State counting in Kitaev quantum double models

Plaquette excitations in 2D lattice gauge theories with a finite gauge group G have been known, since at least the works by Bais and de Wild Propitius in the nineties, to behave as non-Abelian anyons carrying localized generalized magnetic fluxes. These plaquette excitations also form one subset of elementary excitations for the famous Kitaev quantum double (KQD) model based on the group G. The other subset corresponds to localized vertex excitations carrying generalized electric charges. Building on recent works by A. Ritz-Zwilling, S. Simon, J.-N. Fuchs and J. Vidal on the exact computation of the partition function of string net models on a surface of arbitrary genus, I will show how to count the degeneracy of an energy eigenspace for the KQD model based on G, with prescribed types of plaquette and site excitations. This formula has the expected form for an *emerging* topological field theory, based on the modular tensor category obtained by applying the Drinfeld center construction to the category of G-graded vector spaces.

Benoit Douçot, CNRS and Sorbonne University, Paris, France