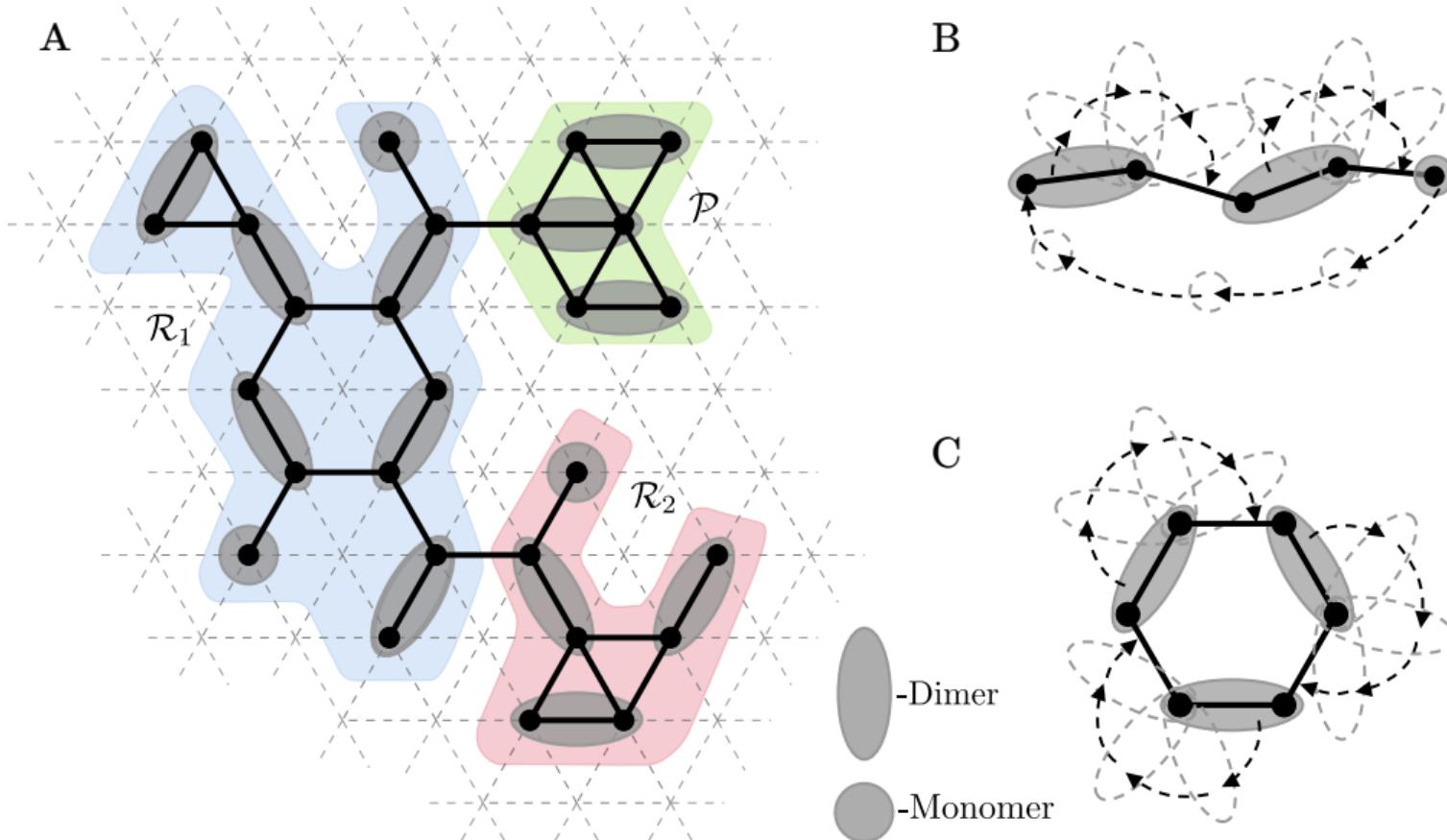
(if bipartite, require $|A|=|B|$ of course)

Weak vacancy disorder or bond dilution:

Typically have nonzero density of monomers in any maximum-density dimer packing

(and nonzero entropy density of such packings)

Constraints on maximum-density dimer packings



More conclusions (from pictures):

Consequences of hard-core and maximum-density constraints:

Constrained kinematics: ring-exchange or monomer-hopping

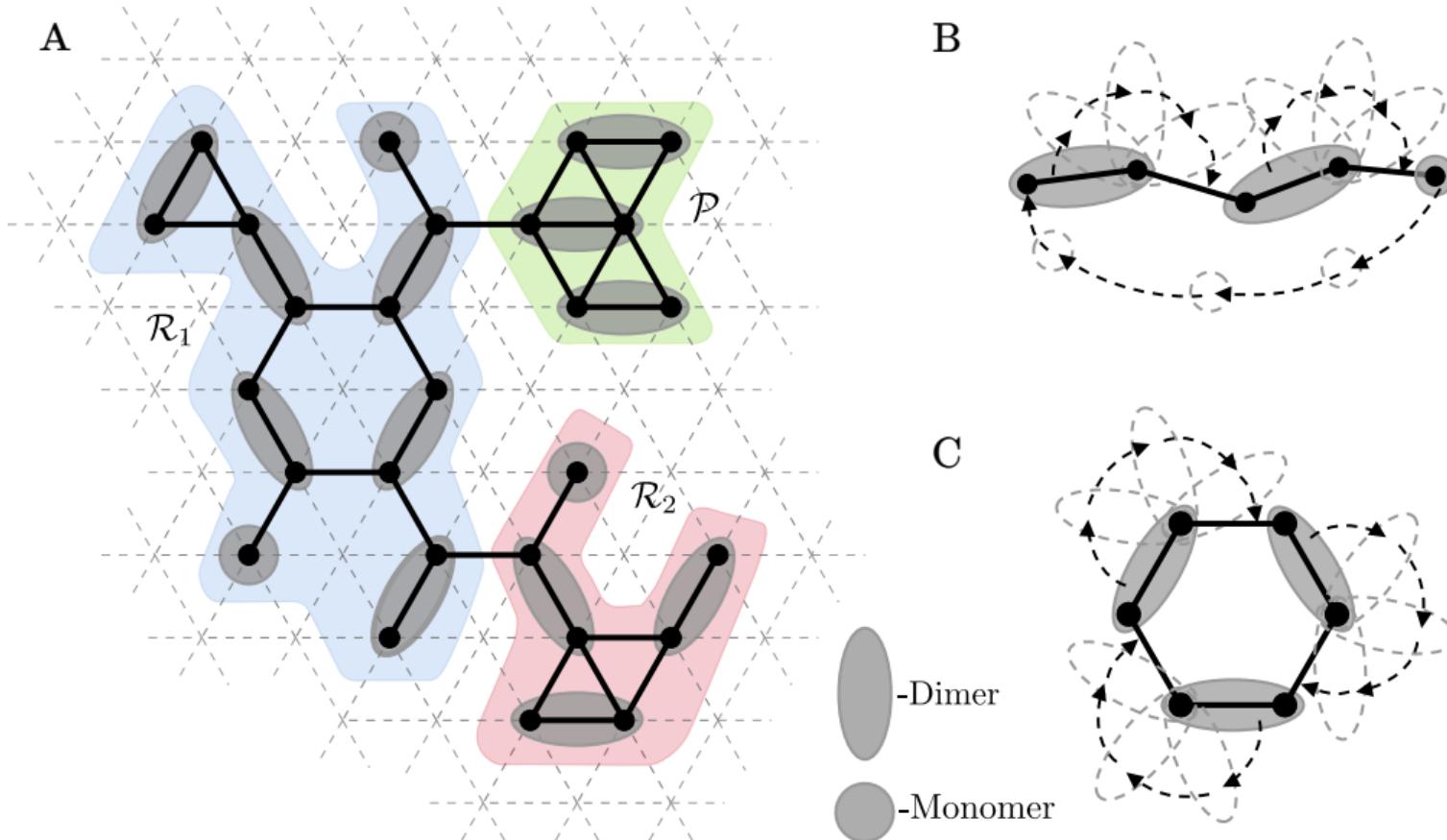
Constraint on links of ring-exchange and monomer-hopping process paths:

Each such link must be occupied by a dimer in at least one such dimer packing

Constraint on monomer and dimer motion:

Monomers confined to well-defined regions of disordered lattice. Other regions fully-packed.

Geometry of monomer-carrying and fully-packed regions



Another conclusion (from pictures):

Boundaries of monomer-carrying \mathcal{R} -type, fully-packed \mathcal{P} -type regions:

Some “forbidden” links of disordered lattice can never be occupied by a dimer in any such packing

Boundaries of these regions demarcated by the “forbidden” links

These regions are properties of disordered lattice, not any one maximum-density packing

Prescription:

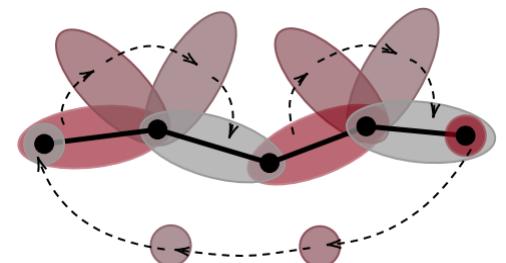
Pick favorite maximum-density dimer packing

Explore forest of alternating paths starting from all monomers

Label vertices e (even) if they can be reached along an even-length path of this forest

Label vertices u (unreachable) if they cannot be reached along any paths of this forest

Label vertices o (odd) otherwise (i.e. can be reached by odd-length path but not even-length path)



Gallai-Edmonds Theory

T. Gallai 1963, '64

J. Edmonds, 1965

Labeling independent of choice of favorite maximum-density dimer packing

PATHS, TREES, AND FLOWERS

Property of underlying disordered lattice

JACK EDMONDS

Labeling comes with structural guarantees about disordered lattice

No $e - u$ links possible

Deleting $e - o$ organizes all e vertices into odd-cardinality connected components: "Blossoms"

Labeling also comes with guarantees about ensemble of maximum-density dimer packings

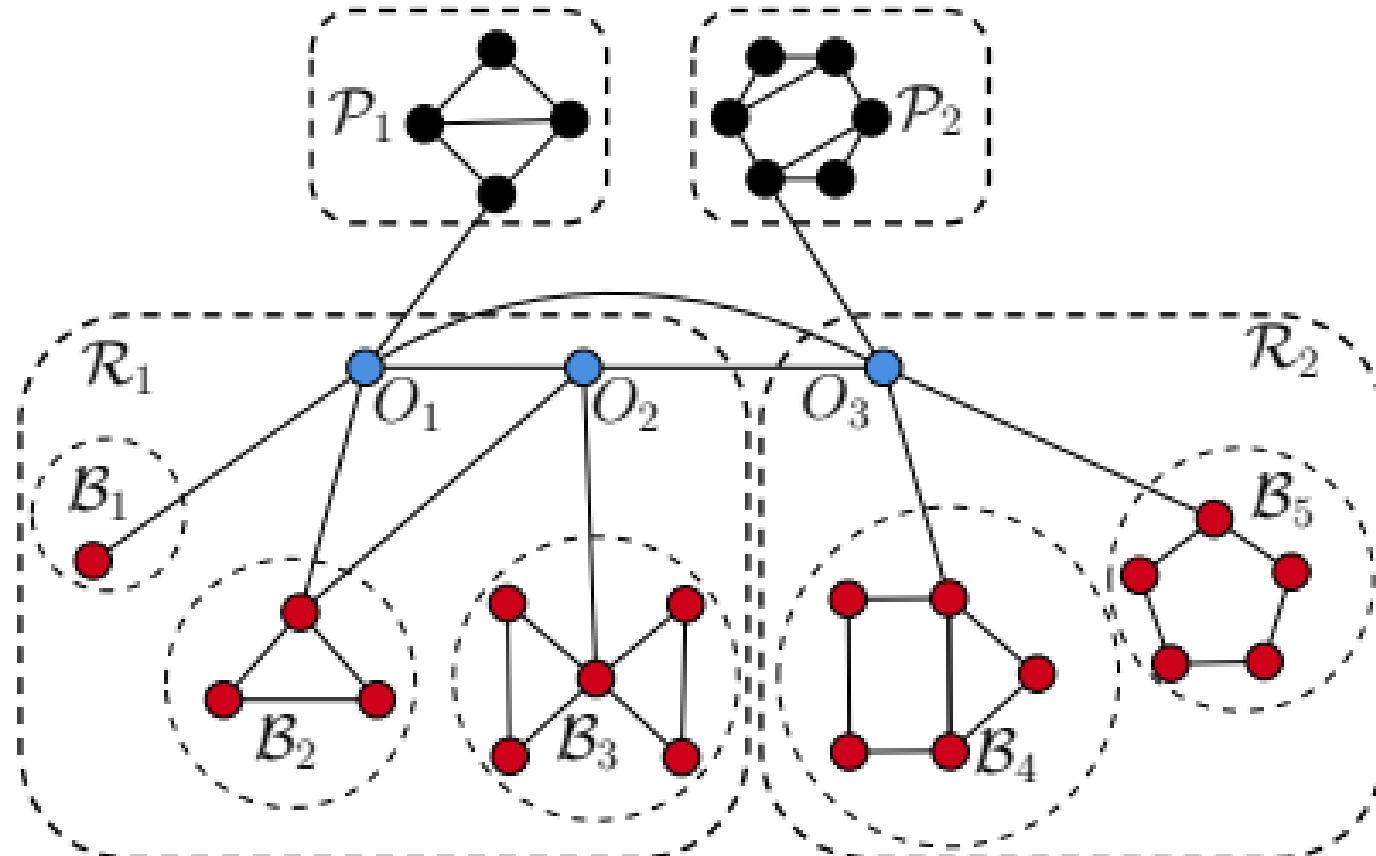
All u vertices connected to another u vertex by a dimer

All o vertices connected to some e vertex by a dimer

All monomers live on blossoms, no blossom has more than one monomer on it.

Construction of \mathcal{R} -type and \mathcal{P} -type regions

Key observation: $o - o$ and $o - u$ links are the “forbidden” links. Delete!



Aside: significance of \mathcal{R} -type and \mathcal{P} -type regions

Quantum monomer-dimer models

Monomer-hopping and ring-exchange processes cannot cross boundaries

All eigenstates of quantum/classical monomer-dimer models factorize

(for any dimer-interactions along flippable loops, but short-range monomer interactions)

Implies: If all regions small, area law entanglement in the middle of the many-body spectrum

To summarize: Vacancy-induced local moments in sRVB liquids associated with monomers

Emergent local moments are a multi-vacancy effect, and confined to R-type regions of lattice

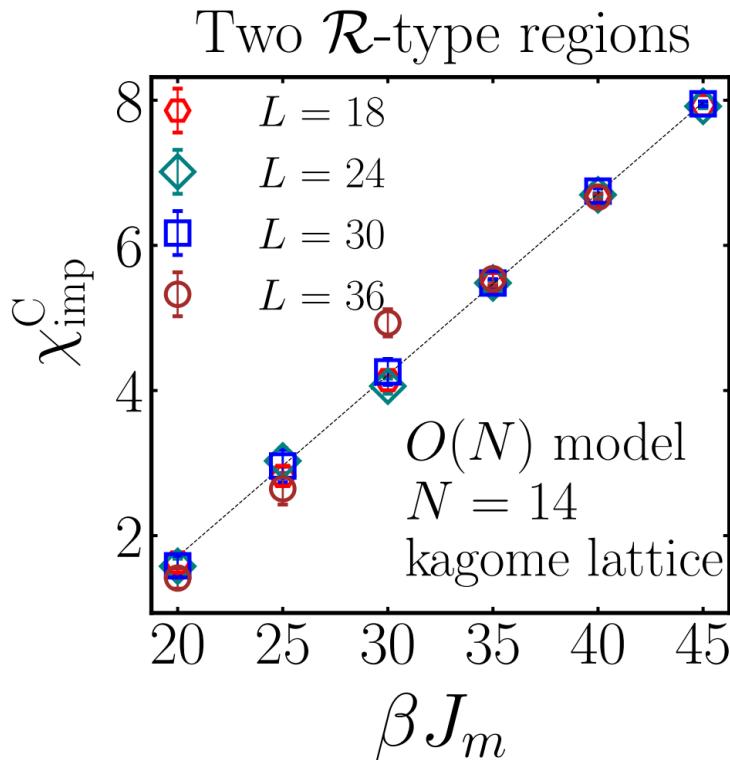
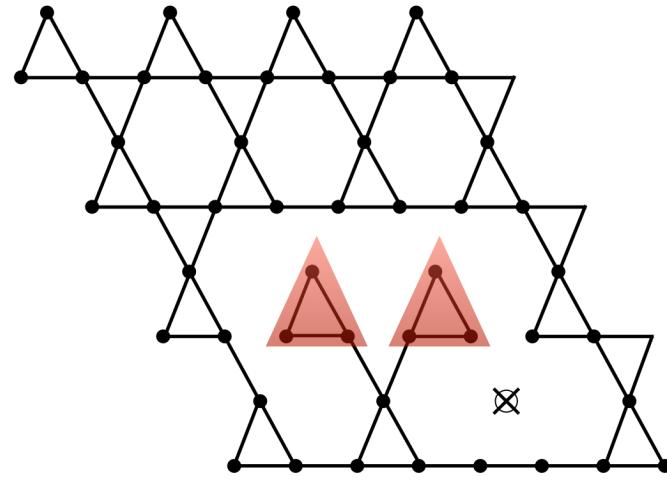
Dominant short-range interactions between these local moments also confined within R-type region

Geometry of R-type regions expected to determine low-energy state and magnetic response

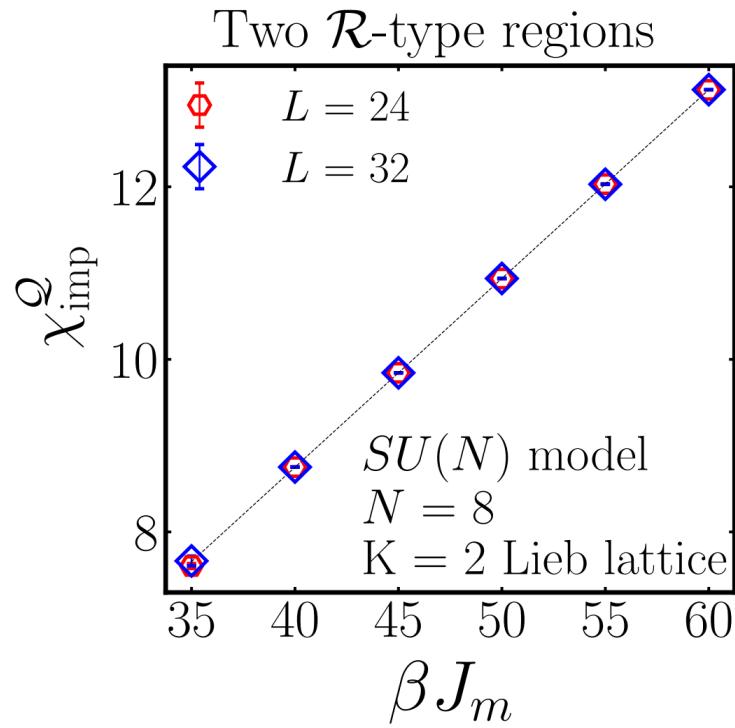
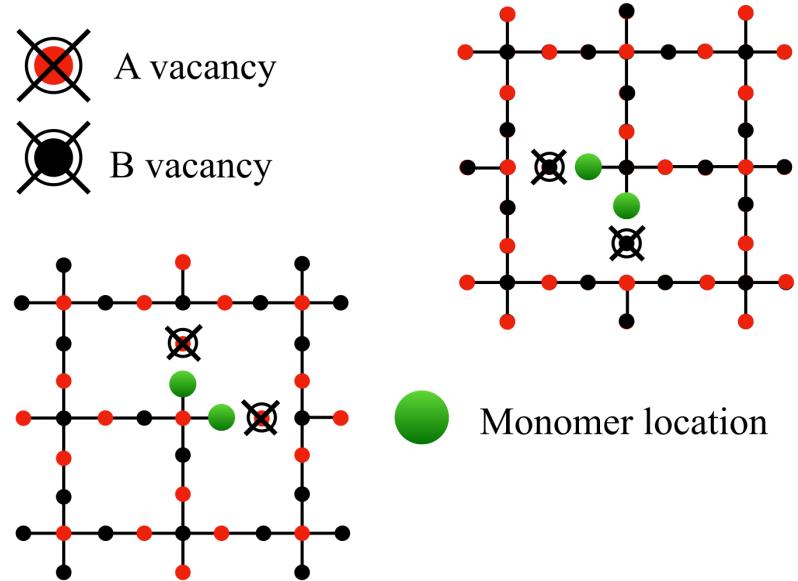
Very different from vacancy effects in VBS states:

Each vacancy individually nucleates a local moment bound to it

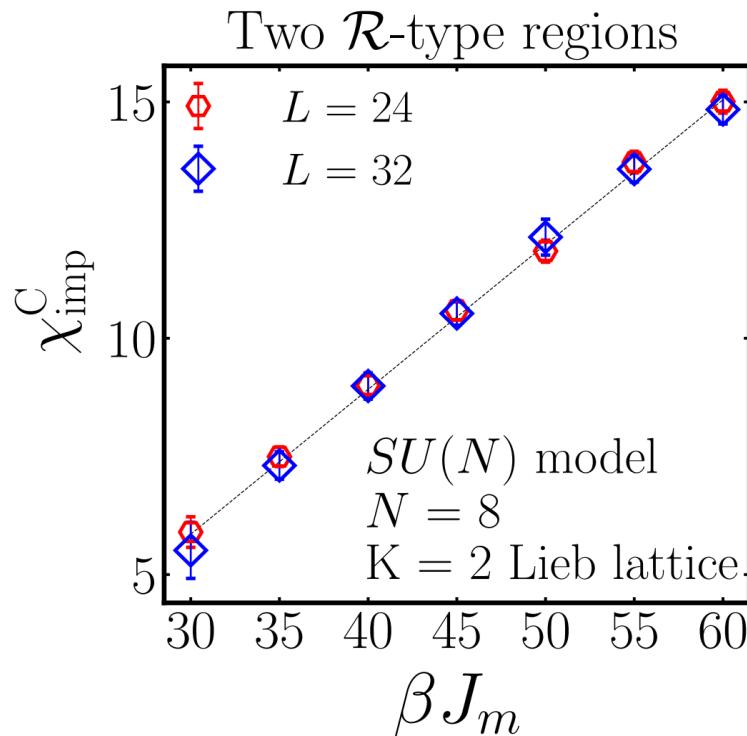
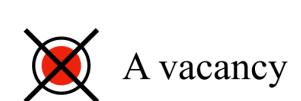
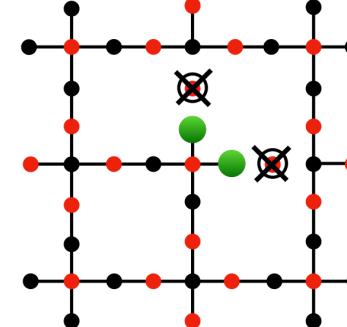
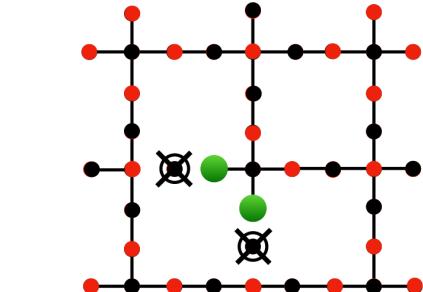
Back to tests: two R-type regions in RVB state (non-bipartite)



Back to tests: two R-type regions Q-response: RVB state (bipartite)



Back to tests: Two R-type regions C-response: RVB state (bipartite)



Monomer location

Large-scale geometry of monomer-carrying R-type, fully-packed P-type regions

Computationally tractable (but challenging) using Edmonds' polynomial time matching algorithm

For site-diluted triangular lattice: typical regions are large at low dilution

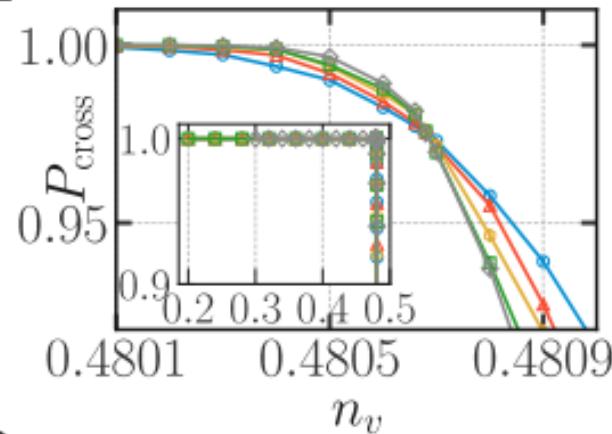
Think in terms of percolation

(Sharp threshold as function of some parameter in end-to-end connectivity of a medium)

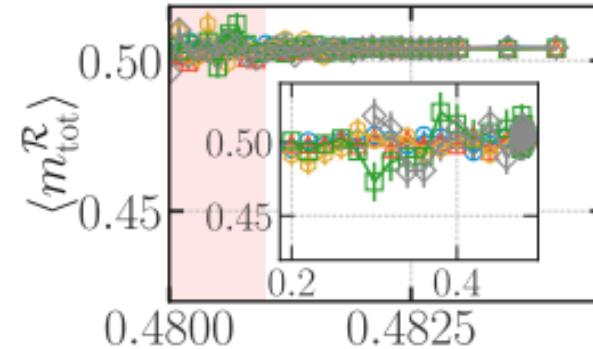
The “right” yes/no question to ask: Can one walk from one end of a sample, staying within a single region?

On the diluted triangular lattice

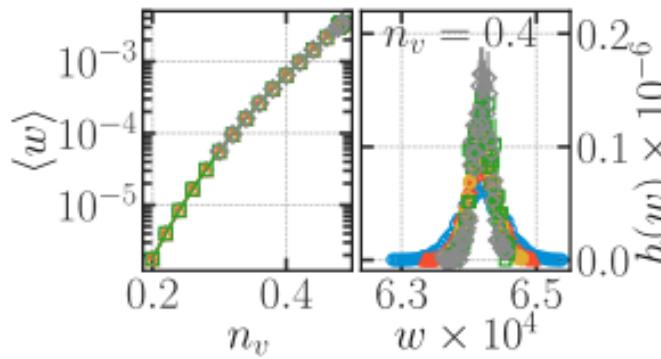
A



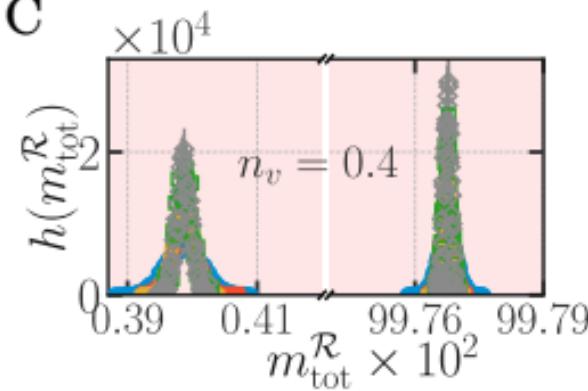
B



D



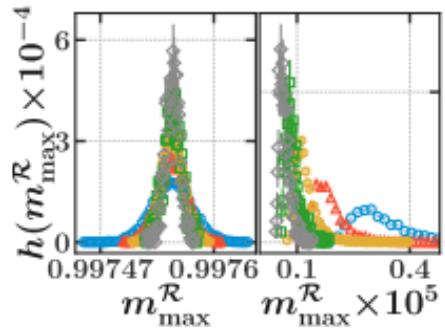
C



On the diluted triangular lattice

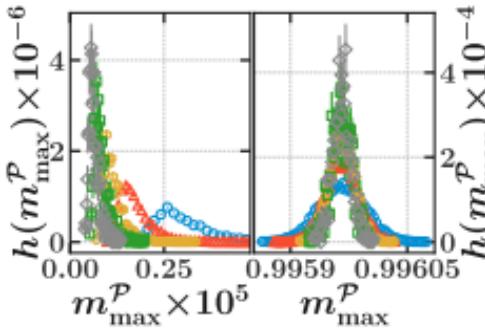
A

\mathcal{R} -type sample \mathcal{P} -type sample



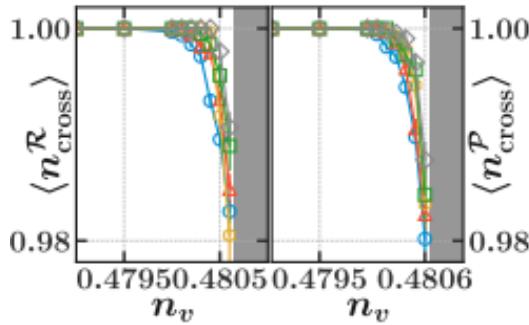
B

\mathcal{R} -type sample \mathcal{P} -type sample

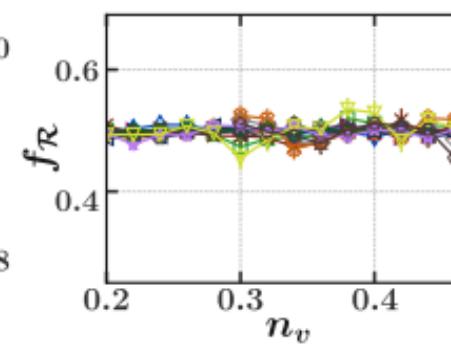
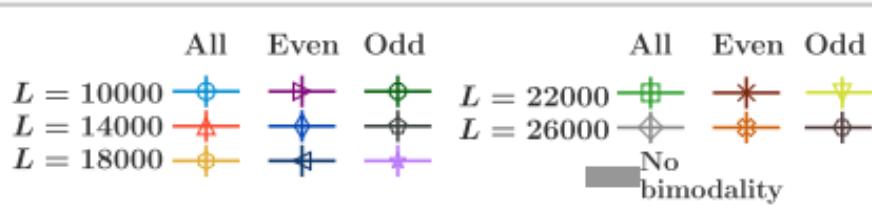


C

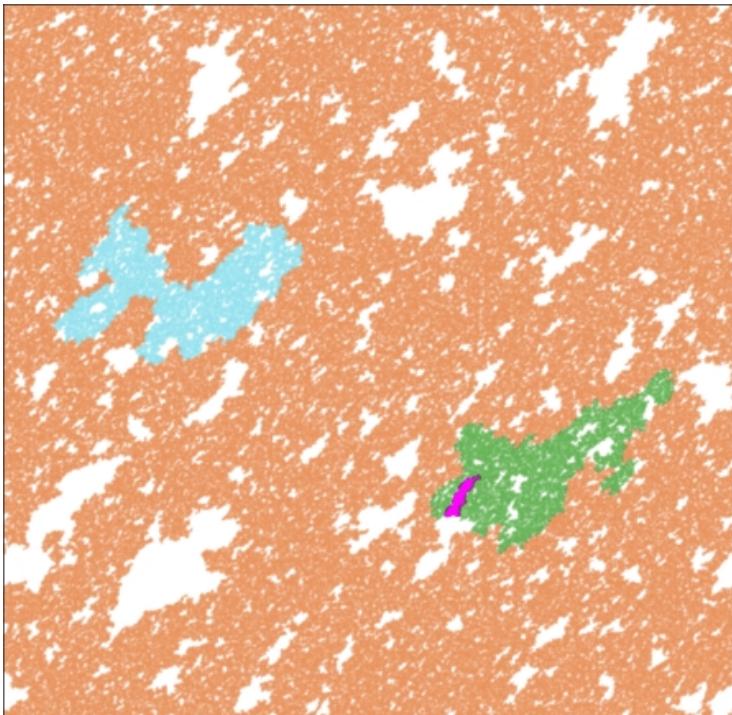
\mathcal{R} -type sample \mathcal{P} -type sample



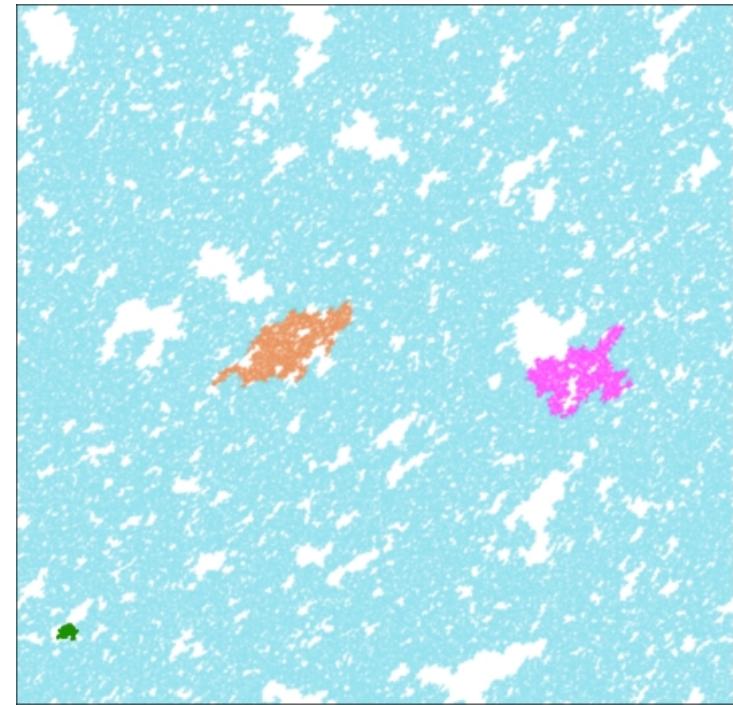
D



Pictorially on the diluted triangular lattice



R-type sample



P-type sample

On the diluted triangular lattice

$$f_{\mathcal{R}} = 1/2$$

Why???

Does this suggest some emergent symmetry between monomer-carrying and fully-packed regions

Again: Parity of largest geometric cluster plays no role!

“Central dogma” of thermodynamic self-averaging

In large-size limit -

Strong version:

Self-averaging of properties: Sample-to-sample fluctuations small (average = typical)

Violations exist – e.g. Disordered quantum spin chains (infinite-disorder fixed points)

Weak version:

At a minimum, two samples prepared using some protocol must be in same phase.

Violations? May exist in infinite-range spin glass models (?)

On the diluted triangular lattice

Violation of even the weak form of “central dogma” at low vacancy concentration:

Monomers delocalized in half the samples, localized to $O(1)$ regions in the other half!

All samples identically prepared, randomly diluted, with the exact same density of vacancies

Our basic message

Violations of “central dogma”

Weak disorder can lead to:

Violations of not just strong but also weak form of the “central dogma”

Root cause: Kinematic constraints induce long-range correlations

(caveat emptor: merely post-facto rationalization, no detailed understanding)

Some predictions for observable effects

Consequences:

Weak vacancy disorder leads to similar effects in short-range RVB spin liquids on the triangular lattice

At a minimum: Strong violations of thermodynamic self-averaging in low-temperature susceptibility

Likely: “R-type samples” have spin-glass order but not “P-type” samples

Not discussed in this talk:

Weak vacancy disorder in pinned vortex lattice state of p+ip superconductors will also lead to similar effects

At a minimum: Strong violations of thermodynamic self-averaging in the thermal conductivity

Likewise for weak vacancy disorder in triangular lattice Majorana spin liquids

Acknowledgements

Pointers into graph theory literature: R. Anstee (Vancouver, Math), T. Kavitha (TIFR, CS),
A. Mondal (TIFR, Math), P. Srivastava (TIFR, CS)

Discussions on

vacancies in sRVB, VBS, & AFM states: S. Bhattacharjee, L. Balents, S. Sachdev, A. Sandvik

Percolation: Deepak Dhar, Subhajit Goswami

Other collaborations (2010-20) on disorder effects: Fabien Alet, Argha Banerjee, Sylvain Capponi,
Pranay Patil, Arnab Sen

Computing cluster related: K. Ghadiali and A. Salve (DTP SysAds)

Chaotic response to vacancy motion

Suggests extreme sensitivity of large-scale geometry to micro-scale details of disorder configuration

Can we quantify this?

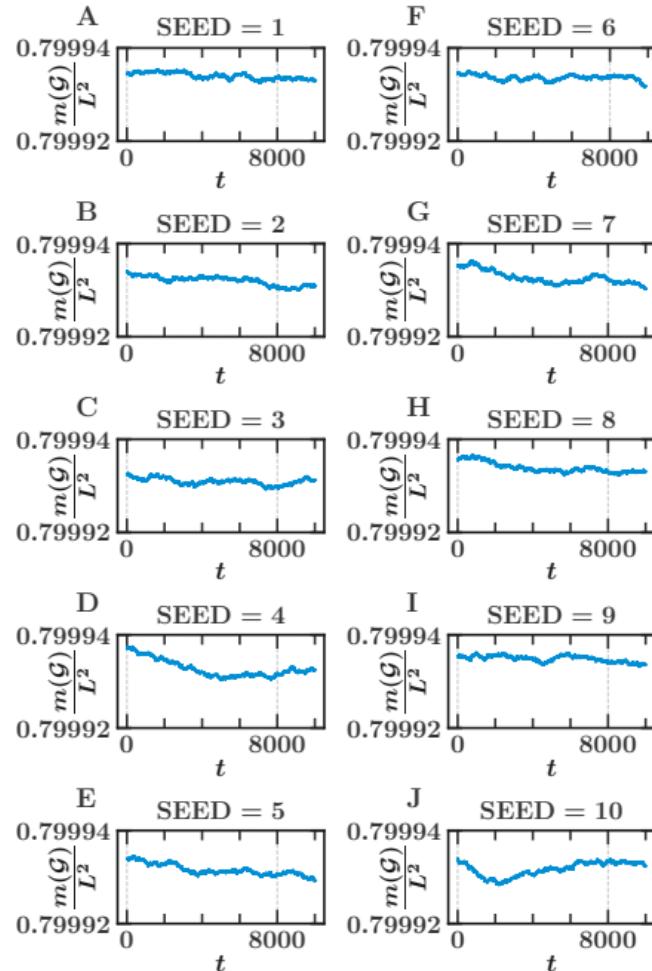
Model dynamics: Set vacancies in motion and watch what happens!

Small fraction of vacancies exchange position with neighboring surviving site at each time step

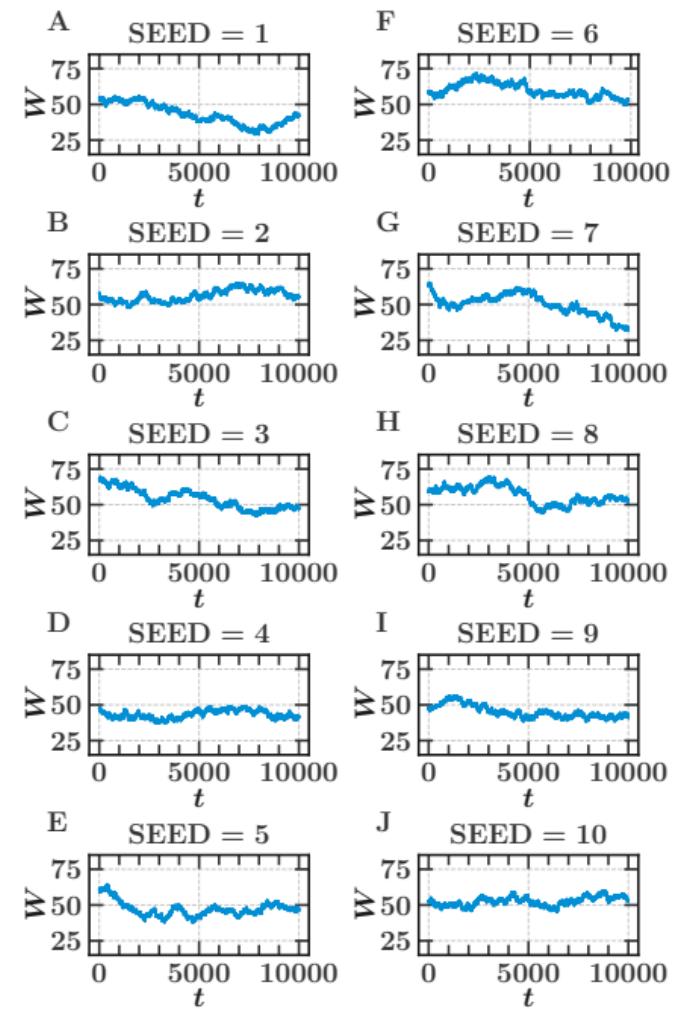
How does the large-scale geometry of these regions react?

Dynamics doesn't disturb underlying lattice much

$L = 6000$ & $n_v = 0.2$



$L = 6000$ & $n_v = 0.2$



Yet: Large-scale geometry of monomer-carrying/fully-packed regions responds chaotically

