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Outline
Deconfined quantum critical point (DQCP) s
- original scenario for the AFM-VBS transition

J-Q models
- QMC amenable 2D “designer models” with AFM and VBS ground states

Weak first-order behavior and (likely) inaccessible critical point
- near-criticality at AFM-VBS transition

Modified DQCP scenario: SO(5) multi-critical point
- consistency with recent CFT calculations

Improved stochastic analytic continuation method for dynamics with QMC

Dynamic spin structure factor S(k, ) at DQCP

— spinon deconfinement (7-flux model) DQCP

Single-hole spectral function A(k, w)
— spin-charge separation at DQCP




Deconfined quantum criticality in 2D quantum magnets

Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004) + ....
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath....)

H=J Z S; - S; + glother symmetry preserving interactions]
()
antiferromagnet for g=0 N
- breaks O(3) symmetry

valence-bond (or plaguette) solid for g > gc 0
- breaks Z4 symmetry
- emergent U(1) symmetry close to the transition

order parameter

Generic continuous T=0 transition proposed
- would be violation of Landau rule
- first-order would normally be expected

W

Convincing in SU(N) field theory
Later theories and numerics suggest emergent SO(5) - QMC exponents agree for large N

0 = (n,n,n,d,d)  Senthil & Fisher, Nahum et al.... (Kaul, AWS 2012)
' - not clear for small N (esp. N=2)
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Numerics; J-Q models
2D Heisenberg exchange J I = n ﬁ m m

+ products of singlet projectors

Amenable to large-scale QMC studies @ 03 m © Q61 ‘ ‘ ‘ ‘ ‘

Likely critical point with emergent SO(5) B
symmetry (3 AFM, 2 VBS components) H=- ]Z;Pij — O (Zko PPy — s
ij ij

Relevant perturbations of DQCP are

- SO(5) singlet (s) Possible (t,s) phase diagrams

(previously assumed irrelevant) 1@ 1stlord 1o
- symmetry-changing (t) stiorder .

(driving AFM to VBS) /

0 /,//’, J/Qn =

The J-Q models have weak L
first-order VBS-AFM transitions - contihuous
Crossing transition by tuning J/Qn VBS AFM VBS
J/Q2 and J/Qz are near critical . .




Transition point of J-Q2 model (QMC)

1

‘ \ ‘ \
Binder cumulants of AFM and VBS order parameters o/ —&2 model
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Scaling dimensions from large-scale QMC simulations Arxiv:2405.06607
- compare with SO(5) CFT bootstrap and fuzzy sphere calculations

Ay Ag Ay A Ay Whatever the ultimate
This work  |0.607(4) 2.273(4) 1.417(7) 2.01(3) 3.723(11) nature is of the DQCP,
SO(5) CFT [0.630* 2.359 1.519 2% 3.884 the J/Q2 and J/Qs models
Fuzzy sphere|0.585  2.831  1.458  2* 3.895 are sufficiently nearby to

reliably study it.
S. M. Chester and N. Su, Bootstrapping Deconfined

Quantum Tricriticality, Phys. Rev. Lett. 132, 111601

(2024).

Zhou, 7Z.,Hu, L., Zhu, W. & He, Y.-C. SO(5) deconfined phase . .
transition under the fuzzy-sphere microscope: approximate Nature of excitations
conformal symmetry, pseudo-criticality, and operator - Spec’[ral functions
spectrum. Phys. Rev. X 14,021044 (2024). - here at T=0

Spin structure factor (neutrons):  Stk,w) = )" [(n]S7|0)|8(w — [E, — Ey))

Single-hole spectral fkin (ARPES): Ak, w) = Z | (n]c,,10)|8(w — [E, — Ep)

QMC + numerical analytic continuation



Stochastic Analytic Contiunuation (SAC)  H. Shao, AWS, Phys. Rep. (2023)
Spectral function of operator O
IR

S(w) = % Ze_ﬂE”l(mlOlnHz(S(w — [Em — Enl) il
Imaginary-tirn;;; correlation from QMC
G(z) = (0'(7)0(0))

Related to spectral function by S(w) | !l
- 1, ] 1N ‘
ir)= - [ dostw)e
T J

Solve inverse problem by sampling S(w) L LU L] T
 here with targe number of 5-funct
§))

- here with large number of o-functions

2 S Nz Nt _ _
P(S|G) o exp (—Xz—(@)) X2 =) (G- G)G (G -G — (S(w)) average spectral density

i=1 j=1

Sampling temperature ® chosen optimally to avoid over-fitting

Each parametrization is associated with an entropy E(S), affecting the average spectrum
- constraints can be used to resolve sharp features



Example: L=16 Heisenberg chain, S(7/2,w), T/J=0.5 Sty = Y 111510 6@ — £, — Ey)
> - k n 0

ENIRNT TN shown as histogram

Dependence on the sampling temperature,;
©=10/1.1", n=0,1,2,... 1 Chi2 = 20.80033

Criterion for optimal ® (to avoid over-fitting)
(X*(O) A Xipin 0y 2Xmin a~0.5

corresponds to (y?) exceeding )(r%lin by of the
order the standard distribution of)(2 distribution

Animation missing in pdf
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Spectra with sharp quasi-particle peak
Example: o-function and continuum, synthetic data
- noise level 2*10-5 (20 7 points, A7=0.1)

T i T i T
1+ —

Find optimal ao
by scanning

0.8 *

1+500 os:
quasi-particle
weigh affects the
sampling entropy
- detected in <y2>

0.6~ -

041 *

021 *

0 L 1 | I | I | |

Unrestricted sampling cannot resolve the o-function
- second broad peak is also distorted

Solution: use one “macroscopic” d-function

- fixed weight ap at sampled wo

- other delta-functions cannot go below wo

with better edge,
S(w)

entire spectrum is
well reproduced
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Spectrum with continuous edge divergence
Constraint of monotonically increasing distances ‘ \HHHHHHHH ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

- no constraint on lower and upper bounds

- entropy favors divergent lower edge continuum

Example:

Heisenberg chain (L=500, T—0) i

200 d-functions I 0 1 ) s BA
- Sampling done with . SAC

—
()]
I

(b) Bethe Ansatz

cluster update
Lower edge is good to ~0.2%

- Very close to known |
(w-wo)12 singularity I \

0 n 2n
S Lake et al., PRL 2013

41/5,m)

[a—
(e
I

S(q

Comparing with numerical Bethe Ansatz,

same system size (J.-S. Caux) 0




The monotonicity constraint results in entropic pressure to a sharp peak at the edge
- good if the spectrum sought has such an edge

Non-divergent edge: optimize by constraining smallest spacing
synthetic spectrum Heisenberg S(47/5,w)

n= 0 ChiZ= 195504 n= 0 Chi2 = 1.00025

\/ Awo = W1 —Wp
- SCan over

Awg =nlAs, n=0,1,2,...

Animations missing in pdf
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How about non-monotonic spectrum following edge?

Mix these two parametrizations: ' 1 . .

20
QTP | :
101~ -

S(w)

Out of N, deltas, use

5_
N, for “edge”
N, — N, for “background”
background cannot go below the edge 0




QMC calculation of single-particle Green'’s function (imaginary time)

Example: t-d model
- using canonical transformation (Angelucci 1995)

1m:) = ns, 23) € {|0,1)4,(0,4)4, |1, D)s} ={ 1, 1;.0;}
in Stochastic Series QMC (S. Yang, G. Schumm, B. Zhao, AWS, arXiv: 2511.20447)

H = Z Z a 1,] e P = (e_ATH)L

a=1 (1'7.7> O e Anl L mny
z __z — Kls
—Hy 5 = JA;(1 —o0707)/4 (f ® % L]'_Il ']l]'_[lsl—ll
o
—Hj 5 = —(Jjoi_ + aj_aj) X P Kis € {—Ha,ij}
A2+t + 1) Fe
*  pe 9
—Hsij=—(t/20+oio)(fI i+ f1f) +L; § ¢ §°
o o

Spin configurations sampled (no sign problem)

- all hole paths consistent with spin configuration are summed up exactly
- (no sign problem in practice even though some path cancelations)
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1D example, N=8



Single-hole dynamics in the AFM phase

Electron ejected (hole injected); now a manifestly fermionic problem
- the J-Q model supplemented by hopping; t-J-Q model

H=H 10— 1 Z (c;f,jca,l- + clicﬁ, j)
(if)o
Test on standard 2D t-J model (Q=0) at “supersymmetric” point t/J=1/2 (0-function edge)

12

1 . 0 1 (C) ‘I)'"“\*\
10 / .‘b
0.81 ‘ by
8 / ",
0.6 4 “‘\...,
3 6 g o sest vt Veeteteq Ip" !
0.4+ % "\ ,.'" i i 1 i
4 . ot /7,/%/ () () /;,/%/ 0y, (g,
1o Qquasi-particle 7 o
2 ' . Expected with AFM order:
weight _
: : : : : : < . . . . Wy = a)(ﬂ',ﬂ)—k
(7r92,7r/2)(7r,0) (m.m)(m/2.7/2)(0,0) (m,0) (wﬁzmﬂ)(mO) (mm)(m/2,m/2)(0,0) (m,0) - :
L k well satisfied (red line)
- Exact result at k=0 reproduced; A(k = 0,w) = 6(w — 4)

, , o “ledge + peak” DOS as in 2D Hubbard model
- Dispersion minimum at k = (x/2,7/2) [Schumm, Zhang, Sandvik, PRB 2025]

- Almost flat band (close to quartic) around k = (7,0)



Dynamic signatures of DQCP (1) spin excitations
PHYSICAL REVIEW B 98, 174421 (2018)

Editors’ Suggestion

Dynamical signature of fractionalization at a deconfined quantum critical point

Nvsen Ma,' Guang-Yu Sun,"? Yi-Zhuang You,>* Cenke Xu,® Ashvin Vishwanath,> Anders W. Sandvik,-and Zi Yang Meng!:"-#

Planar J-Q model: Hiq=—J Y (P, + AS{S3) — Q) " Pij PuPun
(ij) (ijklmn) 6

QMC + SAC for spin structure factor S(g, w)

3 4
Compare with fermion parton theory;
- N=4 compact QEDs, 7-flux square-lattice model ? "".IH '."
B = S UCfL S+ (O fL )t He | 0.0) (0) (tm  (00)
. 2<
_ iy | 8
Si=5Jiol . /
0 / 6
e(k) =+ \/ +sin?(k,) + sin’(k,) o .
negative states filled - 2 JEN
: : —3000) (7,0) (m,m) (0,0) A //\.- A
Spinon deconfinment on large ’ ’ ’ ’ ? i Y :
0,0) (5r,0) (5T,0M) (0,0)

length scales close to the critical point



At the transition point of the isotropic J-Q model (Q=1,J=0.667,t=1,L=32)

- an edge followed by continuum (no quasi-particle peak); use constraints discussed
102 - . .

10! mm(k) 4
10° 37
2
107!
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| ’ " b 0 +— — |
(%’%/ ) ) /%)%) ) 70 /»/%/9/ (g, o (o s, ) )
Different unit cells for phases (gauge) can be chosen in the 7-flux model 0 s
- the dispersion relation is gauge invariant m
- but the two-particle continuum depends on the gauge ‘

Upper bound of the 2-spinon continuum: £, (K) = max[e (k) + [¢,(K,)], k=K, + K,

red:

The smaller BZ seems to work better
white: k_, ky € [0,z] (motivated by spinons in Heisenberg chain) - hot Completely clear...



Dynamic signatures of DQCP (2) spin-charge separation

Ak, ®), Q=1,J=0.667,t=1,L=32
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(b) | 2.51 ] ,
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) )
Eax(K) = max[e (k) + [€,(Kk,)] en(k) = ti[cos(kz) + cos(ky)]
Spinon added to holon at local max +ta[cos(ky + ky) + cos(ky — ky)]

If spin-charge separation: +t3[cos(2kz) + cos(2ky)] + p,

independently propagating spinon and holon, €S+h(k) € {ek—q) +¢,(9)}, q€BZ
We have min[e,; (k)] and € (k); solve for ¢, (k) and max|[e,, (k)]

- consistent solution if spinon &, ky € [—n/2,7/2]; then holon dispersion = lower bound
Shifted BZ for spinon similar to spin-charge separation in 1D



In the VBS phase: spin-poloaron (spinon-holon bound state) expected
- impose o-function quasi-particle peak
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Summary & Conclusions

Deconfined quantum criticality is still not fully understood
(but we are getting very close)

Role of J-Q models studied by QMC and numerical analytic continuation
- reliable results on large lattices
- advances in analytic continuation offer more spectral details

Deconfined spinons seem to be described by 7-flux model with &, ky e [0,7]

Gives consistent holon dispersion, spinon-holon continuum
- if spinon BZ shifted to k_, ky € [—n/2,7/2]

Similar to spinon deconfinement and spin-charge separation in 1D



