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We resolve the long-standing problem of the nature of the quantum phase transition between a
Néel antiferromagnet and a spontaneously dimerized valence-bond solid in two-dimensional spin-1/2
magnets. We study a class of J-Q models, in which the standard Heisenberg exchange J competes
with multi-spin interactions Qn formed by products of n singlet projectors on adjacent parallel links
of the lattice. Using large-scale quantum Monte Carlo (QMC) calculations, we provide unambiguous
evidence for first-order transitions in these models, with the strength of the discontinuities increasing
with n. In the case of the widely studied n = 2 and n = 3 models, the first-order signatures are very
weak, but observable in correlation functions on large lattices. On intermediate length scales (up
to hundreds of lattice constants, depending on the observable) we can extract well-defined scaling
dimensions (critical exponents) that are common to the models with small n, indicating close prox-
imity to a universal quantum critical point. By combining two di↵erent Q terms, specifically we
consider the J-Q2-Q6 model, the transition can be continuously tuned from weak to more strongly
first-order. In the plane (Q2, Q6), with J = 1 � Q2, the two coexisting order parameters on the
first-order line scale with an unusually large exponent � ⇡ 0.85. This exponent and others coincide
closely with known rigorous bounds for an SO(5) symmetric conformal field theory (CFT), but, in
contrast to prevailing scenarios, the leading SO(5) singlet operator is relevant and responsible for
the first-order transition ending at a fine-tuned multicritical point. We quantitatively characterize
the emergent SO(5) symmetry by computing the scaling dimensions of its leading irrelevant pertur-
bations. The large � value and a large correlation length exponent, ⌫ ⇡ 1.4, partially explain why
the transition remains near-critical on the first-order line even quite far away from the critical point
and in many di↵erent models without fine-tuning. In addition, we find that few-spin lattice oper-
ators are dominated by their content of the SO(5) violating field (the traceless symmetric tensor),
and interactions involving many spins are required to observe strong e↵ects of the relevant SO(5)
singlet that brings the system into the coexistence line. Beyond the scaling dimensions that can be
directly explained by the CFT, the exponent that had previously been identified with the divergent
correlation length when crossing between the two phases does not have a corresponding level in
the CFT spectrum. We explain this emergent “pseudocritical” length scale by a mechanism relying
on a dangerously irrelevant SO(5) perturbation in combination with repulsive interactions between
the two order parameters. This length scale is reflected in crossover behaviors of observables when
traversing the weak first-order line. We argue that the multicritical point is also most likely the
top of a gapless spin liquid phase recently discovered in frustrated Heisenberg models, into which
the J-Q models can be continuously deformed. Our results are at variance with the conventional
scenario of generic deconfined quantum critical points, including the complex CFT proposal. The
multicritical point should exists within real Hamiltonians, though perhaps only outside the regime
amenable to sign-free QMC simulations.

CONTENTS

I. Introduction 2

II. The DQCP enigma 6
A. AFM–VBS transition and putative DQCP 7
B. Simulations of lattice models 8
C. Conformal bootstrap method and the

complex CFT scenario 10
D. Multicriticality scenario 11

⇤ Corresponding author. E-mail: sandvik@bu.edu

III. Overview of findings 12
A. Quantum Monte Carlo methods 12
B. Results and insights 13

IV. Order parameters 15
A. Correlation functions and exponents 15
B. Phase coexistence in J-Qn models 16
C. Scaling dimension of the order parameters 18

1. Correlation functions and derivatives 19
2. Scaling corrections from descendants 21

V. Relevant perturbations 24
A. Fully symmetric operator 26
B. Conserved current operator 27

SO(5) multicriticality in two-dimensional quantum magnets

Jun Takahashi†,1 Hui Shao†,2 Bowen Zhao,3 Wenan Guo,4 and Anders W. Sandvik3, 5, ⇤

1
Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131, USA

2
Center for Advanced Quantum Studies, Department of Physics,

Beijing Normal University, Beijing 100875, China
3
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215

4
Department of Physics, Beijing Normal University, Beijing 100875, China

5
Beijing National Laboratory for Condensed Matter Physics,

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Dated: May 10, 2024)

We resolve the long-standing problem of the nature of the quantum phase transition between a
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Outline

J-Q models  
- QMC amenable 2D “designer models” with AFM and VBS ground states

Weak first-order behavior and (likely) inaccessible critical point 
- near-criticality at AFM-VBS transition

Dynamic spin structure factor  at DQCP 
 spinon deconfinement ( -flux model)

S(k, ω)
→ π

Modified DQCP scenario: SO(5) multi-critical point 
- consistency with recent CFT calculations

Deconfined quantum critical point (DQCP) 
- original scenario for the AFM-VBS transition

!

Single-hole spectral function    
 spin-charge separation at DQCP 

A(k, ω)
→

Improved stochastic analytic continuation method for dynamics with QMC

!DQCP



= ⟨S⃗i · S⃗j⟩

Generic continuous T=0 transition proposed

- would be violation of Landau rule

- first-order would normally be expected 

Deconfined quantum criticality in 2D quantum magnets
Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004) + ….
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath….)
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H = J

X

hiji

Si · Sj + g[other symmetry preserving interactions]

!

valence-bond (or plaquette) solid for g > gc

- breaks Z4  symmetry 

- emergent U(1) symmetry close to the transition

antiferromagnet for g=0

- breaks O(3) symmetry

Convincing in SU(N) field theory 

- QMC exponents agree for large N

  (Kaul, AWS 2012)

- not clear for small N (esp. N=2)

⃗O = (nx, ny, nz, dx, dy)
Later theories and numerics suggest emergent SO(5)

Senthil & Fisher, Nahum et al….



Numerics; J-Q models
2D Heisenberg exchange J 
+ products of singlet projectors

Likely critical point with emergent SO(5)  
symmetry (3 AFM, 2 VBS components)

Relevant perturbations of DQCP are 
- SO(5) singlet (s)  
   (previously assumed irrelevant) 
- symmetry-changing (t) 
   (driving AFM to VBS) 

The J-Q models have weak 
first-order VBS-AFM transitions

Possible (t,s) phase diagrams 3
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FIG. 2. Schematic phase diagrams containing transitions between VBS and AFM phases in a space of two scaling fields (s, t),
corresponding to the relevant singlet and traceless symmetric tensor in the multicritical SO(5) CFT [55]. The red circles
indicate a multicritical point in all three phase diagram, classified as tricritical in (a), bicritical in (b), and tetracritical in (c).
The blue vertical lines in (a) and (b) indicate first-order transitions ending at the multicritical point, below which there is a
line of continuous DQCP transitions in (a) and a QSL phase interving between the VBS and AFM phases in (b). The blue
curves in (c) are the phase boundaries of an extended AFM–VBS coexistence phase ending at the tatracritical point, which
is also the tip of a QSL phase as in (b). The slanted dashed lines show a possible path taken by one of the models studied
here when a single parameter is tuned, e.g., the ratio J/Qn in a J-Qn model. The field t changes the symmetry of the order
parameter from Z4 in the VBS [with emergent U(1) symmetry close to criticality] to SO(3) in the AFM, while s does not violate
the SO(5) symmetry of the multicritical point. Case (a) corresponds to the original DQCP proposal and a QSL phase (not
shown) may also in principle be connected to a lower end point of the continuous transition. Both (a) and (b) with multicritical
points hosting emergent SO(5) symmetry are consistent with our results, though when including other arguments (b) is more
likely. We can positively exclude the coexistence phase in (c). The placement of the dashed lines is in accord with the J-Q
models in the regime without QMC sign problem, where only the first-order line can be crossed—though su�ciently close to
the multicritical point so that its scaling dimensions can be reliably determined.

determine several scaling dimensions of this critical point,
including all relevant ones (i.e., those related to the con-
ventional critical exponents) as well as some irrelevant
ones; specifcally, those characterizing the leading pertur-
bations of the SO(5) symmetry.

As shown in Table I, both relevant and irrelevant scal-
ing dimensions agree reasonably well with recent results
for a multicritical SO(5) conformal field theory (CFT)
[55], obtained using a variant of the numerical bootstrap
method [60]. The small discrepancies likely stem from
an input value in the bootstrap calculation, the scal-
ing dimension �� of the order parameters, that was not
known precisely and to some (currently unknown) extent
impacts the resulting values for the other scaling dimen-
sions. Our refined value of �� in Table I, computed with
unprecedented lattice size up to L = 1024, di↵ers slightly
from the previously best estimate.

A multi-critical point in the context of the DQCP was
to our knowledge first proposed in Ref. 53 by three of
us (though with, in hindsight, a misidentification of one
of the scaling dimensions), and attempts to construct a
corresponding field theory were made in Ref. [54]. The
good agreement with the CFT calculation [55], in par-
ticular the existence of a relevant singlet operator with
large scaling dimension, firmly establishes the existence
of the multicritical point. This scenario is not specific to
the J-Q models studied here, but should be universal for
quantum magnets with AFM–VBS transitions as well as
other systems with analogous order parameters.

The CFT calculation did not address the nature of
the phase diagram in any particular microscopic model,
i.e., the phases and transitions generated when subject-
ing the SO(5) CFT to a specific relevant microscopic
perturbation are not automatically known. The critical
point was assumed to be of the tricritical variant, though
the scaling dimensions alone cannot rule out a bicritical
point. Three putative phase diagrams relevant to generic
2D quantum magnets are presented schematically in a
space of two scaling fields in Fig. 2. Our J-Q results are
in principle consistent with both the cases depicted in
Fig. 2(a) and 2(b), where a first-order line terminates at
the multicritical point; tricritical in (a) and bicritical in
(b). In Fig. 2(a) there is a generic line of DQCP tran-
sitions below the multicritical point, which corresponds
to the original DQCP scenario [23–25] with no relevant
singlet (and where the nature of putative end point of the
critical line was not addressed). In contrast, in Fig. 2(b),
the multicritical point is also the tip of a gapless QSL
phase. Fig. 2(c) depicts a tetracritical point scenario,
which within a Landau-type theory would require e↵ec-
tively attractive interactions between the AFM and VBS
order parameters [61]. Studying the way in which the
SO(5) symmetry is violated for large system sizes on the
first-order line, we can conclude that the interactions ac-
tually must be repulsive, thus excluding an extended co-
existence phase.

While we only directly study the first-order line, both
in extreme proximity to the multicritical point and fur-
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point was assumed to be of the tricritical variant, though
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critical line was not addressed). In contrast, in Fig. 2(b),
the multicritical point is also the tip of a gapless QSL
phase. Fig. 2(c) depicts a tetracritical point scenario,
which within a Landau-type theory would require e↵ec-
tively attractive interactions between the AFM and VBS
order parameters [61]. Studying the way in which the
SO(5) symmetry is violated for large system sizes on the
first-order line, we can conclude that the interactions ac-
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J/Qn

Crossing transition by tuning J/Qn

J/Q2 and J/Q3 are near critical

Amenable to large-scale QMC studies

H = − J∑
⟨ij⟩

Pij − Q2 ∑
⟨ijkl⟩

PijPkl − …, Pij = Si ⋅ Sj

2

(a) J (b) Q2 (c) Z

(d) Q3 (e) Q6

FIG. 1. Interactions between S = 1/2 spins on the square
lattice. Red ellipses indicate singlet projectors (Si ·Sj �1/4),
and two or more ellipses in the same lattice cell correspond
to products. The original J-Q (here referred to as J-Q2)
model [27] combines the conventional AFM Heisenberg ex-
change in (a) at strength J with the four-spin interaction in
(b) at strength Q2. Other arrangement of the projectors can
also be considered, such as the Z2 operator in (c). Interac-
tions Qn have n projectors forming columns, e.g., n = 3 in
(d), while Zn has n projectors in a staircase formation. The
largest interaction considered here is the twelve-spin case in
(e). In (c)-(e), the 90� rotated interaction patterns are also
included in the summation over the full lattice, so that all
square-lattice symmetries are preserved. In addition to the
J-Qn models, we also consider Hamiltonians with three dif-
ferent couplings; J-Q2-Z2, J-Q2-Z3, and J-Q2-Q6.

symmetries [27, 29–35], exponents for SU(N) symmetric
models agreeing with field theory calculations for large
N [37–40], and apparent manifestations of deconfined
spinon excitations [41, 42]. Other observed features ap-
pear to be at odds with a true DQCP, e.g., scaling vio-
lations that have been interpreted either as a weak first-
order transition [33, 43–45] or anomalies not originally
anticipated at the DQCP [28, 41, 46]. These counter-
indicators may require only minor modifications of the
original theory, e.g., the non-unitary conformal field the-
ory (CFT) scenario, which has dominated the theoretical
discourse during the past several years [47–52]. Alterna-
tively, a more drastic overhaul of the theory of AFM–VBS
transitions will be required, e.g., if a continuous transi-
tion is realized only when crossing a fine-tuned multi-
critical point [53–55]. A resolution of the problem is
pressing, considering also that experimental platforms
targeting DQCP physics are under active development
[56–58].

Here we will present unambiguous evidence for a line
of first-order AFM–VBS transitions ending at a multi-
critical point with emergent SO(5) symmetry. We apply
quantum Monte Carlo (QMC) methods to study ground
states of a class of spin-1/2 J-Q models (those introduced
in Refs. [27, 34] as well as generalizations not studied pre-
viously), in which multi-spin interactions favoring locally
correlated singlets on the 2D square lattice are added to
the conventional Heisenberg two-spin exchange J . The
models are illustrated and further explained in Fig. 1.

The J-Q models and their generalizations permit QMC
studies of the transition between the AFM state and a
spontaneously dimerized columnar VBS state in great
detail without approximations other than well controlled
small statistical errors and finite lattice size—here we

TABLE I. Scaling dimensions obtained here from the J-Q
models compared with values reported for the SO(5) mul-
ticritical CFT [55] and exact diagonalization on the fuzzy
sphere with 10 electronic orbitals (from Table II of Ref. [59]).
The subscripts correspond to the order parameter (��), the
relevant SO(5) singlet operator (�s), the traceless symmet-
ric tensor (�t), the conserved current operator (�j), and the
leading irrelevant SO(5) perturbation (�4). Star superscripts
indicate necessary or assumed values; �� = 0.63 was used
as input in the CFT numerical bootstrap calculation [55] and
the other exponents depend to some (yet unknown) extent on
this value, while �j = 2 must hold in the CFT and was im-
posed for calibration of the level spectrum in the fuzzy sphere
calculation [59].

�� �s �t �j �4

This work 0.595(5) 2.336(3) 1.405(5) 1.97(4) 3.723(11)

SO(5) CFT 0.630⇤ 2.359 1.519 2⇤ 3.884

Fuzzy sphere 0.585 2.831 1.458 2⇤ 3.895

will in some cases take the linear size as large as L =
1024, which is unprecedented in ground state simulations.
We have pursued studies of several di↵erent Q terms,
with multi-spin interactions Qn consisting of n singlet
projectors on adjacent parallel lattice links, i.e., forming
columns of length or height n, as illustrated for some
cases in Fig. 1. We compare results for several of these
J-Qn models, anticipating strongly first-order transitions
for large n [32]. We also consider a model combining
two di↵erent Q terms, in order to access an entire line
of AFM–VBS transitions in a phase diagram with two
axes (coupling ratios). Specifically, we use a J-Q2-Q6

model to study a line of AFM–VBS transitions in the
plane of Q2 and Q6 (with Q2 + J = 1). We also study
the first-order line with the J-Q2-Z2 and J-Q2-Z3 model,
where the Z2 interaction, illustrated in Fig. 1(c), has a
staircase arrangement of two singlet projectors and Z3 is
an extension to three projectors.

Beyond the utility of systematically studying how the
AFM–VBS transitions evolve from very weak to moder-
ately strong in these models, we have also reached an
unprecedented level of numerical precision (small statis-
tical errors), even for large system sizes, in the models
with the weakest first-order discontinuities This allows
us to obtain estimates of scaling dimensions to unprece-
dented accuracy from a wide range of observables probing
critical fluctuations and emergent symmetries.

Our multi-faceted analysis the AFM–VBS transition
in the J-Q models and new theoretical insights allow us
to tie together many analytical and numerical results for
the transition that previously appeared to be in conflict
with each other. The perceived discrepancies are largely
consequences of intricate scaling behaviors for a system
not located exactly at the critical point but hosting a
near-critical ground state with coexisting weak AFM and
VBS orders. We completely resolve the nature of the
phase transition, demonstrating a line of first-order tran-
sitions terminating at an SO(5) multicritical point. We
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lations that have been interpreted either as a weak first-
order transition [33, 43–45] or anomalies not originally
anticipated at the DQCP [28, 41, 46]. These counter-
indicators may require only minor modifications of the
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models are illustrated and further explained in Fig. 1.
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�� �s �t �j �4
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Fuzzy sphere 0.585 2.831 1.458 2⇤ 3.895
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tical errors), even for large system sizes, in the models
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in the J-Q models and new theoretical insights allow us
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with each other. The perceived discrepancies are largely
consequences of intricate scaling behaviors for a system
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FIG. 4. Spin and dimer correlation functions at distance L/2 vs the inverse system size in the near-critical J-Q2 model, obtained
with ground-state converged PQMC calculations. In (a), both correlation functions are shown vs 1/L, with L from 16 (spin)
or 12 (dimer) up to L = 384. In (b) and (c) the correlation functions at three values of the coupling J (at fixed Q2 = 1) are
zoomed in for the six largest system sizes; L = 128, 160, 192, 256, 320, and 384. The error bars for the largest system in (c)
are about half the symbol size, while for all other cases they are much smaller. The green dashed curves are cubic collective
fits to the data for J = 0.04500 and J = 0.04505 (with several smaller system sizes also included in the fitting).

is defined as

Cd(r) = [h(S0 · Sx̂)(Sr · Sr+x̂)i � hS0 · Sx̂i2]✓0✓r (5)

where x̂ = (1, 0) is the lattice vector in the x direction
and ✓r = (�1)rx is the appropriate phase factor corre-
sponding to a columnar dimer pattern in the ordered
state and corresponds to the wave-vector of the domi-
nant critical fluctuations; q = (⇡, 0) and (0, ⇡) (the latter
with x $ y). In all cases, we average translationally over
the reference spin “0” and also use the reflection and
rotation symmetries of the square lattice as appropriate.

In a system with long-range order of a given kind, the
corresponding long-distance correlation function should
converge to a non-zero value representing the square of
the ordered moment, while in a critical system a power
law decay of the form

C(r) / r�2�� = r�(1+⌘�) (6)

should be observed asymptotically. Here �� is the scal-
ing dimension of the order parameter considered, and its
indicated relationship to the critical exponent ⌘� (the
anomalous dimension) is the simplified form of

2�� = d + z � 2 + ⌘� (7)

for spatial dimensionality d = 2 and dynamic exponent
z = 1. Evidence for z = 1 was presented already in
the first study of the J � Q2 model [27] and later, e.g.,
in Ref. [135]. The similarities between the J-Q2 model
and the manifestly space-time invariant classical 3D loop
model [28, 35] also supports z = 1, as we already dis-
cussed in Sec. II B.

Below we will show both the spin and dimer corre-
lations only for separations along the line r = (r, 0).
We have also computed the correlations along the lines

(rx, rx) and (0, r), the latter of which is not equivalent to
(r, 0) in the case of the dimer correlations for x-oriented
dimers. We find the same type of behavior (including the
decay exponent that we extract) in all cases in both spin
and dimer correlations.

A. Phase coexistence in J-Qn models

Long-distance correlation functions in finite systems
can be studied either by considering distances r ⌧ L for
large L or by taking one of the longest distances in a
periodic system, e.g., r = L/2. The former approach de-
livers the true correlation function in the thermodynamic
limit, while C(L/2) for large L extrapolates to the cor-
rect squared order parameter in a system with long-range
order. For a critical system, the same scaling exponent
governs the correlations versus r and versus L, while the
overall factor is di↵erent because of boundary enhance-
ments when r ⇡ L/2. For the purpose of detecting weak
long-range order, investigating C(L/2) versus L is prefer-
able, as only the behavior versus the single parameter L
has to be monitored.

Figure 4(a) shows both spin and dimer correlations at
r = L/2 versus 1/L at the value of the critical coupling
ratio of the J-Q2 model, obtained from Binder cumulant
crossings in Ref. [76]. It is certainly clear that any non-
zero values for L ! 1 must be very small, suggesting a
crital point or very nearly critical ground state. For sys-
tem sizes up to about L = 100, power laws can describe
the behaviors reasonably well, e.g., in Ref. [143] the ex-
ponent 1+⌘ ⇡ 1.27 was found this way for both spin and
dimer correlations. However, the exponent drifts signif-
icantly for larger systems. For the 3D loop model, sys-
tem sizes up to L ⇡ 500 were considered [28] and it was
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is defined as

Cd(r) = [h(S0 · Sx̂)(Sr · Sr+x̂)i � hS0 · Sx̂i2]✓0✓r (5)

where x̂ = (1, 0) is the lattice vector in the x direction
and ✓r = (�1)rx is the appropriate phase factor corre-
sponding to a columnar dimer pattern in the ordered
state and corresponds to the wave-vector of the domi-
nant critical fluctuations; q = (⇡, 0) and (0, ⇡) (the latter
with x $ y). In all cases, we average translationally over
the reference spin “0” and also use the reflection and
rotation symmetries of the square lattice as appropriate.

In a system with long-range order of a given kind, the
corresponding long-distance correlation function should
converge to a non-zero value representing the square of
the ordered moment, while in a critical system a power
law decay of the form

C(r) / r�2�� = r�(1+⌘�) (6)

should be observed asymptotically. Here �� is the scal-
ing dimension of the order parameter considered, and its
indicated relationship to the critical exponent ⌘� (the
anomalous dimension) is the simplified form of

2�� = d + z � 2 + ⌘� (7)

for spatial dimensionality d = 2 and dynamic exponent
z = 1. Evidence for z = 1 was presented already in
the first study of the J � Q2 model [27] and later, e.g.,
in Ref. [135]. The similarities between the J-Q2 model
and the manifestly space-time invariant classical 3D loop
model [28, 35] also supports z = 1, as we already dis-
cussed in Sec. II B.

Below we will show both the spin and dimer corre-
lations only for separations along the line r = (r, 0).
We have also computed the correlations along the lines

(rx, rx) and (0, r), the latter of which is not equivalent to
(r, 0) in the case of the dimer correlations for x-oriented
dimers. We find the same type of behavior (including the
decay exponent that we extract) in all cases in both spin
and dimer correlations.

A. Phase coexistence in J-Qn models

Long-distance correlation functions in finite systems
can be studied either by considering distances r ⌧ L for
large L or by taking one of the longest distances in a
periodic system, e.g., r = L/2. The former approach de-
livers the true correlation function in the thermodynamic
limit, while C(L/2) for large L extrapolates to the cor-
rect squared order parameter in a system with long-range
order. For a critical system, the same scaling exponent
governs the correlations versus r and versus L, while the
overall factor is di↵erent because of boundary enhance-
ments when r ⇡ L/2. For the purpose of detecting weak
long-range order, investigating C(L/2) versus L is prefer-
able, as only the behavior versus the single parameter L
has to be monitored.

Figure 4(a) shows both spin and dimer correlations at
r = L/2 versus 1/L at the value of the critical coupling
ratio of the J-Q2 model, obtained from Binder cumulant
crossings in Ref. [76]. It is certainly clear that any non-
zero values for L ! 1 must be very small, suggesting a
crital point or very nearly critical ground state. For sys-
tem sizes up to about L = 100, power laws can describe
the behaviors reasonably well, e.g., in Ref. [143] the ex-
ponent 1+⌘ ⇡ 1.27 was found this way for both spin and
dimer correlations. However, the exponent drifts signif-
icantly for larger systems. For the 3D loop model, sys-
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parallel lattice links, i.e., forming columns of length or
height n, as illustrated for some cases in Fig. 1. Focus-
ing on the AFM–VBS transition, we compare results for
several of these J-Qn models, anticipating strongly first-
order transitions for large n [32]. For n = 2 and n = 3
we find first-order transitions with very small ordered
moments of the coexistence state. There is a significant
range of length scales on which the systems exhibit ro-
bust quantum critical scaling, which we study using a
wide range of correlation functions and observables prob-
ing emergent symmetries.

We also investigate a model combining two di↵erent
Q terms, in order to realize an entire line of AFM–VBS
transitions in a phase diagram with two axes. Specifi-
cally, we use a J-Q2-Q6 model to access a line of AFM–
VBS transitions in the plane of Q2 and Q6 (with Q2+J =
1). Here we observe critical scaling of the growth of the
coexisting order parameters upon moving further into the
first-order line. We also study the first-order line with the
J-Q2-Z2 and J-Q2-Z3 model, where the Z2 interaction,
illustrated in Fig. 1(c), has a staircase arrangement of
two singlet projectors and Z3 is an extension to three
projectors. Comparisons of the di↵erent models provide
information on the relevant (continuum field) operator
content of the lattice interactions.

Our multi-faceted analysis the AFM–VBS transition in
the J-Q models and new theoretical insights allow us to
tie together many analytical and numerical results that
previously appeared to be in conflict with each other.
The perceived discrepancies are largely consequences of
intricate scaling behaviors for a system not located ex-
actly at the critical point but hosting a near-critical
ground state with coexisting weak AFM and VBS orders.
We completely resolve the nature of the phase transition,
demonstrating a line of first-order transitions terminat-
ing at an SO(5) multicritical point. We determine sev-
eral scaling dimensions of this critical point, including
relevant ones (i.e., those related to the conventional crit-
ical exponents) as well as some irrelevant ones; specif-
cally, those characterizing the leading perturbations of
the SO(5) symmetry.

As shown in Table I, both relevant and irrelevant scal-
ing dimensions agree reasonably well with recent results
for a multicritical SO(5) conformal field theory (CFT)
[55], obtained using a variant of the numerical bootstrap
method [60]. Strictly speaking, the bootstrap results in
this case reflect only bounds on the scaling dimensions,
some of which had been obtained previously [61, 62]. In
O(N) models, the true scaling dimensions typically fall
exactly on the boundary of the CFT allowed region of
scaling dimensions, and in general it is believed that they
must at least be close to the boundary. The small discrep-
ancies between our values and those of Ref. 55 likely stem
from the input value in the bootstrap calculation, the
scaling dimension �� of the order parameters, that was
not known precisely and to some extent impacts the out-
put values of the other scaling dimensions. Our refined
value of �� in Table I di↵ers slightly from the previously

TABLE I. Scaling dimensions obtained here from the J-Q
models compared with values reported for the SO(5) mul-
ticritical CFT [55] and exact diagonalization on the fuzzy
sphere with 10 electronic orbitals (from Table II of Ref. [59]).
The subscripts correspond to the order parameter (��), the
relevant SO(5) singlet operator (�s), the traceless symmet-
ric tensor (�t), the conserved current operator (�j), and the
leading irrelevant SO(5) perturbation (�4). Star superscripts
indicate necessary or assumed values; �� = 0.63 was used
as input in the CFT numerical bootstrap calculation [55] and
the other exponents depend to some (yet unknown) extent on
this value, while �j = 2 must hold in the CFT and was im-
posed for calibration of the level spectrum in the fuzzy sphere
calculation [59]. Our convention for statistical errors here and
henceforth is that the digit(s) within () correspond to the one
standard deviation error of the preceding digit, i.e., 3.723(11)
means 3.723± 0.011.

�� �s �t �j �4

This work 0.607(4) 2.273(4) 1.417(7) 2.01(3) 3.723(11)

SO(5) CFT 0.630⇤ 2.359 1.519 2⇤ 3.884

Fuzzy sphere 0.585 2.831 1.458 2⇤ 3.895

best estimate and using it in the bootstrap calculation
indeed improves the agreement with all the other values
[63]. Our values of ��, �t, and �s, coincide at a level
of uncertainty of only 1 � 2% with the CFT permissible
boundaries (which are believed be at or very close to the
actual scaling dimensions [55? ]) in the planes (��, �t)
and (��, �t) computed previously [62].

Concrete evidence for a multi-critical point in the con-
text of the DQCP was to our knowledge first proposed
in Ref. 53 by three of us (though with, in hindsight, a
misidentification of one of the scaling dimensions), and
attempts to construct a corresponding field theory were
made in Ref. [54]. The good agreement with the CFT
calculations [55, 62], in particular showing the relevance
of a singlet operator, firmly establishes the existence of
the multicritical point. This scenario is not specific to
the J-Q models studied here, but should be universal for
quantum magnets with AFM–VBS transitions as well as
other systems with analogous order parameters.

The CFT calculations did not address the nature of
the phase diagram in any particular microscopic model.
The phases and transitions generated when subjecting
the SO(5) CFT to a specific relevant microscopic pertur-
bation are not automatically known. The critical point
was assumed to be of the tricritical variant [55], though
the scaling dimensions alone cannot rule out a bicritical
point. Three putative phase diagrams relevant to generic
2D quantum magnets are presented schematically in a
space of two scaling fields in Fig. 2. Our J-Q results are
in principle consistent with both the cases depicted in
Fig. 2(a) and 2(b), where a first-order line terminates at
the multicritical point; tricritical in (a) and bicritical in
(b). In Fig. 2(a) there is a generic line of DQCP transi-
tions below the multicritical point, which corresponds to
the original DQCP scenario [23–25] with no relevant sin-

Scaling dimensions from large-scale QMC simulations
- compare with SO(5) CFT bootstrap and fuzzy sphere calculations

Whatever the ultimate
nature is of the DQCP,
the J/Q2 and J/Q3  models
are sufficiently nearby to
reliably study it.

Nature of excitations
- spectral functions 
- here at T=0
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In Section 11 we demonstrate the exact relationships between SAC with different parametrizations of the spectrum and
the ME method with the corresponding functional forms of the entropy. By comparing ME and SAC results in the proper
way following from our exact mapping, we demonstrate the correctness of the three forms of the entropy discussed in
Section 6. We also discuss sampling versus probability maximization within the ME framework and point out a previously
overlooked problem arising from extensive sampling entropy. Readers who are interested in these topics and who are
familiar with the basic aspects of the SAC and ME methods can read Section 11 essentially independently of the other
parts of the paper (with just a few jumps back to referenced results of earlier sections).

In Section 12 we conclude with a brief summary as well as further comments and conclusions. For future prospects,
we discuss more general constrained parametrizations and present a proposal for machine learning to identify the best
spectrum in a large set of SAC or ME spectra. We also suggest potential advantages of including a small fraction of negative
spectral weight in SAC.

In Appendix A we report new insights into the �2 minimization procedure corresponding to ⇥ ! 0, explaining why
the ultimate best-fit spectrum should consist of a small number of �-functions. We also discuss how this limit defines an
effective number of fitting parameters for noisy data, when positive definiteness is enforced.

In Appendix B we further discuss how the SAC spectrum at very low sampling temperatures changes in the presence
of a small fraction of negative spectral weight, as a result of additional entropy contributions. Our preliminary results
indicate that the SAC method may some times be further improved by exploiting negative spectral weight.

In Appendix C we discuss the fluctuations of the sampled spectral weight within a fixed frequency window; specifically
arguing that these fluctuations cannot be translated into statistical errors on the average spectrum. We also explicitly
demonstrate the additivity of amplitude and frequency fluctuations of a spectrum sampled with �-functions.

In Appendix D we compare and contrast conventional statistical mechanics and the unrestricted SAC sampling problem,
providing further arguments for an unusual thermodynamic limit (N! ! 1) of SAC, where the fluctuations of the
spectrum about the maximum-probability ME solution vanish.

2. The numerical analytic continuation problem

In Section 2.1 we outline the mathematical formalism of the analytic continuation problem, establishing definitions
and notation used in the later sections. We discuss QMC generated imaginary-time data in Section 2.2, e.g., the choice
of time grid and the characterization of the statistical errors and covariance. In Section 2.3 we discuss synthetic data,
i.e., imaginary-time correlations generated for testing purposes from an artificial model spectrum, with correlated noise
added to mimic the statistical fluctuations in typical QMC data.

2.1. Definition of the problem

The correlation function computed in a QMC simulation is defined with some operator O of interest (typically
corresponding to some experimental probe) as

G(⌧ ) = hO†(⌧ )O(0)i, (1)

where the imaginary-time dependence is defined in the Heisenberg representation as (working in dimensionless units
where h̄ = 1)

O(⌧ ) = e⌧HOe�⌧H , (2)

with the Hamiltonian H of the system under study. In the basis of eigenstates |ni and eigenvalues En of H , the spectral
function of O at temperature T = ��1 (setting kB = 1) is given by

S(!) = ⇡

Z

X

m,n

e��En |hm|O|ni|2�(! � [Em � En]), (3)

where Z is the partition function. The relationship between this spectral function and the imaginary-time correlation
function in Eq. (1) is

G(⌧ ) = 1
⇡

Z 1

�1
d!S(!)e�⌧!. (4)

For a bosonic operator O, G(� � ⌧ ) = G(⌧ ) and we need only ⌧ 2 [0, �/2]. Further, in the case of a bosonic function the
spectral weight distributions at negative and positive frequencies are related according to

S(�!) = e��!S(!). (5)

The relationship between S(!) and G(⌧ ) can therefore be modified so that integration is required only over positive
frequencies, with Eq. (4) written as

G(⌧ ) =
Z 1

0
d!S(!)K (⌧ , !), (6)
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In Section 11 we demonstrate the exact relationships between SAC with different parametrizations of the spectrum and
the ME method with the corresponding functional forms of the entropy. By comparing ME and SAC results in the proper
way following from our exact mapping, we demonstrate the correctness of the three forms of the entropy discussed in
Section 6. We also discuss sampling versus probability maximization within the ME framework and point out a previously
overlooked problem arising from extensive sampling entropy. Readers who are interested in these topics and who are
familiar with the basic aspects of the SAC and ME methods can read Section 11 essentially independently of the other
parts of the paper (with just a few jumps back to referenced results of earlier sections).

In Section 12 we conclude with a brief summary as well as further comments and conclusions. For future prospects,
we discuss more general constrained parametrizations and present a proposal for machine learning to identify the best
spectrum in a large set of SAC or ME spectra. We also suggest potential advantages of including a small fraction of negative
spectral weight in SAC.

In Appendix A we report new insights into the �2 minimization procedure corresponding to ⇥ ! 0, explaining why
the ultimate best-fit spectrum should consist of a small number of �-functions. We also discuss how this limit defines an
effective number of fitting parameters for noisy data, when positive definiteness is enforced.

In Appendix B we further discuss how the SAC spectrum at very low sampling temperatures changes in the presence
of a small fraction of negative spectral weight, as a result of additional entropy contributions. Our preliminary results
indicate that the SAC method may some times be further improved by exploiting negative spectral weight.

In Appendix C we discuss the fluctuations of the sampled spectral weight within a fixed frequency window; specifically
arguing that these fluctuations cannot be translated into statistical errors on the average spectrum. We also explicitly
demonstrate the additivity of amplitude and frequency fluctuations of a spectrum sampled with �-functions.

In Appendix D we compare and contrast conventional statistical mechanics and the unrestricted SAC sampling problem,
providing further arguments for an unusual thermodynamic limit (N! ! 1) of SAC, where the fluctuations of the
spectrum about the maximum-probability ME solution vanish.

2. The numerical analytic continuation problem

In Section 2.1 we outline the mathematical formalism of the analytic continuation problem, establishing definitions
and notation used in the later sections. We discuss QMC generated imaginary-time data in Section 2.2, e.g., the choice
of time grid and the characterization of the statistical errors and covariance. In Section 2.3 we discuss synthetic data,
i.e., imaginary-time correlations generated for testing purposes from an artificial model spectrum, with correlated noise
added to mimic the statistical fluctuations in typical QMC data.

2.1. Definition of the problem

The correlation function computed in a QMC simulation is defined with some operator O of interest (typically
corresponding to some experimental probe) as

G(⌧ ) = hO†(⌧ )O(0)i, (1)

where the imaginary-time dependence is defined in the Heisenberg representation as (working in dimensionless units
where h̄ = 1)

O(⌧ ) = e⌧HOe�⌧H , (2)

with the Hamiltonian H of the system under study. In the basis of eigenstates |ni and eigenvalues En of H , the spectral
function of O at temperature T = ��1 (setting kB = 1) is given by

S(!) = ⇡

Z

X

m,n

e��En |hm|O|ni|2�(! � [Em � En]), (3)

where Z is the partition function. The relationship between this spectral function and the imaginary-time correlation
function in Eq. (1) is

G(⌧ ) = 1
⇡

Z 1

�1
d!S(!)e�⌧!. (4)

For a bosonic operator O, G(� � ⌧ ) = G(⌧ ) and we need only ⌧ 2 [0, �/2]. Further, in the case of a bosonic function the
spectral weight distributions at negative and positive frequencies are related according to

S(�!) = e��!S(!). (5)

The relationship between S(!) and G(⌧ ) can therefore be modified so that integration is required only over positive
frequencies, with Eq. (4) written as

G(⌧ ) =
Z 1

0
d!S(!)K (⌧ , !), (6)
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In Section 11 we demonstrate the exact relationships between SAC with different parametrizations of the spectrum and
the ME method with the corresponding functional forms of the entropy. By comparing ME and SAC results in the proper
way following from our exact mapping, we demonstrate the correctness of the three forms of the entropy discussed in
Section 6. We also discuss sampling versus probability maximization within the ME framework and point out a previously
overlooked problem arising from extensive sampling entropy. Readers who are interested in these topics and who are
familiar with the basic aspects of the SAC and ME methods can read Section 11 essentially independently of the other
parts of the paper (with just a few jumps back to referenced results of earlier sections).

In Section 12 we conclude with a brief summary as well as further comments and conclusions. For future prospects,
we discuss more general constrained parametrizations and present a proposal for machine learning to identify the best
spectrum in a large set of SAC or ME spectra. We also suggest potential advantages of including a small fraction of negative
spectral weight in SAC.

In Appendix A we report new insights into the �2 minimization procedure corresponding to ⇥ ! 0, explaining why
the ultimate best-fit spectrum should consist of a small number of �-functions. We also discuss how this limit defines an
effective number of fitting parameters for noisy data, when positive definiteness is enforced.

In Appendix B we further discuss how the SAC spectrum at very low sampling temperatures changes in the presence
of a small fraction of negative spectral weight, as a result of additional entropy contributions. Our preliminary results
indicate that the SAC method may some times be further improved by exploiting negative spectral weight.

In Appendix C we discuss the fluctuations of the sampled spectral weight within a fixed frequency window; specifically
arguing that these fluctuations cannot be translated into statistical errors on the average spectrum. We also explicitly
demonstrate the additivity of amplitude and frequency fluctuations of a spectrum sampled with �-functions.

In Appendix D we compare and contrast conventional statistical mechanics and the unrestricted SAC sampling problem,
providing further arguments for an unusual thermodynamic limit (N! ! 1) of SAC, where the fluctuations of the
spectrum about the maximum-probability ME solution vanish.

2. The numerical analytic continuation problem

In Section 2.1 we outline the mathematical formalism of the analytic continuation problem, establishing definitions
and notation used in the later sections. We discuss QMC generated imaginary-time data in Section 2.2, e.g., the choice
of time grid and the characterization of the statistical errors and covariance. In Section 2.3 we discuss synthetic data,
i.e., imaginary-time correlations generated for testing purposes from an artificial model spectrum, with correlated noise
added to mimic the statistical fluctuations in typical QMC data.

2.1. Definition of the problem

The correlation function computed in a QMC simulation is defined with some operator O of interest (typically
corresponding to some experimental probe) as

G(⌧ ) = hO†(⌧ )O(0)i, (1)

where the imaginary-time dependence is defined in the Heisenberg representation as (working in dimensionless units
where h̄ = 1)

O(⌧ ) = e⌧HOe�⌧H , (2)

with the Hamiltonian H of the system under study. In the basis of eigenstates |ni and eigenvalues En of H , the spectral
function of O at temperature T = ��1 (setting kB = 1) is given by

S(!) = ⇡

Z

X

m,n

e��En |hm|O|ni|2�(! � [Em � En]), (3)

where Z is the partition function. The relationship between this spectral function and the imaginary-time correlation
function in Eq. (1) is

G(⌧ ) = 1
⇡

Z 1

�1
d!S(!)e�⌧!. (4)

For a bosonic operator O, G(� � ⌧ ) = G(⌧ ) and we need only ⌧ 2 [0, �/2]. Further, in the case of a bosonic function the
spectral weight distributions at negative and positive frequencies are related according to

S(�!) = e��!S(!). (5)

The relationship between S(!) and G(⌧ ) can therefore be modified so that integration is required only over positive
frequencies, with Eq. (4) written as

G(⌧ ) =
Z 1

0
d!S(!)K (⌧ , !), (6)
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In the QMC context, frequency moments from sum rules can be imposed when constructing D(!) by maximizing the
entropy [4]. Approximate results, e.g., from perturbation theory [51,52], can be also used, but this approach can produce
biased or misleading results, given that the perturbative results in most cases would be far from correct [53].

Often, in the absence of strong constraints or a default model known to be very close to the solution sought, the best
option is to use a flat default extending from ! = 0 [in the case where the ! � 0 formulation with the kernel in Eq. (14)
is used] up to some frequency beyond which the remaining spectral weight is negligible. If the lower bound !0 > 0 is
known, incorporating it can significantly improve also the resolution at higher frequencies, as was noted in the context
of the SAC method [14].

We will further discuss the ME method in Section 11, where we present transferable insights from the SAC approach.
We propose a new SAC-inspired way of fixing the entropy factor ↵. Most importantly, we formulate equivalences (not
invoking any mean-field arguments [9] or other approximations) between SAC sampling with different parametrizations
and ME methods with associated functional forms of the entropy—not always the Shannon information entropy.

3.3. Stochastic averaging

It was early on realized [7] that a different way to achieve a smooth spectrum is to average over many solutions
with reasonable �2 values, though this method initially fell in the shadows of the ME method. The SAC approach (also
called stochastic analytic inference or the average spectrum method) was introduced independently in a slightly different
form [8] several years later. Subsequent works further developed and explored the method [9,12–18]. Applications of
SAC methods to various quantum lattice models abound; we list a representative sample of mostly recent works as Refs.
[12,15,16,54–70].

In most SAC methods, the averaging is carried out by importance sampling of the parameters of a fully flexible positive
(semi) definite spectrum S(!), e.g., the amplitudes of �-functions on a dense grid of frequencies or with some large number
of �-functions residing in continuous frequency space, as illustrated in Fig. 1. Such a parametrization with large N! can be
regarded as the configuration space of a statistical-mechanics problem, with �2(S)/2 playing the role of the energy in a
Boltzmann-like weight function. One can then carry out a Metropolis Monte Carlo simulation in this space at a fictitious
temperature ⇥ , whence the probability density of the spectrum S(!), given the data Ḡ (and the covariance matrix), is

P(S|Ḡ) / exp
✓

��2(S)
2⇥

◆
, (23)

where �2 also depends on Ḡ and the covariance matrix according to Eq. (9). With ⇥ = 1, which was used by White [7]
and also advocated by Syljuåsen [12], this conditional probability is exactly the likelihood function arising from Bayes’
theorem, Eq. (19), if one assumes a prior probability P(S) independent of S (i.e., all combinations of the parameters defining
the spectrum are a priori equally likely). Leaving out the unimportant (and unknown) normalization P(Ḡ) we then have
P(S|Ḡ) / P(Ḡ|S), i.e., Eq. (23).

As an alternative to fixing ⇥ = 1, it can be argued that ⇥ should be adjusted to make sure that the sampled average
goodness of the fit h�2i is close to its minimum value (obtained when ⇥ ! 0). The fluctuations of the spectrum still must
be large enough to produce a smooth average [8,9], and then some criterion balancing h�2i minimization and sampling
entropy must be devised. It has been shown explicitly [14] that configurational entropy leads to a deteriorating spectrum
(increasing h�2i) as the number of degrees of freedom of the spectrum is increased if the temperature is held fixed at
⇥ = 1. This effect can be counteracted by imposing constraints [14], as we will also discuss here, but in most cases it is
still necessary to also suppress the entropy by reducing ⇥ .

The need to lower the sampling temperature below ⇥ = 1 leads to a problem similar to the selection of the entropy
weighting factor ↵ in the ME method. A commonly used method has been to identify the point of sharpest drop (peak
in the derivative) of lnh�2(⇥)i versus ln(⇥), which, in a loose analogy with the specific heat [9] can be regarded as
signaling a transition into a ‘‘glassy’’ state in which the spectrum becomes difficult to sample and is affected by the
statistical errors. Bayesian inference can also be applied to fix ⇥ [13], with the same caveats as in the case of ↵ in the ME
method. As demonstrated by Beach, the ME and SAC methods are in fact closely related [9]—treating the SAC setup within
a mean-field-like approximation gives exactly the ME method, with ↵ = ⇥ . This fact initially appeared to lend further
credence to SAC as superior to the ME method, as the fluctuations neglected in the ME solution can contain additional
spectral structure [13]. Here, in Sections 6 and 11, we will further quantify the relationship between the two methods,
which in some important aspects is at odds with the previous notions.

As mentioned in the previous section, the likelihood function Eq. (23) with ⇥ = 1 arises from Bayes’ theorem with
a constant prior P(S). Alternatively, this likelihood function, with ⇥ = 1 or ⇥ 6= 1, can be heuristically interpreted as a
reasonable way to carry out averaging over a class of spectral functions compatible with the QMC data set {Ḡi}. Ultimately,
however, a given parametrization of the spectrum also can be regarded as an entropic prior, i.e., there is some bias toward
certain shapes of the spectrum due to specific entropic pressures associated with the sampled degrees of freedom (i.e., the
details of the stochastic process). Investigating these entropic effects, formally quantifying them and counteracting them
with constraints will be the major themes of this paper.

There is another line of average-spectrum methods where the sampling is not carried out with a Boltzmann-like weight
function, but some other mechanism is used to generate an ensemble of spectra with reasonable �2 values [71–76]. We
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where the kernel is given by

K (⌧ , !) = 1
⇡
(e�⌧! + e�(��⌧ )!). (7)

We will here consider only bosonic spectral functions, but the fermionic case can be studied with very minor modifications
of the methods. For examples and applications, we will study quantum spin models and synthetic spectral functions.

A well known example of a bosonic spectral function is the dynamic spin structure factor S↵(q, !), measured, e.g., by
magnetic inelastic neutron scattering as the cross section for momentum (q) and energy (!) transfer. In this case the
operator in Eq. (3) is O = S↵

q , the Fourier transform of the ↵-component S↵
r (↵ = x, y, z) of the real-space spin operators.

We will test our improved (as well as previous) SAC schemes on the dynamic structure factor of spin-isotropic Heisenberg
models in one and two dimensions, where the function S(q, !) is independent of the direction ↵. In addition, we will also
consider synthetic imaginary-time data to test the ability to resolve a variety of spectral features.

A QMC simulation delivers a statistical estimate Ḡi ⌘ Ḡ(⌧i) of the true correlation function G(⌧ ) for a set of imaginary
times ⌧i, i = 1, . . . ,N⌧ (or one can work in Matsubara space with a set of Fourier components at frequencies !n = n2⇡/�
[6,23], but here we will consider only formulations in the original time space). Often a uniform grid of ⌧ points is used,
but other grids are some times preferable, as we will discuss further below in Section 2.2. Ideally, for a given system there
are no other approximations than the unavoidable statistical errors of Ḡi, the magnitudes of which depend inversely on
the square-root of the length of the QMC run as usual.

We denote by �i one standard deviation of the mean Ḡi. Importantly, the statistical errors of different data points i
are correlated, and their full characterization requires the covariance matrix [4]. With the QMC data divided up into bins
b = 1, 2, . . . ,NB (assumed to be statistically independent, which in practice is essentially satisfied if the bins represent
sufficiently long simulation times), the covariance matrix is given by

Cij = 1
NB(NB � 1)

NBX

b=1

(Gb
i � Ḡi)(Gb

j � Ḡj), (8)

where Gb
i is the mean of the correlation function computed with the data of bin b [or b could represent bootstrap samples,

as will be discussed further below, in which case NB is the number of samples and the factor 1/(NB�1) should be removed
above]. The diagonal elements of C , the variances, are the squares of the conventional statistical errors; � 2

i = Cii.
When applying a numerical analytic continuation procedure, some suitable (sufficiently flexible) parametrization of the

spectral function S(!) is optimized for compatibility with the QMC data. Alternatively, in the SAC approach, statistically
acceptable instances of S(!) are sampled. In either case, given S(!) the corresponding Gi values can be computed according
to Eq. (6) and the overall closeness of these to the QMC-computed values Ḡi is quantified in the standard way by the
‘‘goodness of the fit’’,

�2 =
N⌧X

i=1

N⌧X

j=1

(Gi � Ḡi)C�1
ij (Gj � Ḡj). (9)

Some times only the diagonal elements of C are included, and the goodness of the fit then reduces to

�2
d =

N⌧X

i=1

✓
Gi � Ḡi

�i

◆2

. (10)

Here we will always use the full covariance matrix, which is necessary for the SAC method to be statistically sound.

2.2. QMC correlation functions

It is convenient to work with normalized spectral functions. According to Eq. (4) the normalization
R
S(!)d! is just

the value ⇡G(0) and we therefore divide the QMC data Ḡ(⌧i) by Ḡ(0) for a spectrum normalized to ⇡ . We point out that
dividing by Ḡ(0) also cancels out some covariance and makes the standard statistical errors � (⌧ ) smaller for ⌧ close to
0 (vanishing as ⌧ ! 0). We use the bootstrap method for computing the covariance matrix, i.e., with a large number
M of samples of NB randomly chosen bins among all the NB bins. As mentioned, Eq. (8) then holds if the sum is taken
over the M bootstrap samples and the denominator NB(NB � 1) is replaced by M . Normalizing each bootstrap sample, the
normalization

R
S(!)d! = ⇡ is also enforced exactly in the sampled spectra, and we do not use the ⌧ = 0 data point

explicitly. The original normalization is put back in after the analytic continuation by just multiplying the spectrum by
the original pre-normalization value of Ḡ(0).

For temperatures T > 0, the integral
R
S(!)d! includes spectral weight at both negative and positive frequencies,

and with Eq. (6) G(0) does not correspond directly to a fixed normalization of S(!) in the corresponding frequency range
! 2 [0, 1). The Monte Carlo sampling can be simplified by working with a different spectral function that is normalized
to unity on the positive frequency axis. We therefore define a modified spectral function to use internally in the computer
program,

A(!) = S(!)(1 + e��!)/⇡ , (11)
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Fig. 1. Parametrizations of spectra in terms of a large number N! of �-functions: (a) Variable (sampled) amplitudes on a fixed frequency grid.
(b) Identical amplitudes and sampled frequencies in the continuum. (c) Variable frequencies and amplitudes. (d) A ‘‘macroscopic’’ �-function with
amplitude A0 at !0, followed by N! ‘‘microscopic’’ �-functions at !i > !0 with uniform amplitudes Ai = (1� A0)/N! . The amplitude A0 is optimized
but held fixed in a given sampling run, while !0 is sampled. (e) Equal amplitudes with monotonically increasing spacing di ⌘ !i+1 � !i . The lowest
frequency !1 is sampled along with all other frequencies with the constraint di+1 > di . The final spectrum in all cases is the mean amplitude density
accumulated in a histogram.

edge, can significantly improve the ability of the SAC method to resolve spectral details also at frequencies far away
from the feature(s) directly associated with the constraint. In previous work on sharp edges [14], a fixed frequency grid
was used and the constraints amounted to enforcing and optimizing lower and upper bounds, outside which there is no
spectral weight. This methods worked surprisingly well, e.g., when a single-peak condition was also imposed (without
any further information on the location or shape of the peak) it was possible to closely reproduce the edge divergence
at temperature T = 0 of the structure factor of the Heisenberg chain—a feat that had been impossible with previous
approaches. In practice, the optimization of a constraint, which is based on a simple statistical criterion of minimum h�2i
at fixed ⇥ > 0, can be very time consuming. Here we introduce a variety of useful constraints within the continuous-
frequency representation, where either no further optimization is required or the optimization process is much faster
than in the previous approach.

In a previous work with collaborators [16], we already implemented an SAC method incorporating a spectral edge
consisting of a single �-function, whose relative weight A0 was optimized and with the remaining weight 1 � A0 divided
over hundreds or thousands of ‘‘microscopic’’ �-functions to model a continuum; see Fig. 1(d). We here further explore
the ability of the statistical optimization scheme to find the correct value of A0. In particular, we investigate how the
optimal value converges when the statistical errors of the underlying imaginary-time data are reduced. We also generalize
the approach to a quasi-particle peak of finite width by splitting the weight A0 over several sampled edge �-functions.
This way, both broad and narrow quasi-particle peaks can be resolved to a degree far exceeding what is possible with
conventional methods.

Moving then to power-law and similar edge singularities, we introduce a constraint on the distances between the
sampled �-functions, such that the mean density of �-functions must increase monotonically when the edge is approached.
This parametrization, illustrated in Fig. 1(e), most naturally describes a divergent edge. However, with different amplitude
profiles and further constraints, both divergent and convergent spectral edges can be reproduced. We discuss the entropic
pressures of the distance-monotonic parametrization and test its ability to reliably reproduce different types of edges.
Again, we find a remarkable improvement in the fidelity of the method in resolving not just the edge, but the entire
spectral function up to its high-frequency bound. We also generalize this approach to an arbitrary (not necessarily
monotonically decaying) continuum above the edge.

A key message of our study is that removal by constraints of distortions at the lower edge of a spectrum can also reveal
features at higher frequencies at unexpected level of detail. Thus, the imaginary-time data contain ‘‘hidden information’’
that is masked when a sharp edge is not treated correctly but is revealed once the primary distortions are removed by
appropriate constraints.

Our comprehensive series of tests of different parametrizations of increasingly complex spectral functions (also beyond
those in Fig. 1) build up to a scheme capable of resolving a broad range of common edge features, with only minimal input
beyond the imaginary-time data. The method in effect is a generic curve-fitting machinery, where the type of curve is
only specified minimally (e.g., the edge takes an asymptotic power-law form, with the exponent not necessarily specified
but optimized in the process) and beyond this information the statistically best average spectrum consistent with the
input data is produced.
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In multi-frequency updates with n > 2 �-functions, which we have constructed explicitly only for n = 3 in Eqs. (29) and
(30), the corresponding amplitudes can also be updated along with the frequencies to ensure conservation of moments.
Then n new frequencies are first according to Eq. (29) with R in Eq. (30) (or generalized formulas for larger n), after which
conservation of n � 1 frequency moments is ensured by changing the corresponding amplitudes according to a more
complicated generalization of Eq. (31). In practice, the n  3 updates we have presented above allow rather effective
sampling already and we do not go to higher n.

In general, when the amplitudes are also sampled the number N! of �-functions can be smaller than when only
frequency moves are performed, as some amplitudes can always become very small and reach far into thin spectral tails.
However, the sampling efficiency appears to be generally worse, likely because some amplitudes occasionally become
large and more difficult to move. Not performing amplitude updates also of course saves time. The amplitude updates are
helpful when sampling at very low ⇥ , to obtain a good approximation for the best goodness of fit �2

min (which we need
for setting the optimal sampling temperature, as discussed below in Section 5). Sufficiently good values can also be easily
obtained with only frequency updates if N! is large enough.

Whether or not to include amplitude moves is not in the end only a matter of sampling efficiency, since the entropy is
also affected. We will demonstrate this fundamental difference between the two parametrizations both in practice, in the
test cases presented below in Section 5, and formally when comparing the functional forms of the entropies in Section 6.
We will also argue that better results (in particular, better resolved peak widths) are in general obtained when amplitude
moves are included.

If the averaged spectrum sampled in the absence of QMC data is regarded as a default model, then the continuum
representations considered here correspond to an infinitely stretched out spectrum when the �-functions can migrate
without bounds (at least in principle). In contrast, the fixed-grid spectrum always has an upper bound, and then the
default average spectrum is flat with the amplitude equal to the inverse of the frequency range. In practice, the formal
difference in the frequency bound on the grid and in the continuum should not be very important; once the sampling is
restricted by the imaginary-time data, �2 imposes a similar de facto upper bound in both cases—under the assumption
that ⇥ is correctly chosen (as explained in the next section) in each case.

It is worth noting that a frequency cut-off has to be imposed in the computer program only for the purpose of
precomputing the kernel and for storing the histogram. If the cut-off is high enough, it does not imply any restriction on
the migration of the �-functions. The high-frequency tail is in practice dictated by the QMC data, as a �-function moving
up very high in frequency will ruin �2 and not be accepted. One might then worry that increasing N! (i.e., reducing
the individual amplitudes) would affect the tail, as the �2 cost of migrating high up diminishes, especially in the fixed-
amplitude case where the unit of spectral weigh is 1/N! . However, in practice we have not noticed any issues with the
tail of the spectrum even for very large N! (more than 105 in some tests) when the sampling temperature ⇥ is fixed
according to the scheme discussed below in Section 5. There is also no fundamental reason to expect any problems when
N! ! 1, because of the exact mapping of the SAC to the ME method in this limit (Section 11). We will show examples
of the effect of varying N! in Section 5.5.

5. Optimal sampling temperature

An important aspect of SAC is how to select the sampling temperature ⇥ . The general situation [8,9] prevailing with
unrestricted sampling is that the spectrum at low ⇥ freezes into a stable or metastable �2 minimum. In the ⇥ ! 0 limit
a few sharp peaks form, for reasons that will be mentioned below and further elucidated in Appendix A. High ⇥ values
lead to smooth featureless spectra with large h�2i. There is a range of ⇥ over which h�2i is small, close to its minimum
value �2

min, but the fluctuations are still significant and smoothen the average spectrum. It is not possible to reach �2 = 0,
even in principle, when positive definiteness is imposed; again see Appendix A, and also Appendix B, where we include
a small fraction of negative spectral weight.

There is still no consensus on exactly how ⇥ should best be chosen, but overall the different schemes proposed in
the literature produce rather similar results in most cases. The ⇥-fixing issue is similar to the various ways in which
the entropic weighting parameter ↵ of the spectrum can be chosen in the ME method [4,6]. Some criteria proposed
for optimal ⇥ were inspired by the physics analogy of a phase transition between ‘‘data fitting’’ and ‘‘noise fitting’’ [8,9].
However, there is no rigorous motivation for such physics inspired criteria, and statistically acceptable h�2i values cannot
be guaranteed. In this section we discuss our alternative optimal-⇥ criterion, show examples of its application, and also
discuss related issues that further motivate and support the criterion. We begin by a brief outline of the subsections to
follow.

The criterion we advocate for the optimal value of ⇥ involves a balance between entropy and goodness-of-fit,
formulated in a simple way motivated by the properties of the �2 distribution, namely, ⇥ is adjusted so that

h�2(⇥)i ⇡ �2
min + a

q
2�2

min, (32)

where �2
min is the minimum value of �2, which can be reached in a simulated annealing [79] process to very low ⇥ , and

a is of order 1. This criterion was first applied in Ref. [15] (though it was stated in a slightly different way) and will be
further motivated here in Section 5.1. In the later subsections we present various results illustrating the applicability of
the criterion when used with the different parametrizations of the spectrum.
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Spectra with sharp quasi-particle peak
Example: -function and continuum, synthetic data 
- noise level 2*10-5 (20 𝜏 points, 𝛥𝜏=0.1)
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Spectrum with continuous edge divergence
Constraint of monotonically increasing distances
- no constraint on lower and upper bounds 
- entropy favors divergent lower edge continuum

Example: 
Heisenberg chain (L=500, T→0)

200 𝜹-functions 
- Sampling done with 
  cluster update

- Lower edge is good  to ~0.2%

- Very close to known 
 (𝜔-𝜔0)-1/2 singularity

Comparing with numerical Bethe Ansatz, 
same system size (J.-S. Caux)

Lake et al., PRL 2013



The monotonicity constraint results in entropic pressure to a sharp peak at the edge 
- good if the spectrum sought has such an edge

�!0 = !1 � !0

Non-divergent edge: optimize by constraining smallest spacing

�!0 = n��, n = 0, 1, 2, . . .

- scan over

synthetic spectrum Heisenberg  S(4π/5,ω)
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How about non-monotonic spectrum following edge?

Mix these two parametrizations:
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QMC calculation of single-particle Green’s function (imaginary time)
Example: t-J model
- using canonical transformation (Angelucci 1995)

= { ↑i , ↓i ,0i}
(S. Yang, G. Schumm, B. Zhao, AWS, arXiv: 2511.20447)in Stochastic Series QMC

Spin configurations sampled (no sign problem)

- all hole paths consistent with spin configuration are summed up exactly 

- (no sign problem in practice even though some path cancelations)

1D example, N=8



Single-hole dynamics in the AFM phase

H = HJQ − t ∑
⟨ij⟩,σ

(c†
σ,jcσ,i + c†

σ,icσ,j)

Electron ejected (hole injected); now a manifestly fermionic problem

- the J-Q model supplemented by hopping; t-J-Q model 

Test on standard 2D t-J model (Q=0) at “supersymmetric” point t/J=1/2 ( -function edge)δ
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FIG. 2. Single-hole spectral function S(k,!) of the two-dimensional t-J-Q model with t=1, J=2 and Q=0 using the variable-
amplitude unconstrained SAC (a) and single-� SAC (b). The system size is N = 32⇥ 32. (c) Optimal quasi-particle weight a0

extracted from (b).

time. All the spectral heatmaps in the paper are demon-
strated in log scale whose minimum is fixed to 10�4, be-
low which the spectral weight can be regarded as negligi-
ble, and the white regions are the places where there is no
weight at all. In Fig. 2(a), we use the variable-amplitude
unconstrained SAC, whose parametrization is shown in
Fig. 1(a), and the corresponding S(k,!) are plotted in a
representative momentum path — (⇡/2,⇡/2) ! (⇡, 0) !
(⇡,⇡) ! (⇡/2,⇡/2) ! (0, 0) ! (⇡, 0). It can be observed
that the dispersion minimum is located at the momen-
tum (⇡/2,⇡/2), which matches well with other results
from either theoretical or numerical calculations. There
is an extremely sharp peak at k = (0, 0), and we will dis-
cuss more in Fig. 2(b), which is an outcome of the exact
solution for the pure t � J model at the supersymmet-
ric point [29–31] J/t=2 at k = (0, 0), and the exact ex-
pression for the corresponding single-hole imaginary-time
correlation function is G(⌧) = exp(�2d⌧ t)/2, where d is
the real-space dimension and t is the hopping strength.
Then, according to Eq. 6, the corresponding exact ex-
pression of the spectral function will be S(k = 0,!) =
⇡�(!�2dt)/2, which is a � function located at ! = 2dt =
4 for our case. And this is reflected in Fig. 2(b), where
we use the single-� SAC whose parametrization is shown
in Fig. 1(b). We can observe a single-� peak at ! = 4 for
k = (0, 0) here, which matches well with the exact solu-
tion. It is worth noting that we manually broadened this
single-� peak in Fig. 2(b) to make it more visible, but the
real output result is solely a � function located exactly
at ! = 4. For other momenta, there is a single-� edge
setting the lower bound and some continuum followed by
to fill the higher energy parts, and the dispersion can
also be extracted from all these energy lower bounds.
Fig. 2(c) demonstrates the optimal quasiparticle weight
a0 from (b) which is determined by minimizing the �2

scan of a single-� SAC. All the quasiparticle weights a0
are prominent especially those close to k = (0, 0), and
a0 = 1 when exactly at k = (0, 0), which means there is
a single �-function with 100% weight. The strong quasi-
particle features imply that there is no spin-charge sep-
aration when injecting a single hole into the AFM back-

ground, and the holon and spinon are likely to form a
spin-polaron.

Next, we proceed to the critical point of the J-Q back-
ground where Q/(J + Q) = 0.6 and set J = 0.6667,
Q = 1. It is the transition point between the AFM and
VBS phase of the 2D J-Q model, which is related to
the deconfinement of the excitations. There is a possible
senario that at such a deconfined quantum critical point,
fractionalized excitations will emerge and spin-charge
separation may happen when a hole inserted. Fig. 3 ex-
hibits the single-hole spectral function S(k,!) of the two-
dimensional t-J-Q model with t=1, J=0.6667 and Q=1.
In Fig. 3(a), we use the variable-amplitude unconstrained
SAC to obtain general S(k,!) features. And for (b), in
order to detect the possible fractionalized excitations, we
use a di↵erent parametrization called “edge+continuum”
which is shown in Fig. 1(c) and (d). It is a combi-
nation of two di↵erent SAC parametrizations — One
is the monotonic-distance increasing between neighbor-
ing equal-weight � functions: !i � !i�1  !i+1 � !i,
which has a preference to output an edge followed by a
power-law decaying form and the other one is the equal-
weight unconstrained parametrization which is to com-
pensate to produce a more general form instead of mono-
tonic decaying, and is bounded by the left edge !0 in
Fig. 1(c) whose location is also sampled. After applying
the “edge+continuum” SAC, we obtain the correspond-
ing single-hole S(k,!) in Fig. 3(b), where for each k,
the S(k,!) is bounded from below by an optimal loca-
tion of the edge !0. A power-law decaying form follow
closely to each edge and then the unconstrained part of
the SAC will produce some hump in higher energies. At
the critical point, the dispersion minimum is still located
at k = (⇡/2,⇡/2). We also use the single-� SAC to re-
peat the calculations and obtain the optimal quasiparti-
cle weights a0 shown in Fig. 3(c), where most of them are
not as large as the ones in the AFM phase background
shown in Fig. 2(c). However, this evidence is not strong
enough to make conclusions about the existence of spin-
charge separation. In the following, we will investigate
deeper through a combined analysis with the calculations

quasi-particle

weight

A(k, ω)

- Exact result at k=0 reproduced; A(k = 0,ω) = δ(ω − 4)
- Dispersion minimum at 

- Almost flat band (close to quartic) around 

k = (π/2,π/2)
k = (π,0)

“ledge + peak” DOS as in 2D Hubbard model 
[Schumm, Zhang, Sandvik, PRB 2025]
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FIG. 3. Single-hole spectral function A(k,!) of the 2D t-J-Q model with t=1, J=2 and Q=0 and system size N = 32 ⇥ 32,
using the variable-amplitude unconstrained SAC (a) and �-edge SAC (b). The Optimal quasi-particle weight a0 extracted from
(b) is shown in (c). The dashed black lines in (b) correspond to magnons added to the spin polarons at their local maximums.
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FIG. 4. Spectral densities from the same calculations as in
Fig. 3 for selected momenta. The �-functions at the lower
edges are visualized as vertical lines and their relative weights
are indicated in each panel.

argued previously in many works.

For a system in the AFM phase, the single-hole disper-
sion of A(k,!) should have the same edge as A((⇡,⇡) �
k,!) due to the symmetry breaking, similar as the
magnon dispersion from the dynamic spin structure fac-
tor S(k,!) because of the ordering vector (⇡,⇡). Fig. 5
shows a zoom-in of the edge in Fig. 3(b), with the red
dots (connected by lines for clarity) showing the edge at
A((⇡,⇡) � k,!) from the same figure. We can observe
that the edges match very well, with only very small de-
viations for some momentum points. The largest devia-
tions are only about 0.3%, wchich can serve as a measure
of the high precision of our method to extract the disper-
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FIG. 5. Zoom-in of the lower edge of A(k,!) from Fig. 3(b).
The red dots are the corresponding A((⇡,⇡)�k,!) SAC dis-
persion points in the AFM phase.

sion relation; indeed, the good match also lendssupport
to the �-edge parametrization used. In principle, some of
the deviations could also be caused by finite-size e↵ects.

IV. AT THE DQCP

A. Dynamic spin structure factor S(k,!)

Next, we proceed to the critical point of the J-Q back-
ground where Q/(J + Q) = 0.6 and set J = 0.6667,
Q = 1. It is the transition point between the AFM and
VBS phase of the 2D J-Q model, which is related to the
deconfinement of the excitations. In order to study the
spin-charge separation at the DQCP, we begin with the
calculations of the dynamic spin structure factor S(k,!).
Now, the operator O in G(⌧) is the spin operator in the
z-component defined as

O = Sz

k =
1p
N

NX

i=1

e�iri·kSz

i
. (22)

So, the extracted spectral function from SAC is the dy-
namic spin structure factor and we can obtain the corre-
sponding spinon dispersion. We apply a di↵erent SAC

Expected with AFM order:
ωk = ω(π,π)−k

well satisfied (red line)



QMC + SAC for spin structure factor S(q, ω)

DYNAMICAL SIGNATURE OF FRACTIONALIZATION AT A … PHYSICAL REVIEW B 98, 174421 (2018)

of the conserved current nx∂yvy − vy∂ynx associated with the
emergent O(4) symmetry (in the XY-VBS rotation channel),
which is a unique feature of the easy-plane DQCP. The gap-
less point (π, 0) also follows naturally, because the XY-VBS
current can decay into the nx continuum at (π,π ) and the
vy continuum at (0,π ), such that the momenta add up to
(π, 0). A similar interpretation applies to the Sz channel as
well. The only difference is that the spin-VBS current there
is not conserved, but is nevertheless still critical. The (π, 0)
continua exhibit a remarkable spatial anisotropy. On the edge
of the continua, the spectral weight is always larger along
(π, 0)-(π,π ) line and smaller along (π, 0)-(0, 0) line. This
spatial anisotropy is a signature of current-current correlation,
which originates from the nontrivial ω2 − q2

x form factor on
the numerator as given in Eqs. (8) and (9). The (0,π ) continua
will also exhibit the spatial anisotropy but with the form
factor rotated by π/2 to ω2 − q2

y . These “shadow” continua
allow us to probe the critical VBS fluctuation in the spin
excitation spectrum, which is another remarkable hallmark of
the DQCP.

As discussed in Sec. I, the spectral features uncovered here
are relatively easy to probe in INS or RIXS experiments,
hence paving way for observation of the seeming ephemeral
DQCP in real materials. These features are also robust even
if the parameter is slightly off the critical point. Our simu-
lation itself serves as a “numerical proof” of this statement.
As we measure the DQCP spectra at q = 0.6 of the EPJQ
model [not exactly at its critical point qc = 0.6197(2)], we
still observe all the low-energy spectral features consistent
with the field theory qualitatively. This demonstrates that the
dynamical signatures do not require fine-tuning and should
be easier to measure in experiments. Whereas the previous
studies of DQCP mainly focused on the critical scaling and
exponents from the theoretical perspective, these quantities
require more fine-tuning and are rather difficult to measure
in experiments. Even if the DQCP turns out to be first order
(as expected if the anisotropy is strong) or becomes unsta-
ble against other intermediate phases at low temperature, its
distinct spectral features over a large range of frequencies
can still be robustly observed above the low-energy scale
at which the potentially other transitions of phases become
manifest.

Finally, the spectra of the EPJQ model in the VBS phase
is shown in Figs. 3(c) and 3(f). Their EPJ1J2 counterpart
in the columnar singlet phase is shown in Figs. 4(c) and
4(f). All spin excitations are gapped in both Sx (q,ω) and
Sz(q,ω) for both models. For the EPJQ model, the spectra
in the VBS phase still maintain broad continua above the gap,
in contrast to the much sharper spectra of gapped magnons
in the EPJ1J2 columnar phase. This might be related to the
two-length-scale phenomena, which is inherent to the DQCP,
persisting in the VBS phase of the standard JQ model [25],
namely, the domain wall size of the VBS order may still
remain large while the spin correlation length is small. The
domain wall size of the VBS order is directly related to the
confinement length scale of the spinons [2]. This implies that,
although the spin-correlation length is finite, the confinement
length scale of the spinon can still be large, which leads to
the large continuum above the spin gap in the spin-excitation
spectrum.

FIG. 5. Comparison of the DQCP dynamic spin structure factors
between numerics [(a) Sx channel and (c) Sz channel] and theory [(b)
Sx channel and (d) Sz channel]. The color map is the same as that
in Fig. 3. The dashed curves trace out the upper and low edges of
the two-parton continuum, assuming free fermionic partons with the
π -flux state dispersion ϵk in Eq. (14). The lower edge simply follows
ϵk and the upper edge is given by the maximal two-parton excitation
energy Eq = maxk∈BZ |ϵk + ϵq−k|. The suppressed spectral weight
near (0,0) can be captured by matrix element effects.

IV. PARTON MEAN FIELD THEORY FOR
THE DQCP SPECTRA

In this section, we provide theoretical account for the over-
all shape of the dynamic spin structure factors Sx (q,ω) and
Sz(q,ω) observed at the DQCP. The easy-plane DQCP admits
several candidate field theory descriptions, including the easy-
plane NCCP1 theory [1–3], the Nf = 2 noncompact QED3
theory [6,7,9–13], and the Nf = 2 QCD3 theory [5,13] (or
its Higgs descendent Nf = 4 compact QED3 [4,6,13,15,16])
with additional anisotropy in the SO(5) symmetric tensor
representation. Although all theories are believed to provide
equivalent descriptions of the low-energy physics under pro-
posed duality relations [13], some of them are more conve-
nient to handle by mean-field treatment than others. Among
these theories, we found that the Nf = 2 QCD (or Nf = 4
QED) theory gives the best account for the overall spectral
features at the mean-field level. Because, in these theories,
both the AFM and VBS order parameters are treated on equal
footing as fermionic parton bilinears, it is already possible
to approximately capture both spin and dimer fluctuations at
the free fermion level (ignoring gauge fluctuations and local
interactions). Figure 5 shows the comparison of the dynamics
spin-structure factors between numerics and theory, based on
the parton mean-field theory. The overall features match quite
nicely. However, if similar mean-field treatment were applied
to other dual field theories such as the NCCP1 or the Nf = 2
noncompact QED3 theories, some low-energy continua that
involve gauge monopole excitations will be missing, as the
gauge fluctuation can not be captured at the mean-field level.

Let us start with the parton construction on the square
lattice [60], where the spin operator Si is fractionalized into
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equivalent descriptions of the low-energy physics under pro-
posed duality relations [13], some of them are more conve-
nient to handle by mean-field treatment than others. Among
these theories, we found that the Nf = 2 QCD (or Nf = 4
QED) theory gives the best account for the overall spectral
features at the mean-field level. Because, in these theories,
both the AFM and VBS order parameters are treated on equal
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to approximately capture both spin and dimer fluctuations at
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interactions). Figure 5 shows the comparison of the dynamics
spin-structure factors between numerics and theory, based on
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exhibit VBS phases, sign problems in quantum Monte Carlo
(QMC) simulations and other technical difficulties in methods
such as the density matrix renormalization group and tensor
product states prohibit studies of the large system sizes needed
to reliably characterize critical points. However, for generic
and universal properties, other “designer hamiltonians” [18]
can be constructed that do not suffer from QMC sign problems
but still host the desired phases. Many such studies have
pointed to the existence of the DQCP in both two-dimensional
(2D) quantum magnets [19–28] and related (through the
path integral) three-dimensional (3D) classical models
[29–32]. In these studies it has been observed, e.g., that
the order parameters have unusually large anomalous dimen-
sions [21,24,25,27,28,31], which is an important deviation
from the common 3D Wilson-Fisher fixed point. More con-
crete evidence of deconfinement has been found by directly
probing the length scale associated with the fractionalization
process [25,33] and from thermodynamics [34]. However, the
experimentally most direct signatures of a DQCP, the dynamic
spin structure factor S(q,ω), have so far not been calculated
in the case of electronic spins (while there are already some
intriguing results for an SU(3) symmetric model [35]). His-
torically, in quasi-1D systems, the experimentally observed
spinon continuum, which agrees with calculations for the
spin-1/2 Heisenberg chain, was crucial in establishing spinon
deconfinement. Indications of fractionalized magnetic exci-
tations in 2D quantum spin liquids have also been similarly
observed [36–42]. Given that S(q,ω) is detectable by multiple
experimental techniques, including inelastic neutron scatter-
ing (INS), resonant inelastic x-ray scattering (RIXS), and
nuclear magnetic resonance (NMR), identifying the distinct
signatures of fractionalization in S(q,ω) at the DQCP will
provide a useful guide to experimental searches for DQCPs in
magnetic materials. Since the qualitative features of S(q,ω)
remain the same in the entire critical “fan” extending from the
critical point to finite temperature, the dynamical signatures
proposed in our study should be robustly observed even if
the experimental parameter is slightly off the critical point.
Moreover, due to a recently investigated duality relation be-
tween the DQCP and a certain bosonic topological transitions
(BTTs) in fermion systems [13,27,28], similar dynamical
signature of fractionalization is also expected in interaction-
driven topological phase transitions. Therefore, our work also
can impact the ongoing efforts in finding experimentally ac-
cessible signatures of topological phase transitions in strongly
correlated electron systems.

In this paper, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J -Q (EPJQ)
model defined by the Hamiltonian

HJQ = −J
∑

⟨ij⟩

(
Pij + !Sz

i S
z
j

)
− Q

∑

⟨ijklmn⟩
PijPklPmn, (1)

where Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on the link
ij (between nearest-neighbor sites). The two- and six-spin
terms are both illustrated in Fig. 1(a). For ! = 0, this is the
previously studied SU(2)spin J -Q3 model [21,22,43], which
is an extension of the original J -Q model (or J -Q2 model)
[20], with two instead of three singlet projectors in the Q

AFXY DQCP VBS

EPJQ

J
i j
k l

m n
Q

q = Q
J+Q

(a)

AFXY 3D XY Columnar

EPJ1 J2

J1

J2

g = J2
J1

(b)

= 1

2
−

FIG. 1. The two lattice models considered in this paper and their
schematic phase diagrams. (a) The EPJQ model with two-spin (J )
and six-spin (Q) couplings preserve all symmetries of the square
lattice. We define the tuning parameter chosen as q = Q/(J + Q).
The antiferromagnetic XY (AFXY) phase is separated by the DQCP
at q = qc from the columnar VBS phase, which spontaneously
breaks lattice symmetries but which has significant fluctuations of
the fourfold degenerate dimer pattern close to qc, as indicated. (b)
The EPJ1J2 model, with the tuning parameter g = J2/J1. The J2 term
explicitly pins a columnar dimer pattern and drives the AFXY phase
to the spin-disordered trivial (nondegenerate) columnar singlet phase
(without spontaneous lattice symmetry breaking) through the 3DXY
transition at g = gc.

terms. With three singlet projectors, we can go further into the
VBS state while still keeping J > 0 in sign-free QMC simu-
lations. The term !Sz

i S
z
j with ! ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry down to
U(1)spin explicitly. It has been shown [27] that when ! = 1/2
(which is the value we will use here), the EPJQ model exhibits
a direct and continuous quantum phase transition between the
antiferromagnetic XY (AFXY) and VBS phases, as illustrated
in Fig. 1(a), realizing the easy-plane DQCP (while for larger
anisotropy, such as ! = 1, the transition becomes first-order).
The XY order parameter has a U(1)spin rotational symmetry
and the VBS order parameter exhibits an emergent U(1)VBS
symmetry as the DQCP is approached, and, as argued based
on dualities [13], the two U(1) symmetries combine to form
an emergent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will also
study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2 = J1

∑

⟨i,j⟩′
Dij + J2

∑

⟨i,j⟩′′
Dij , (2)

where Dij = Sx
i Sx

j + S
y
i S

y
j + !Sz

i S
z
j . The J1 bonds ⟨i, j ⟩′ and

the J2 bonds ⟨i, j ⟩′′ correspond to the thin black and the thick
blue bonds in Fig. 1(b), respectively. Since the Hamiltonian
explicitly breaks the lattice symmetry, with the J2 terms pin-
ning a columnar pattern of bonds with higher singlet density,
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I. INTRODUCTION

The deconfined quantum critical point (DQCP), which
separates the Néel antiferromagnetic (AFM) and sponta-
neously dimerized valence bond solid (VBS) phases in
(2+1)D quantum magnets, was proposed as an example of
a continuous quantum phase transition outside the conven-
tional Landau-Ginzburg-Wilson (LGW) paradigm [1,2]. The
AFM and VBS order parameters both vanish continuously
and simultaneously at the DQCP. This scenario is gener-
ically not expected within the standard LGW description,
where such a case should be realizable only by fine tun-
ing two separate transitions to coincide at special multicrit-
ical points. Multiple field-theory descriptions [1–15] have
been proposed for the DQCP, which are believed to be
equivalent (or dual) to each other at low energy, including
the noncompact CP1 (NCCP1) theory [1,2] and some ver-
sions of the quantum electrodynamics (QED) and quantum
chromodynamics (QCD) theories [13,16]. In contrast to the
LGW description, which formulates the critical theory in
terms of the order parameters directly, these gauge theory
descriptions of the DQCP are formulated in terms of de-
confined degrees of freedom (fractionalized particles and
emergent gauge fields). The order parameters on either side
of the DQCP can be expressed as different compositions of
the fractionalized particles or gauge fluctuations within the
same theoretical framework. This mechanism captures the

intertwinement of the AFM and VBS orders and provides a
natural route beyond the LGW paradigm to a non-fine-tuned
quantum critical point between the two distinct symmetry-
breaking phases.

With the increasing understanding of the nature of the
DQCP ground-state phase transition, the time is now ripe to
address direct connections to experiments, where the most
detailed signatures of deconfinement can be expected in dy-
namical properties. Based on the physical picture of decon-
finement of the experimentally accessible spin excitation into
two spinons at the DQCP, a broad continuum is expected in the
spectral function. This is in sharp contrast to an LGW transi-
tion of the AFM state into a nondegenerate (trivial) quantum
paramagnet, where the spin wave (magnon) picture remains
approximately valid at the critical point (as a very sharp edge
of the critical continuum, albeit the magnon quasiparticle
weight is highly damped to zero) [17]. The aim of this paper
is to present a comprehensive numerical study of the signature
of magnon fractionalization in the dynamic spin-structure
factor S(q,ω) of a (2+1)D square-lattice spin model hosting
a DQCP, accompanied with a detailed field theory analysis of
every low-energy continuum that appears in the spectrum.

Following the DQCP proposal, intensive theoretical and
numerical efforts have been invested in the possibility of
unambiguously observing such critical points in lattice mod-
els. In the traditional frustrated quantum spin models that
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With the increasing understanding of the nature of the
DQCP ground-state phase transition, the time is now ripe to
address direct connections to experiments, where the most
detailed signatures of deconfinement can be expected in dy-
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finement of the experimentally accessible spin excitation into
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approximately valid at the critical point (as a very sharp edge
of the critical continuum, albeit the magnon quasiparticle
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FIG. 6. The (bare) dynamic spin structure factor S0(q, ω) of the
free fermion π -flux state.

fermionic partons fi = (fi↑, fi↓)ᵀ at each site i as

Si = 1
2
f

†
i σfi. (12)

An SU(2) gauge structure emerges in association with the
above fractionalization scheme, but at the mean-field treat-
ment we will ignore the SU(2) gauge fluctuation completely
and place the fermionic parton in the square-lattice π -
flux state [4,5,60]. Thus, we use the following mean-field
Hamiltonian

HMF =
∑

i

i(f †
i+x̂fi + (−)xf †

i+ŷfi ) + H.c., (13)

such that each plaquette hosts a π -flux for the fermionic
parton. Four Dirac fermions are obtained at low energy. The
fermionic parton dispersion is simply given by

ϵk = 2(sin2(kx ) + sin2(ky ))1/2. (14)

It is interesting to find that the lower edge of the DQCP
spectra follows this simple dispersion relation quite nicely
without any adjustable parameters beyond an overall velocity,
as shown in Figs. 5(a) and 5(c), which justifies the π -flux
state as our starting point. The upper edge of the two-parton
continuum can also be obtained from ϵk by adding up single-
parton energies. This gives a rough estimate for the energy
range of the parton continuum, which is also consistent with
the numerical observation in Figs. 5(a) and 5(c).

Given Eqs. (12) and (13), it is straightforward to calculate
the spin-spin correlation function,

Ga
0 (r i − rj , t ) =

〈
MF

∣∣eiHMFt Sa
i e−iHMFt Sb

j

∣∣MF
〉
, (15)

on the free fermion ground state |MF⟩ of the mean-field
Hamiltonian HMF. Then we can obtain the dynamic spin
susceptibility,

χa
0 (q,ω) =

∫
dt

∑

i

Ga
0 (r i , t )eiωt−iq·r i , (16)

from which we obtain the dynamic spin-structure factor,

Sa
0 (q,ω) = Imχa

0 (q,ω + i0+), (17)

graphed in Fig. 6. This spectral function was also calculated
in Ref. [35] previously. One can see that S0 already captures
the gapless continua at momenta (0, 0), (π, 0), (0,π ), and
(π,π ) in all spin channels. Because the mean-field Hamilto-
nian HMF is symmetric under SU(2)spin, there is no difference
between Sx

0 (q,ω) and Sz
0 (q,ω). The easy-plane anisotropy

only enters the parton theory starting from four-fermion in-
teractions, since it is expressed in the SO(5) symmetric tensor
representation that cannot be written down at the quadratic
level. Therefore, the anisotropy is not manifest in the mean-
field approximation, where the interaction effects are ignored.
This observation provides a natural explanation for the strik-
ingly similar spectra of Sx (q,ω) and Sz(q,ω) seen in the
numerical results in Sec. III at the DQCP, despite of the
presence of a rather large anisotropy ! = 1/2 in the EPJQ
model.

The gauge fluctuations are expected to further renormalize
the spectrum and enhance the critical fluctuations around
(π,π ), which are not taken into account in the simple mean-
field theory presented in Fig. 6. While including the gauge
interactions in the calculation is highly nontrivial and beyond
the scope of this work, we next discuss a phenomenological
model that captures the spectral weight enhancement, and
leave more extensive calculations to future work. Let us
consider modeling the interaction effect phenomenologically
by a random phase approximation (RPA) correction,

χa (q,ω) = χa
0 (q,ω)

1 + Jaχ
a
0 (q,ω)

, (18)

where a = x, y, z. The coupling Ja parametrize the strength
of the spin-spin interaction in the Sa channel. We can intro-
duce the easy-plane anisotropy simply by considering Jx =
Jy > Jz. We found that the (π,π ) fluctuation is indeed en-
hanced by the interaction Ja . The resulting RPA corrected
spectral functions are already shown in Figs. 5(b) and 5(d),
with Jx tuned to the magnetic ordering critical point and
Jz = Jx/2.1 Compared to Fig. 6, the spin spectra in Figs. 5(b)
and 5(d) are much improved by the interaction effect. Our
phenomenological study combined with the QMC-SAC result
demonstrates that the π -flux state fermionic parton with in-
teraction accounts well for the overall features of the DQCP
spectra in both Sx and Sz channels, which is consistent with
the expectations from the Nf = 2 QCD or Nf = 4 QED
theories. An interesting open problem is a systematic route to
incorporating the effects of gauge fluctuations in calculating
the spin-excitation spectrum.

V. DISCUSSION

In this work, we have demonstrated dynamical signatures
of fractionalization at the DQCP in a planar, U(1), quan-
tum magnet by computing both the in-plane and out-of-
plane dynamic spin structure factors at low temperature. By
contrasting with analogous results for a conventional LGW
critical point, we explicitly observe how fractionalization of
the critical magnon into two spinons is manifested by a
large continuum, in sharp contrast to a much less prominent
continuum due to conventional critical quantum fluctuations
at the ordinary 3DXY transition. We also discovered several

1Although such a Grose-Neveu critical point is different from the
DQCP, we only use it to provide a rough estimate of the spectral
features close to a magnetic ordered phase. We do not claim that the
criticality of DQCP can be correctly understood by our mean field +
RPA approach.
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FIG. 6. The (bare) dynamic spin structure factor S0(q, ω) of the
free fermion π -flux state.
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i+ŷfi ) + H.c., (13)

such that each plaquette hosts a π -flux for the fermionic
parton. Four Dirac fermions are obtained at low energy. The
fermionic parton dispersion is simply given by

ϵk = 2(sin2(kx ) + sin2(ky ))1/2. (14)

It is interesting to find that the lower edge of the DQCP
spectra follows this simple dispersion relation quite nicely
without any adjustable parameters beyond an overall velocity,
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from which we obtain the dynamic spin-structure factor,
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representation that cannot be written down at the quadratic
level. Therefore, the anisotropy is not manifest in the mean-
field approximation, where the interaction effects are ignored.
This observation provides a natural explanation for the strik-
ingly similar spectra of Sx (q,ω) and Sz(q,ω) seen in the
numerical results in Sec. III at the DQCP, despite of the
presence of a rather large anisotropy ! = 1/2 in the EPJQ
model.

The gauge fluctuations are expected to further renormalize
the spectrum and enhance the critical fluctuations around
(π,π ), which are not taken into account in the simple mean-
field theory presented in Fig. 6. While including the gauge
interactions in the calculation is highly nontrivial and beyond
the scope of this work, we next discuss a phenomenological
model that captures the spectral weight enhancement, and
leave more extensive calculations to future work. Let us
consider modeling the interaction effect phenomenologically
by a random phase approximation (RPA) correction,
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1 + Jaχ
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, (18)

where a = x, y, z. The coupling Ja parametrize the strength
of the spin-spin interaction in the Sa channel. We can intro-
duce the easy-plane anisotropy simply by considering Jx =
Jy > Jz. We found that the (π,π ) fluctuation is indeed en-
hanced by the interaction Ja . The resulting RPA corrected
spectral functions are already shown in Figs. 5(b) and 5(d),
with Jx tuned to the magnetic ordering critical point and
Jz = Jx/2.1 Compared to Fig. 6, the spin spectra in Figs. 5(b)
and 5(d) are much improved by the interaction effect. Our
phenomenological study combined with the QMC-SAC result
demonstrates that the π -flux state fermionic parton with in-
teraction accounts well for the overall features of the DQCP
spectra in both Sx and Sz channels, which is consistent with
the expectations from the Nf = 2 QCD or Nf = 4 QED
theories. An interesting open problem is a systematic route to
incorporating the effects of gauge fluctuations in calculating
the spin-excitation spectrum.

V. DISCUSSION

In this work, we have demonstrated dynamical signatures
of fractionalization at the DQCP in a planar, U(1), quan-
tum magnet by computing both the in-plane and out-of-
plane dynamic spin structure factors at low temperature. By
contrasting with analogous results for a conventional LGW
critical point, we explicitly observe how fractionalization of
the critical magnon into two spinons is manifested by a
large continuum, in sharp contrast to a much less prominent
continuum due to conventional critical quantum fluctuations
at the ordinary 3DXY transition. We also discovered several

1Although such a Grose-Neveu critical point is different from the
DQCP, we only use it to provide a rough estimate of the spectral
features close to a magnetic ordered phase. We do not claim that the
criticality of DQCP can be correctly understood by our mean field +
RPA approach.
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ϵs(k) = ± +sin2(kx) + sin2(ky)

negative states filled



At the transition point of the isotropic J-Q model (Q=1,J=0.667,t=1,L=32)

- an edge followed by continuum (no quasi-particle peak); use constraints discussed

red:  (similar to previous work)𝑘𝑥 + |𝑘𝑦 | ≤ 𝜋

white:  (motivated by spinons in Heisenberg chain)𝑘𝑥, 𝑘𝑦 ∈ [0,𝜋]

- but the two-particle continuum depends on the gauge 
Upper bound of the 2-spinon continuum: Emax(k) = max[ϵs(k1) + [ϵs(k2)], k = k1 + k2

Different unit cells for phases (gauge) can be chosen in the 𝜋-flux model

- the dispersion relation is gauge invariant  

The smaller BZ seems to work better

- not completely clear… 

Emin(k)



, Q=1,J=0.667,t=1,L=32A(k, ω)
Dynamic signatures of DQCP (2) spin-charge separation

ϵs+h(k) ∈ {ϵs(k − q) + ϵh(q)}, q ∈ BZ
If spin-charge separation: 

independently propagating spinon and holon, 

We have ; solve for  and min[ϵs+h(k)] and ϵs(k) ϵh(k) max[ϵs+h(k)]

   Spinon added to holon at local max

Emin(k)

Emax(k) = max[ϵs(k1) + [ϵh(k2)]

- consistent solution if spinon ; then holon dispersion = lower bound kx, ky ∈ [−π/2,π/2]
Shifted BZ for spinon similar to spin-charge separation in 1D



In the VBS phase: spin-poloaron (spinon-holon bound state) expected

- impose -function quasi-particle peak δ 6
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FIG. 6. Single-hole spectral function S(k,!) of the two-dimensional t-J-Q model with t=0.5, J=0 and Q=4 using the variable-
amplitude unconstrained SAC (a) and single-� SAC (b). The system size is N = 32⇥ 32. (c) Optimal quasi-particle weight a0

extracted from (b).
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FIG. 7. Heatmaps of dispersion relation in 2D momentum
space with kx and ky ranging from �⇡ to ⇡ for two cases
in the VBS phase. Two sets of parameters are t=0.5, J=0,
Q=4 (a) and t=0.5, J=0, Q=8 (b), and the system size is
N = 32 ⇥ 32. The white lines are the non-interacting Fermi
surface and the red dots are the located global minima which
we manually set to be 0 for better comparisons.

romagnet: Small-cluster study, Phys. Rev. B 41, 6715
(1990).

[5] G. Martinez and P. Horsch, Spin polarons in the t-J
model, Phys. Rev. B 44, 317 (1991).

[6] D. Poilblanc, H. J. Schulz, and T. Ziman, Single-hole
spectral density in an antiferromagnetic background,
Phys. Rev. B 47, 3268 (1993).

[7] G. F. Reiter, Self-consistent wave function for magnetic
polarons in the t-J model, Phys. Rev. B 49, 1536 (1994).

[8] M. Brunner, F. F. Assaad, and A. Muramatsu, Single-
hole dynamics in the t � J model on a square lattice,
Phys. Rev. B 62, 15480 (2000).

[9] A. S. Mishchenko, N. V. Prokof’ev, and B. V. Svistunov,
Single-hole spectral function and spin-charge separation
in the t� J model, Phys. Rev. B 64, 033101 (2001).

[10] J. G. Bednorz and K. A. Müller, Possible high Tc su-
perconductivity in the Ba-La-Cu-O system, Z. Phys. B:
Condens. Matter 64, 189 (1986).

[11] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and
M. P. A. Fisher, Deconfined Quantum Critical Points,
Science 303, 1490 (2004).

[12] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and
M. P. A. Fisher, Quantum criticality beyond the Landau-
Ginzburg-Wilson paradigm, Phys. Rev. B 70, 144407
(2004).

[13] S. Sachdev, Quantum magnetism and criticality, Nature
Physics 4, 173 (2008).

[14] R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and
T. Senthil, Hole dynamics in an antiferromagnet across
a deconfined quantum critical point, Phys. Rev. B 75,
235122 (2007).

[15] A. W. Sandvik, Evidence for Deconfined Quantum Crit-
icality in a Two-Dimensional Heisenberg Model with
Four-Spin Interactions, Phys. Rev. Lett. 98, 227202
(2007).

[16] J. Lou, A. W. Sandvik, and N. Kawashima, Anti-
ferromagnetic to valence-bond-solid transitions in two-
dimensional SU(N) Heisenberg models with multispin in-
teractions, Phys. Rev. B 80, 180414 (2009).

[17] A. W. Sandvik, Continuous Quantum Phase Transition
between an Antiferromagnet and a Valence-Bond Solid in
Two Dimensions: Evidence for Logarithmic Corrections
to Scaling, Phys. Rev. Lett. 104, 177201 (2010).

[18] H. Shao, W. Guo, and A. W. Sandvik, Quantum critical-
ity with two length scales, Science 352, 213 (2016).

[19] Y. Q. Qin, Y.-Y. He, Y.-Z. You, Z.-Y. Lu, A. Sen, A. W.

cal point gets broadened into a non-Fermi-liquid “holon-
metal” phase, with no Fermi surface !shown shaded in Fig.
1". The qualitative distinction between the Néel and VBS
states also survives in the Fermi-liquid states at !"0 !shown
unshaded in Fig. 1": we will show that a characteristic prop-
erty !specified shortly" of the Fermi surface has a disconti-
nuity in the limit !→0 as s is scanned across the s=sc criti-
cal point of the insulator. We also compute finite temperature
electronic spectra in the vicinity of the transition and find
that they resemble “Fermi arc” spectra seen in recent photo-
emission experiments on the pseudogap phase of the
cuprates.17

There have been other discussions in the literature18–20 of
transitions between Fermi liquids, including proposals that
there could be a continuous quantum transition with a dis-
continuous change in the shape of the Fermi surface !recent
experiments21 on CeRhIn5 are compatible with an abrupt or
very rapid change in Fermi surface topology". This would
require a sudden change in the Fermi surface as a function of
s at a fixed nonzero value of !. We will argue that such a
change is unlikely in our models, and the situation is as
illustrated in Fig. 1, with an intermediate non-Fermi-liquid
phase.

By an extension of arguments in early work,22–27 it is
expected that a significant portion of the phase diagram in
Fig. 1 is unstable at low temperatures to superconductivity.
We defer consideration of such superconducting states to fu-
ture work, and limit ourselves here to the normal states.

We now turn to a more detailed summary of our results.
First, we discuss our results in the unshaded regions of Fig.
1. In these regions, we are adding a small density of mobile
carriers to conventionally ordered insulators, and we obtain
Fermi-liquid phases with electronlike quasiparticles with a
nonzero quasiparticle residue, i.e., Z!0. Non-Fermi-liquid
physics appears only in the shaded region.

In the s#sc Néel phase, we obtain a Fermi-liquid state1–8

with four hole pockets centered at the K! p= !$ /2a"!±1, ±1",
where a is the lattice spacing, shown in Fig. 2. However,
because of the halving of the Brillouin zone by magnetic
order, only two of these pockets are distinct. After account-
ing for the twofold spin degeneracy, we conclude that the
area enclosed by each pocket is AF= !2$"2! /4. Another way
of understanding this halving of the Brillouin zone !which is
also indicated in the caption of Fig. 1 and discussed further
in Sec. III" is as follows. We can consider the doped hole as
a vacancy in the background of a Néel state. If this hole is to
move without leaving a string of broken bonds,1 it must pre-
serve its sublattice label. However, because of the broken
symmetry associated with the Néel order, the sublattice loca-
tion is not independent of the spin of the vacancy, and two
labels are really the same quantum number.

Next, we discuss a small density of holes in the s"sc
VBS state. As we will demonstrate in Sec. IV, in this state
the four hole pockets are no longer pinned at the K! p, but
instead move a distance % away, as indicated in Fig. 2. This
shift arises from the Shraiman-Siggia9 coupling. The value of
% is determined by s−sc, but is independent of ! to lowest
order in !. Consequently, for sufficiently small !, the hole
pockets do not intersect the reduced Brillouin zone bound-

aries, associated with the appearance of VBS order. The four
hole pockets therefore all contain distinct quasiparticles
states, and after accounting for the twofold spin degeneracy,
we now conclude that the area enclosed by each pocket is
AF= !2$"2! /8. As above, another interpretation of this result
is indicated in Fig. 1, and will be described in more detail in
Sec. IV: the hole motion in the VBS state also preserves its
sublattice index, but now the sublattice and spin labels are
distinct quantum numbers. We also note here that the Fermi
surface configuration of the VBS state in Fig. 2 differs
strongly from that found in a strongly dimerized state28 in
which the Fermi surfaces are near the !$ /2 ,$" point; the
present Fermi surfaces inherit many of their properties from
their proximity to the deconfined quantum critical point.

We can summarize the above statements into one of the
main zero temperature results of this paper:

# lim
!→0

AF

!
#

s#sc

= 2 & # lim
!→0

AF

!
#

s"sc

. !1.1"

Note that on both sides of the equation, we are taking the
limit !→0 at fixed s. Thus, although a characteristic feature
of the Fermi surface !the ratio AF /!" changes discontinu-
ously as s crosses sc, the Fermi surface itself is of vanish-
ingly small size. The result in Eq. !1.1" does not constitute a
discontinuous change in the Fermi surface in the sense of
other proposals.18–20 Instead, at any fixed !"0, we argue
below that there is an intermediate non-Fermi-liquid phase of
finite width between the two Fermi-liquid states, as was
shown in Fig. 2.

We note in passing that the Fermi-liquid states of Fig. 2
differ in their Fermi surface topology from the “large Fermi
surface” state expected at large !. The physics as !→0, in
the vicinity of the Mott insulator near a deconfined quantum
critical point, is quite distinct from that of a weak-coupling
Fermi liquid, and so a large Fermi surface state is not ex-

λ

Neel VBS

FIG. 2. !Color online" Momentum space Fermi surfaces in the
Néel and VBS regions of Fig. 1. The filled circles are the four K! p

wave vectors, with K! 1= !$ /2a"!1,1", K! 2= !$ /2a"!1,−1", K! 3=−K! 1,
and K! 4=−K! 2, with a the lattice spacing. The dashed line in the Néel
phase indicates the boundary of the magnetic Brillouin zone. Only
the Fermi surfaces within this zone contribute to the Luttinger
counting, and so the area of each ellipse is AF= !2$"2! /4. In the
VBS phase, all four pockets are inequivalent, and so the area of
each ellipse is AF= !2$"2! /8. The dashed lines now show the re-
duction of the Brillouin zone due to the VBS order which appears at
sufficiently low temperatures; “shadow” Fermi surfaces, with weak
photoemission intensity !estimated in the text", will appear as re-
flections across these lines, and these Fermi surfaces are not shown.
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FIG. 6. Single-hole spectral function S(k,!) of the two-dimensional t-J-Q model with t=0.5, J=0 and Q=4 using the variable-
amplitude unconstrained SAC (a) and single-� SAC (b). The system size is N = 32⇥ 32. (c) Optimal quasi-particle weight a0

extracted from (b).
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FIG. 7. Heatmaps of dispersion relation in 2D momentum
space with kx and ky ranging from �⇡ to ⇡ for two cases
in the VBS phase. Two sets of parameters are t=0.5, J=0,
Q=4 (a) and t=0.5, J=0, Q=8 (b), and the system size is
N = 32 ⇥ 32. The white lines are the non-interacting Fermi
surface and the red dots are the located global minima which
we manually set to be 0 for better comparisons.

romagnet: Small-cluster study, Phys. Rev. B 41, 6715
(1990).

[5] G. Martinez and P. Horsch, Spin polarons in the t-J
model, Phys. Rev. B 44, 317 (1991).

[6] D. Poilblanc, H. J. Schulz, and T. Ziman, Single-hole
spectral density in an antiferromagnetic background,
Phys. Rev. B 47, 3268 (1993).

[7] G. F. Reiter, Self-consistent wave function for magnetic
polarons in the t-J model, Phys. Rev. B 49, 1536 (1994).

[8] M. Brunner, F. F. Assaad, and A. Muramatsu, Single-
hole dynamics in the t � J model on a square lattice,
Phys. Rev. B 62, 15480 (2000).

[9] A. S. Mishchenko, N. V. Prokof’ev, and B. V. Svistunov,
Single-hole spectral function and spin-charge separation
in the t� J model, Phys. Rev. B 64, 033101 (2001).

[10] J. G. Bednorz and K. A. Müller, Possible high Tc su-
perconductivity in the Ba-La-Cu-O system, Z. Phys. B:
Condens. Matter 64, 189 (1986).

[11] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and
M. P. A. Fisher, Deconfined Quantum Critical Points,
Science 303, 1490 (2004).

[12] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and
M. P. A. Fisher, Quantum criticality beyond the Landau-
Ginzburg-Wilson paradigm, Phys. Rev. B 70, 144407
(2004).

[13] S. Sachdev, Quantum magnetism and criticality, Nature
Physics 4, 173 (2008).

[14] R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and
T. Senthil, Hole dynamics in an antiferromagnet across
a deconfined quantum critical point, Phys. Rev. B 75,
235122 (2007).

[15] A. W. Sandvik, Evidence for Deconfined Quantum Crit-
icality in a Two-Dimensional Heisenberg Model with
Four-Spin Interactions, Phys. Rev. Lett. 98, 227202
(2007).

[16] J. Lou, A. W. Sandvik, and N. Kawashima, Anti-
ferromagnetic to valence-bond-solid transitions in two-
dimensional SU(N) Heisenberg models with multispin in-
teractions, Phys. Rev. B 80, 180414 (2009).

[17] A. W. Sandvik, Continuous Quantum Phase Transition
between an Antiferromagnet and a Valence-Bond Solid in
Two Dimensions: Evidence for Logarithmic Corrections
to Scaling, Phys. Rev. Lett. 104, 177201 (2010).

[18] H. Shao, W. Guo, and A. W. Sandvik, Quantum critical-
ity with two length scales, Science 352, 213 (2016).

[19] Y. Q. Qin, Y.-Y. He, Y.-Z. You, Z.-Y. Lu, A. Sen, A. W.

QMC results in

qualitative agreement



Summary & Conclusions
Deconfined quantum criticality is still not fully understood 
(but we are getting very close)

Role of J-Q models studied by QMC and numerical analytic continuation 
- reliable results on large lattices 
- advances in analytic continuation offer more spectral details

Deconfined spinons seem to be described by 𝜋-flux model with kx, ky ∈ [0,π]

Gives consistent holon dispersion, spinon-holon continuum 
- if spinon BZ shifted to kx, ky ∈ [−π/2,π/2]

Similar to spinon deconfinement and spin-charge separation in 1D


