

Advanced School and Conference on Quantum Matter, ICTP, Trieste, 12/11/2025

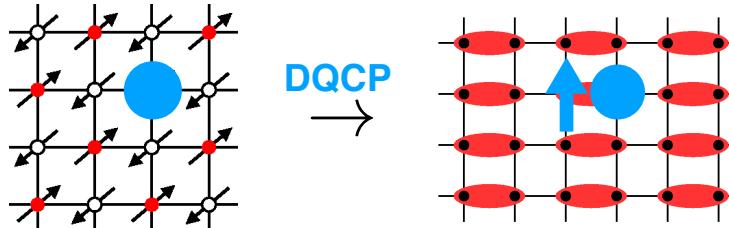
Single-hole Dynamics at the Deconfined quantum Critical Point

Anders W Sandvik, Boston University

Sibin Yang, Boston University

and help by former students Bowen Zhao, Gabe Schumm

ArXiv:2512.02962, ArXiv:2511.20447, manuscript in preparation



also discussing results on the quantum phase transition from

ArXiv:2405.06607

SO(5) multicriticality in two-dimensional quantum magnets

Jun Takahashi^{†,1} Hui Shao^{†,2} Bowen Zhao,³ Wenan Guo,⁴ and Anders W. Sandvik^{3,5,*}

Outline

Deconfined quantum critical point (DQCP)

- original scenario for the AFM-VBS transition

J-Q models

- QMC amenable 2D “designer models” with AFM and VBS ground states

Weak first-order behavior and (likely) inaccessible critical point

- near-criticality at AFM-VBS transition

Modified DQCP scenario: SO(5) multi-critical point

- consistency with recent CFT calculations

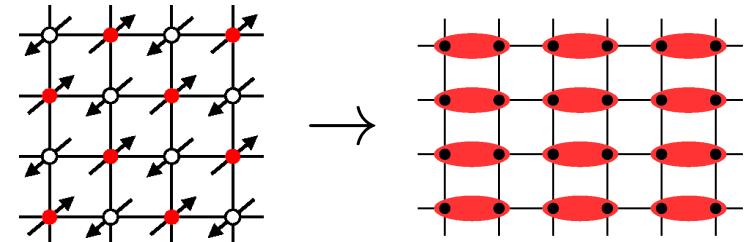
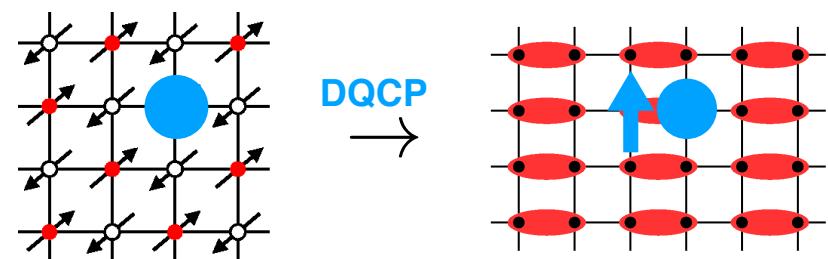
Improved stochastic analytic continuation method for dynamics with QMC

Dynamic spin structure factor $S(k, \omega)$ at DQCP

- spinon deconfinement (π -flux model)

Single-hole spectral function $A(k, \omega)$

- spin-charge separation at DQCP

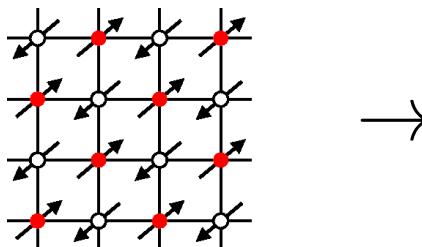


Deconfined quantum criticality in 2D quantum magnets

Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004) +
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath....)

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + g[\text{other symmetry preserving interactions}]$$

antiferromagnet for $g=0$
- breaks $O(3)$ symmetry



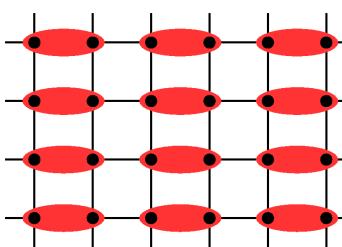
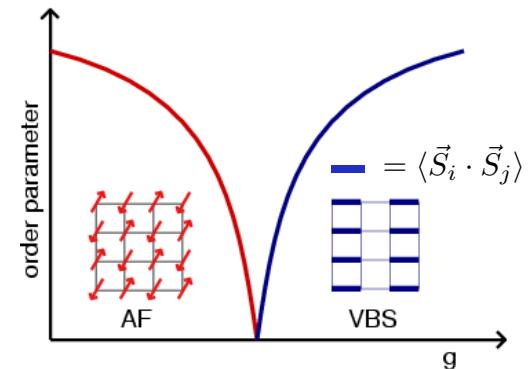
valence-bond (or plaquette) solid for $g > g_c$
- breaks Z_4 symmetry
- emergent $U(1)$ symmetry close to the transition

Generic continuous $T=0$ transition proposed

- would be violation of Landau rule
- first-order would normally be expected

Later theories and numerics suggest emergent $SO(5)$

$$\vec{O} = (n_x, n_y, n_z, d_x, d_y) \quad \text{Senthil \& Fisher, Nahum et al....}$$



Convincing in $SU(N)$ field theory
- QMC exponents agree for large N
(Kaul, AWS 2012)
- not clear for small N (esp. $N=2$)

Numerics; J-Q models

2D Heisenberg exchange J
+ products of singlet projectors

Amenable to large-scale QMC studies

Likely critical point with emergent $SO(5)$ symmetry (3 AFM, 2 VBS components)

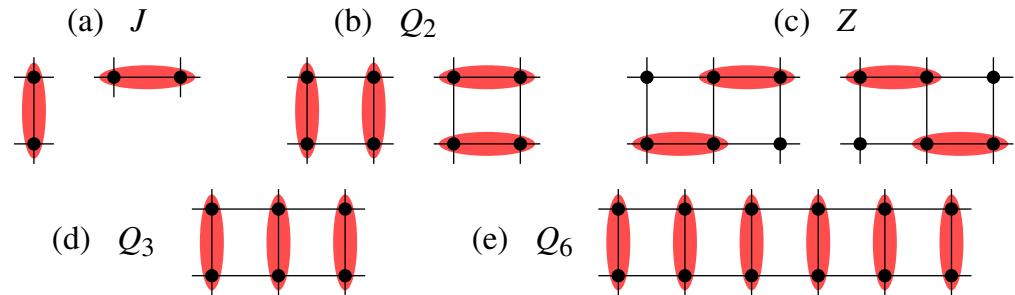
Relevant perturbations of DQCP are

- $SO(5)$ singlet (s)
(previously assumed irrelevant)
- symmetry-changing (t)
(driving AFM to VBS)

The J-Q models have weak first-order VBS-AFM transitions

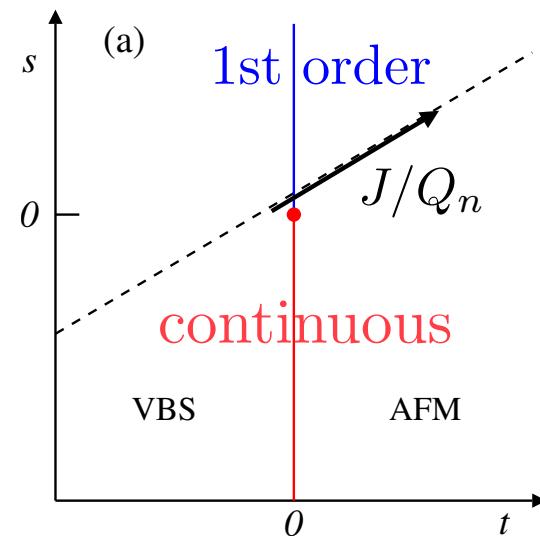
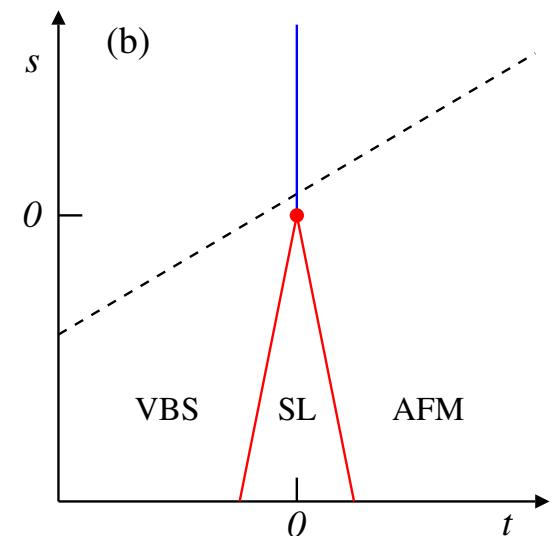
Crossing transition by tuning J/Q_n

J/Q_2 and J/Q_3 are near critical



$$H = -J \sum_{\langle ij \rangle} P_{ij} - Q_2 \sum_{\langle i j k l \rangle} P_{ij} P_{kl} - \dots, \quad P_{ij} = \mathbf{S}_i \cdot \mathbf{S}_j$$

Possible (t,s) phase diagrams



Transition point of J-Q₂ model (QMC)

Binder cumulants of AFM and VBS order parameters

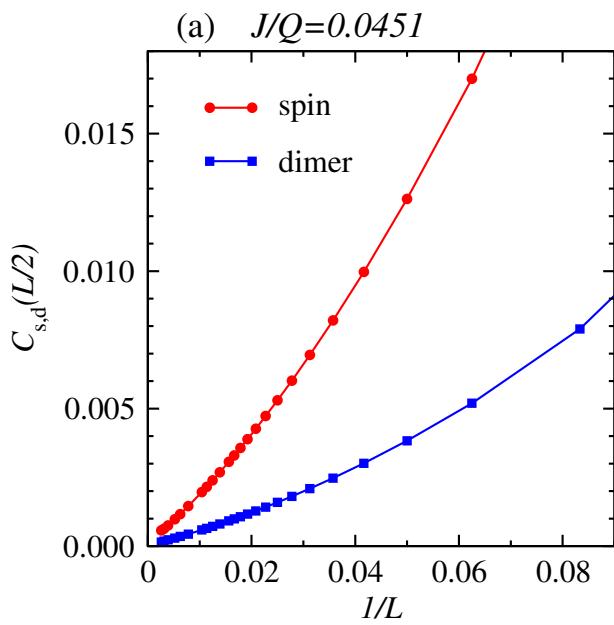
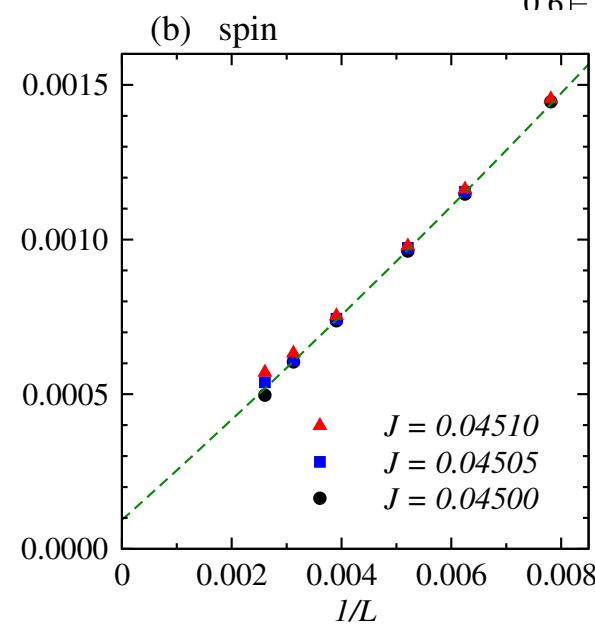
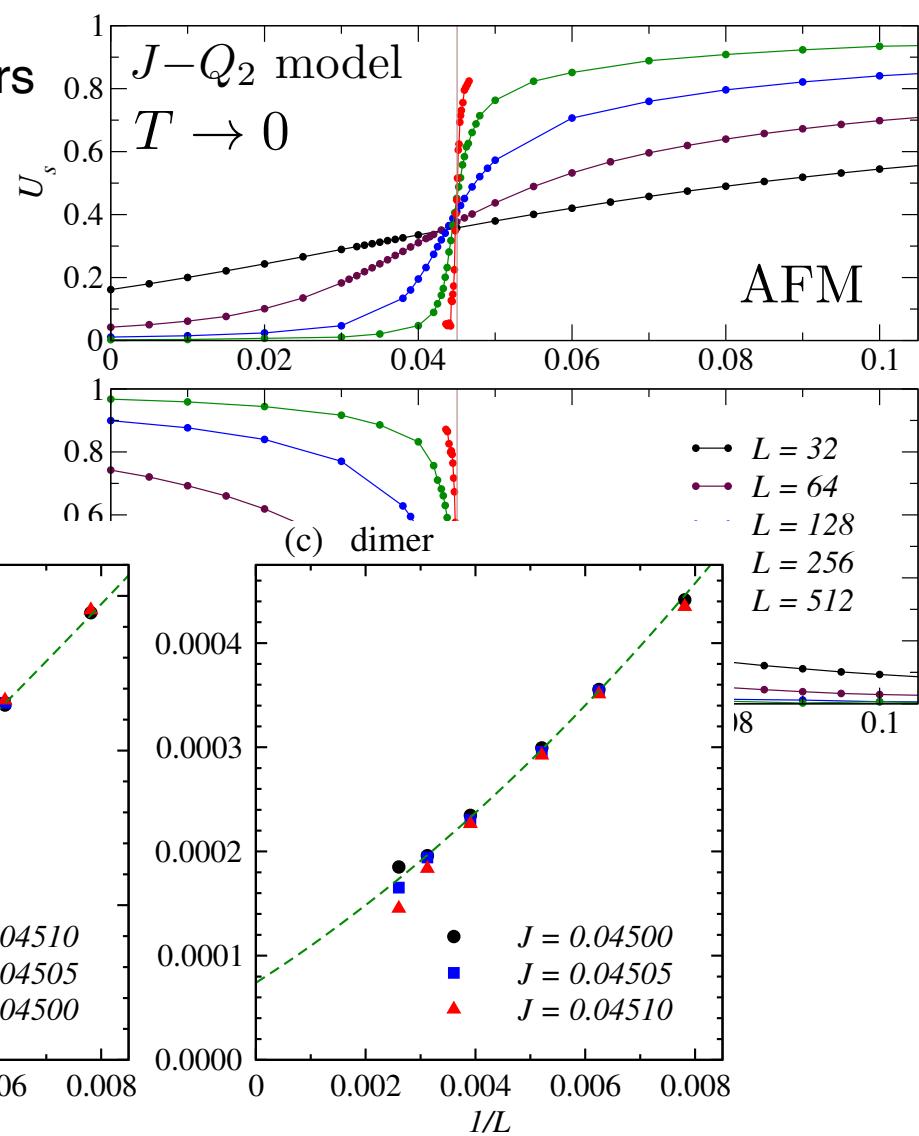
$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right) \quad U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

$U_s \rightarrow 1, U_d \rightarrow 0$ in AFM phase

$U_s \rightarrow 0, U_d \rightarrow 1$ in VBS phase

Long-distance ($r=L/2$) correlations

→ weak coexisting order parameters at $(J/Q)_c$



Scaling dimensions from large-scale QMC simulations

ArXiv:2405.06607

- compare with SO(5) CFT bootstrap and fuzzy sphere calculations

	Δ_ϕ	Δ_s	Δ_t	Δ_j	Δ_4
This work	0.607(4)	2.273(4)	1.417(7)	2.01(3)	3.723(11)
SO(5) CFT	0.630*	2.359	1.519	2*	3.884
Fuzzy sphere	0.585	2.831	1.458	2*	3.895

S. M. Chester and N. Su, Bootstrapping Deconfined Quantum Tricriticality, Phys. Rev. Lett. **132**, 111601 (2024).

Zhou, Z., Hu, L., Zhu, W. & He, Y.-C. SO(5) deconfined phase transition under the fuzzy-sphere microscope: approximate conformal symmetry, pseudo-criticality, and operator spectrum. Phys. Rev. X 14, 021044 (2024).

Whatever the ultimate nature is of the DQCP, the J/Q_2 and J/Q_3 models are sufficiently nearby to reliably study it.

Nature of excitations

- spectral functions
- here at $T=0$

Spin structure factor (neutrons):
$$S(k, \omega) = \sum_n |\langle n | S_k^z | 0 \rangle| \delta(\omega - [E_n - E_0])$$

Single-hole spectral fkt (ARPES):
$$A(k, \omega) = \sum_n |\langle n | c_{\sigma, k} | 0 \rangle| \delta(\omega - [E_n - E_0])$$

QMC + numerical analytic continuation

Stochastic Analytic Continuation (SAC)

H. Shao, AWS, Phys. Rep. (2023)

Spectral function of operator O

$$S(\omega) = \frac{\pi}{Z} \sum_{m,n} e^{-\beta E_n} |\langle m|O|n\rangle|^2 \delta(\omega - [E_m - E_n])$$

Imaginary-time correlation from QMC

$$G(\tau) = \langle O^\dagger(\tau)O(0) \rangle$$

Related to spectral function by

$$G(\tau) = \frac{1}{\pi} \int_{-\infty}^{\infty} d\omega S(\omega) e^{-\tau\omega}$$

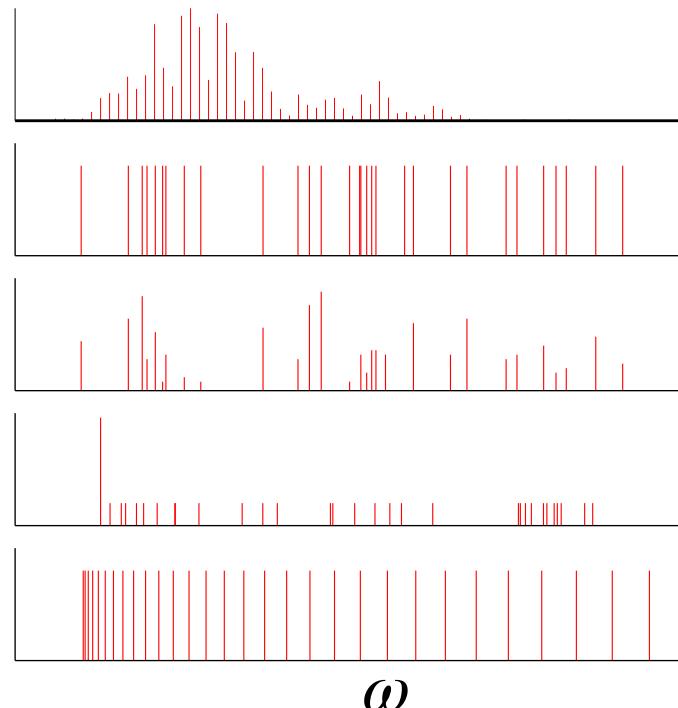
Solve inverse problem by sampling $S(\omega)$

- parametrized in some suitable way
- here with large number of δ -functions

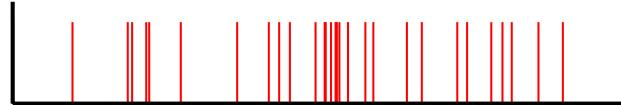
$$P(S|\bar{G}) \propto \exp\left(-\frac{\chi^2(S)}{2\Theta}\right) \quad \chi^2 = \sum_{i=1}^{N_\tau} \sum_{j=1}^{N_\tau} (G_i - \bar{G}_i) C_{ij}^{-1} (G_j - \bar{G}_j) \quad \rightarrow \langle S(\omega) \rangle \text{ average spectral density}$$

Sampling temperature Θ chosen optimally to avoid over-fitting

Each parametrization is associated with an entropy $E(S)$, affecting the average spectrum
- constraints can be used to resolve sharp features



Example: L=16 Heisenberg chain, $S(\pi/2, \omega)$, $T/J=0.5$

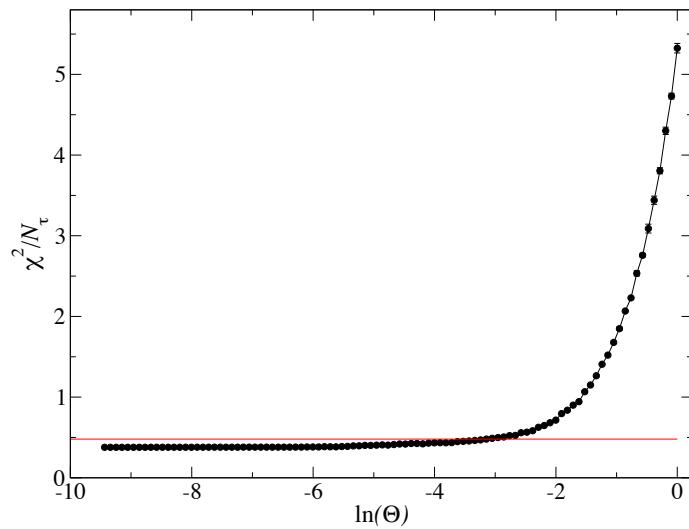


Dependence on the sampling temperature,:
 $\theta = 10/1.1^n$, $n=0,1,2,\dots$

Criterion for optimal Θ (to avoid over-fitting)

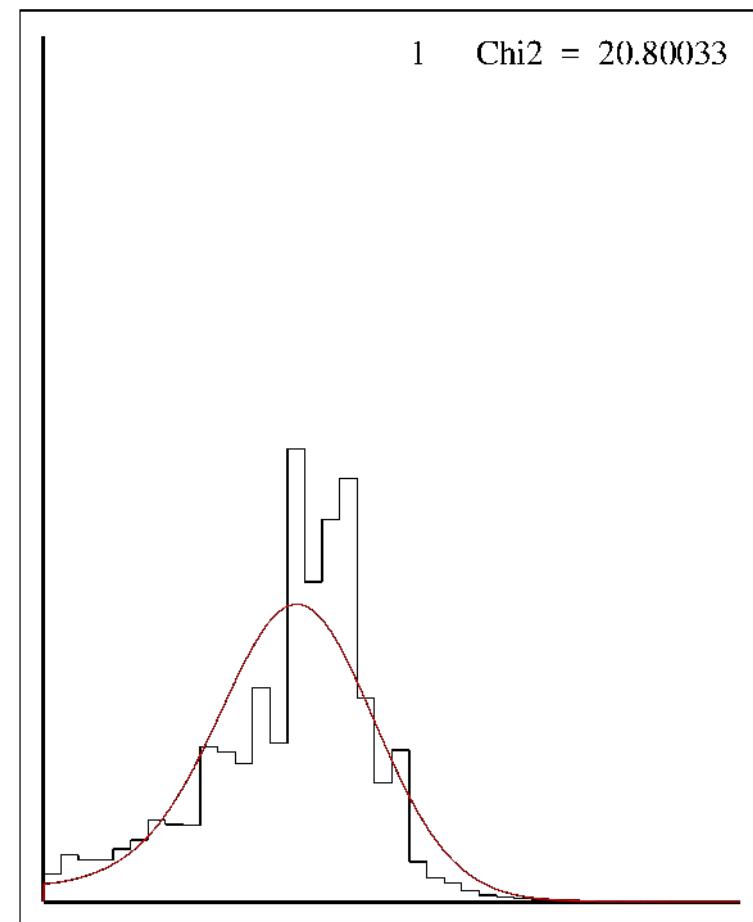
$$\langle \chi^2(\Theta) \rangle \approx \chi^2_{\min} + a\sqrt{2\chi^2_{\min}} \quad a \sim 0.5$$

corresponds to $\langle \chi^2 \rangle$ exceeding χ^2_{\min} by of the order the standard distribution of χ^2 distribution



$$S(k, \omega) = \sum_n |\langle n | S_k^z | 0 \rangle| \delta(\omega - [E_n - E_0])$$

shown as histogram

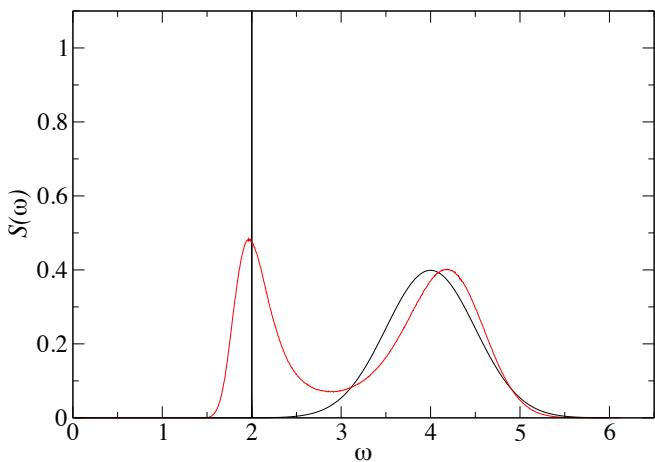


Animation missing in pdf

Spectra with sharp quasi-particle peak

Example: δ -function and continuum, synthetic data

- noise level 2×10^{-5} (20 τ points, $\Delta\tau=0.1$)

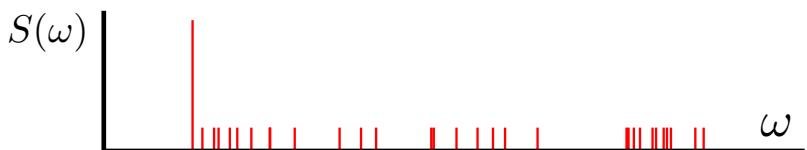


Unrestricted sampling cannot resolve the δ -function

- second broad peak is also distorted

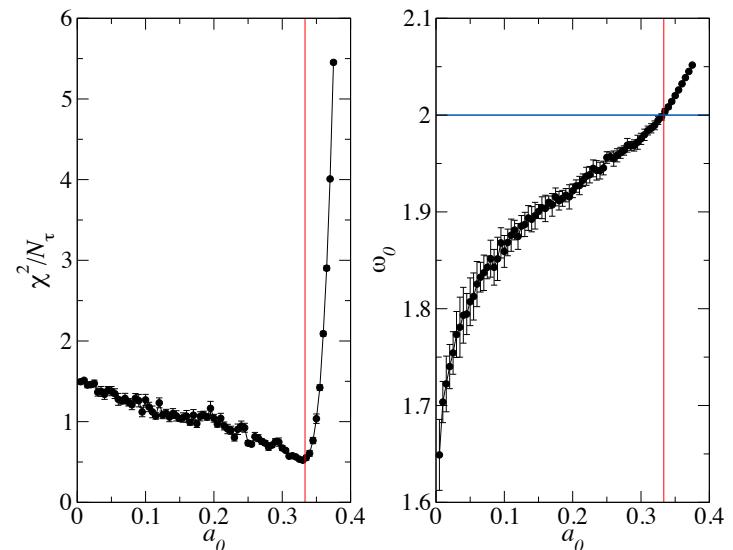
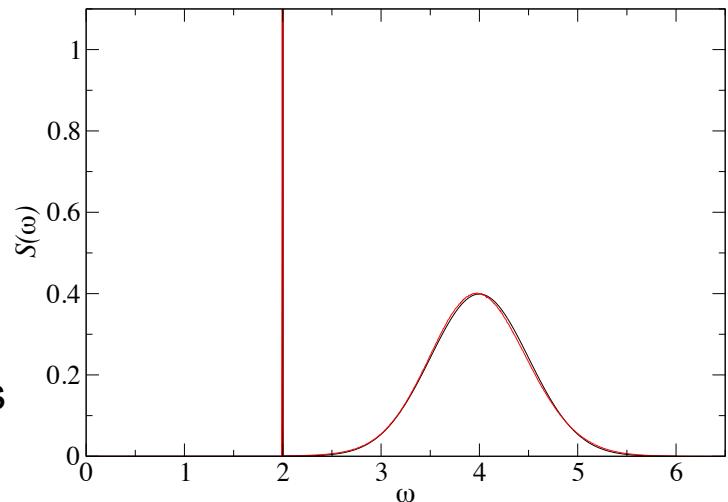
Solution: use one “macroscopic” δ -function

- fixed weight a_0 at sampled ω_0
- other delta-functions cannot go below ω_0



Find optimal a_0 by scanning

1+500 δ s:
 quasi-particle weight affects the sampling entropy
 - detected in $\langle \chi^2 \rangle$



with better edge, entire spectrum is well reproduced

Spectrum with continuous edge divergence

Constraint of monotonically increasing distances

- no constraint on lower and upper bounds
- entropy favors divergent lower edge continuum



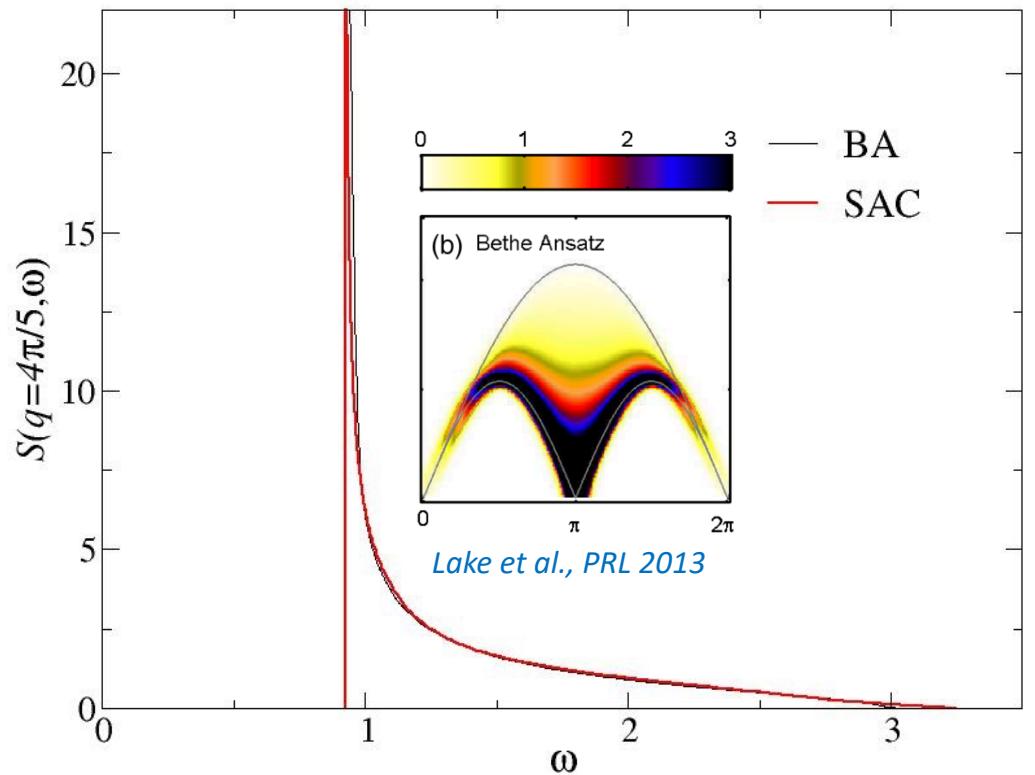
Example:

Heisenberg chain ($L=500$, $T \rightarrow 0$)

200 δ -functions

- Sampling done with cluster update
- Lower edge is good to $\sim 0.2\%$
- Very close to known $(\omega - \omega_0)^{-1/2}$ singularity

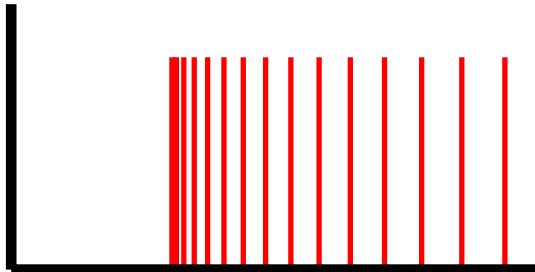
Comparing with numerical Bethe Ansatz, same system size (J.-S. Caux)



The monotonicity constraint results in entropic pressure to a sharp peak at the edge

- good if the spectrum sought has such an edge

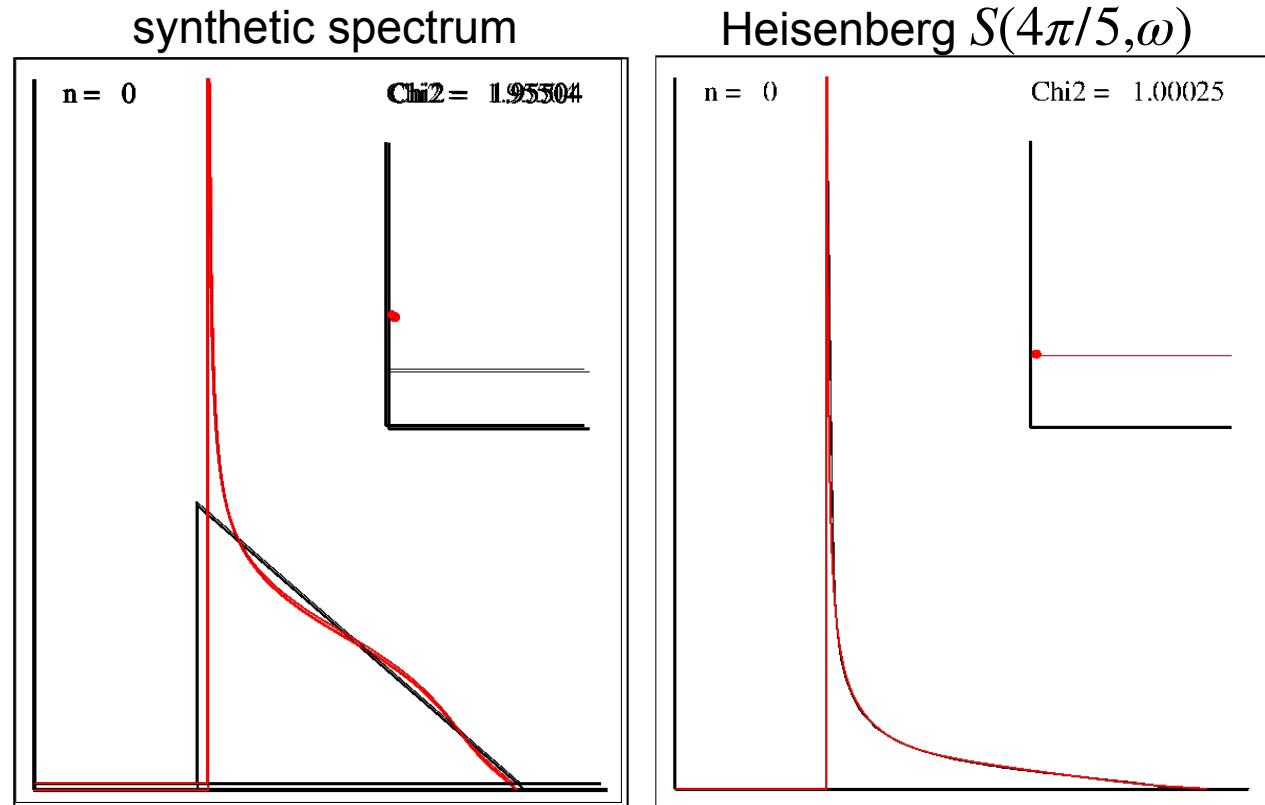
Non-divergent edge: optimize by constraining smallest spacing



$$\vee \Delta\omega_0 = \omega_1 - \omega_0$$

- scan over

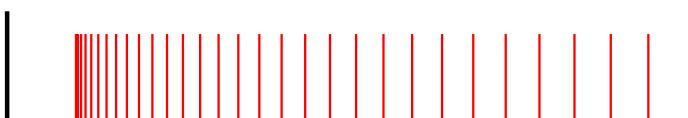
$$\Delta\omega_0 = n\Delta_\delta, n = 0, 1, 2, \dots$$



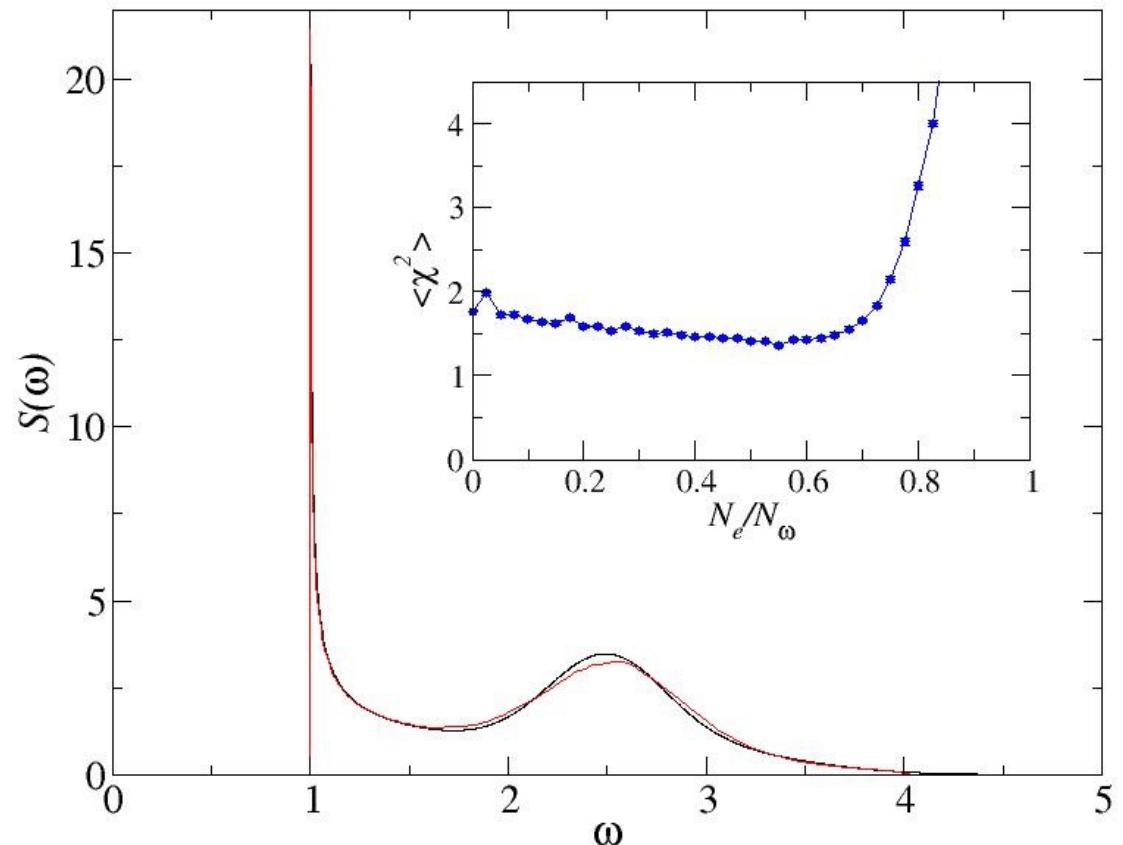
Animations missing in pdf

How about non-monotonic spectrum following edge?

Mix these two parametrizations:



Out of N_ω deltas, use
 N_e for “edge”
 $N_\omega - N_e$ for “background”
background cannot go below the edge



QMC calculation of single-particle Green's function (imaginary time)

Example: t-J model

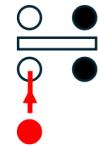
- using canonical transformation (Angelucci 1995)

$$|\eta_i\rangle = |n_i, z_i\rangle \in \{|0, \uparrow\rangle_i, |0, \downarrow\rangle_i, |1, \uparrow\rangle_i\} = \{|\uparrow_i, \downarrow_i, 0_i\rangle\}$$

in Stochastic Series QMC (S. Yang, G. Schumm, B. Zhao, AWS, arXiv: 2511.20447)

$$H = - \sum_{a=1}^3 \sum_{\langle i,j \rangle} (-H_{a,ij})$$

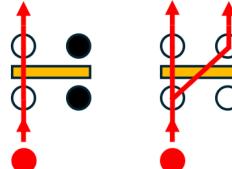
$$-H_{1,ij} = J\Delta_{ij}(1 - \sigma_i^z \sigma_j^z)/4$$



$$-H_{2,ij} = -(\sigma_j^+ \sigma_i^- + \sigma_j^- \sigma_i^+) \times [J\Delta_{ij}/2 + t(f_i^\dagger f_j + f_j^\dagger f_i)]$$

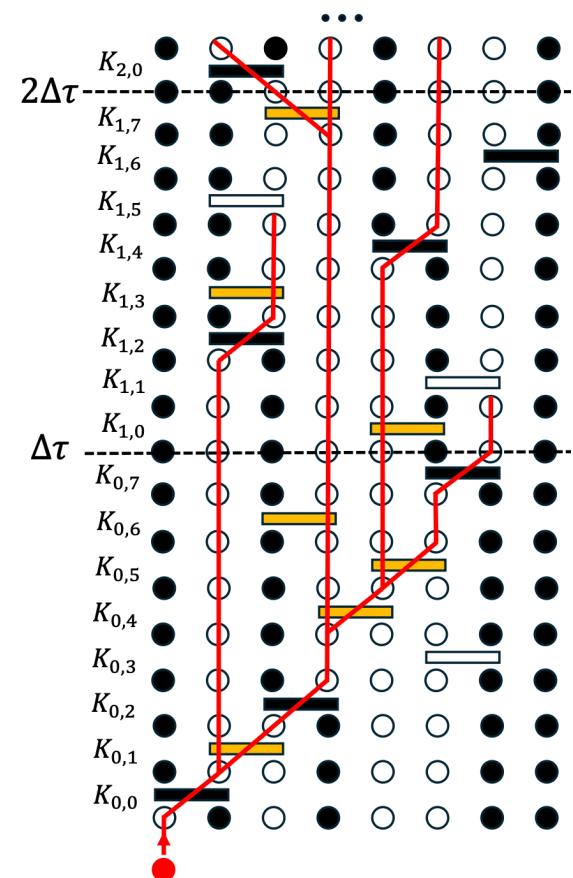
$$-H_{3,ij} = -(t/2)(1 + \sigma_i^z \sigma_j^z)(f_i^\dagger f_j + f_j^\dagger f_i) + tI_{ij}$$

$$\begin{aligned} e^{-\beta H} &= (e^{-\Delta_\tau H})^L \\ &= \sum_K \left[\prod_{l=1}^L \frac{\Delta_\tau^{n_l}}{n_l!} \right] \prod_{l=1}^L \prod_{s=1}^{n_l} K_{l,s} \\ K_{l,s} &\in \{-H_{a,ij}\} \end{aligned}$$



Spin configurations sampled (no sign problem)

- all hole paths consistent with spin configuration are summed up exactly
- (no sign problem in practice even though some path cancellations)



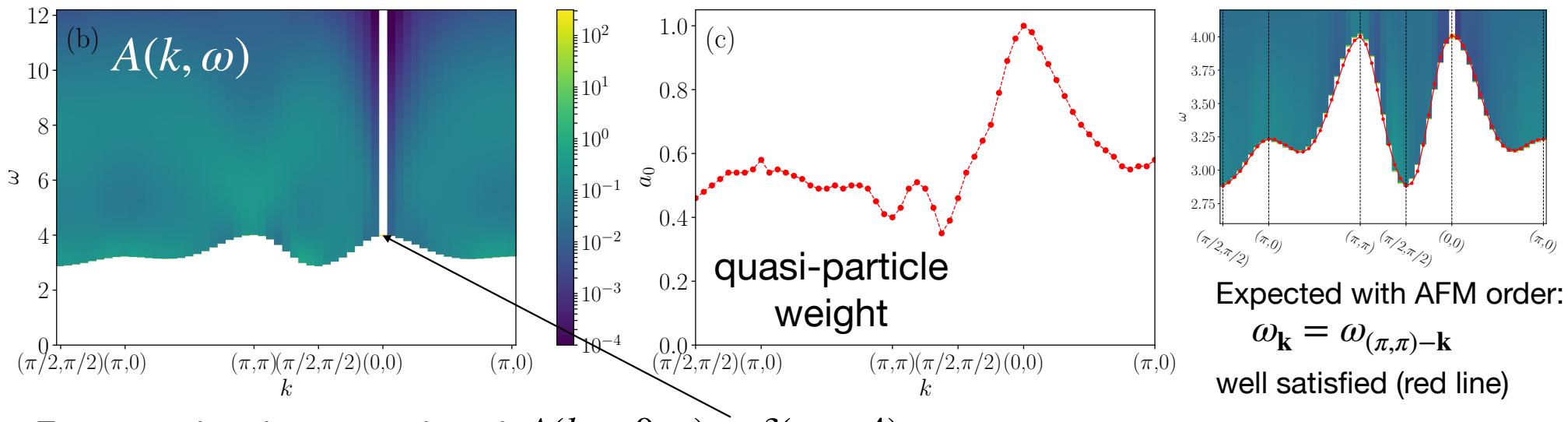
1D example, N=8

Single-hole dynamics in the AFM phase

Electron ejected (hole injected); now a manifestly fermionic problem
 - the J-Q model supplemented by hopping; t-J-Q model

$$H = H_{JQ} - t \sum_{\langle ij \rangle, \sigma} (c_{\sigma,j}^\dagger c_{\sigma,i} + c_{\sigma,i}^\dagger c_{\sigma,j})$$

Test on standard 2D t-J model (Q=0) at “supersymmetric” point t/J=1/2 (δ -function edge)



- Exact result at $k=0$ reproduced; $A(k = 0, \omega) = \delta(\omega - 4)$
- Dispersion minimum at $k = (\pi/2, \pi/2)$
- Almost flat band (close to quartic) around $k = (\pi, 0)$

“ledge + peak” DOS as in 2D Hubbard model
 [Schumm, Zhang, Sandvik, PRB 2025]

Expected with AFM order:
 $\omega_{\mathbf{k}} = \omega_{(\pi, \pi) - \mathbf{k}}$
 well satisfied (red line)

Dynamic signatures of DQCP (1) spin excitations

PHYSICAL REVIEW B **98**, 174421 (2018)

Editors' Suggestion

Dynamical signature of fractionalization at a deconfined quantum critical point

Nvsen Ma,¹ Guang-Yu Sun,^{1,2} Yi-Zhuang You,^{3,4} Cenke Xu,⁵ Ashvin Vishwanath,³ Anders W. Sandvik,^{1,6} and Zi Yang Meng^{1,7,8}

Planar J-Q model: $H_{\text{JQ}} = -J \sum_{\langle ij \rangle} (P_{ij} + \Delta S_i^z S_j^z) - Q \sum_{\langle i j k l m n \rangle} P_{ij} P_{kl} P_{mn}$

QMC + SAC for spin structure factor $S(q, \omega)$

Compare with fermion parton theory;

- $N_f=4$ compact QED₃, π -flux square-lattice model

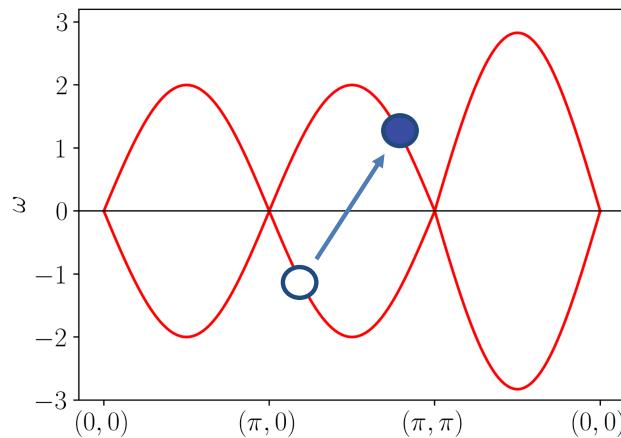
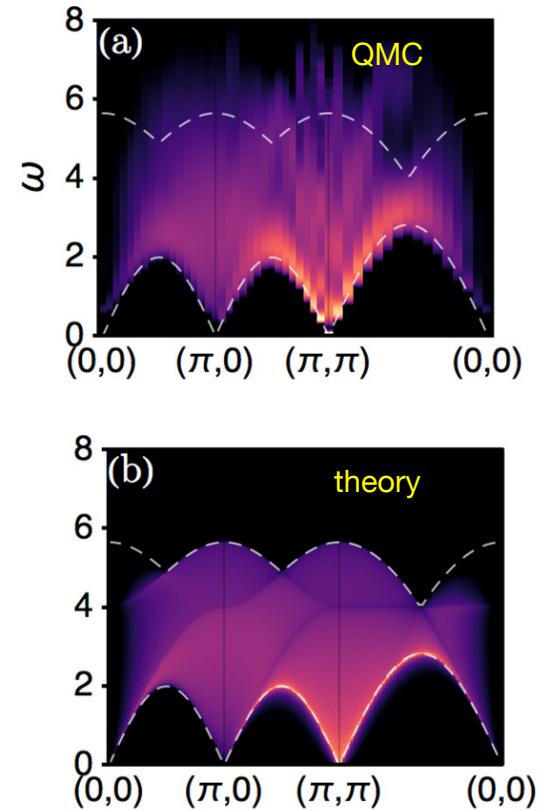
$$H_{\text{MF}} = \sum_i i (f_{i+\hat{x}}^\dagger f_i + (-)^x f_{i+\hat{y}}^\dagger f_i) + \text{H.c.}$$

$$S_i = \frac{1}{2} f_i^\dagger \boldsymbol{\sigma} f_i$$

$$\epsilon_s(\mathbf{k}) = \pm \sqrt{\sin^2(k_x) + \sin^2(k_y)}$$

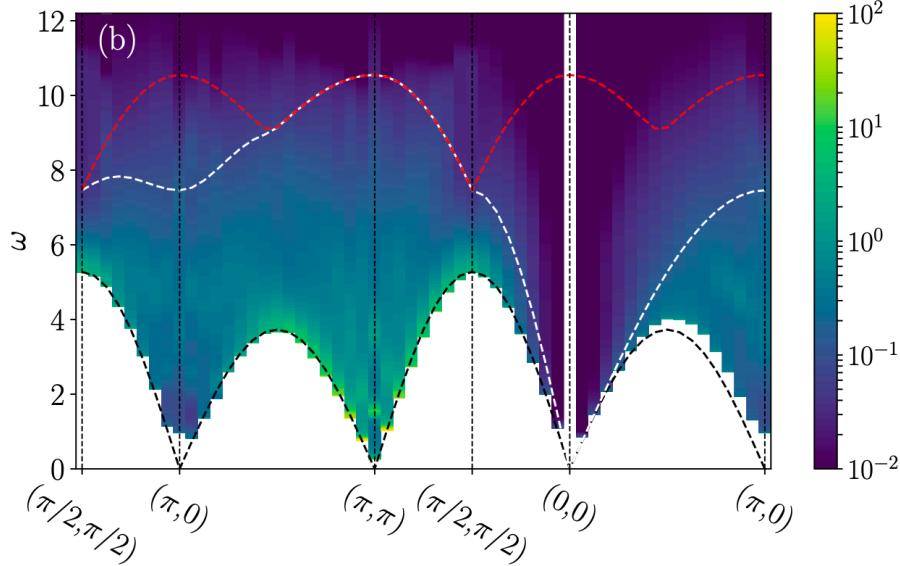
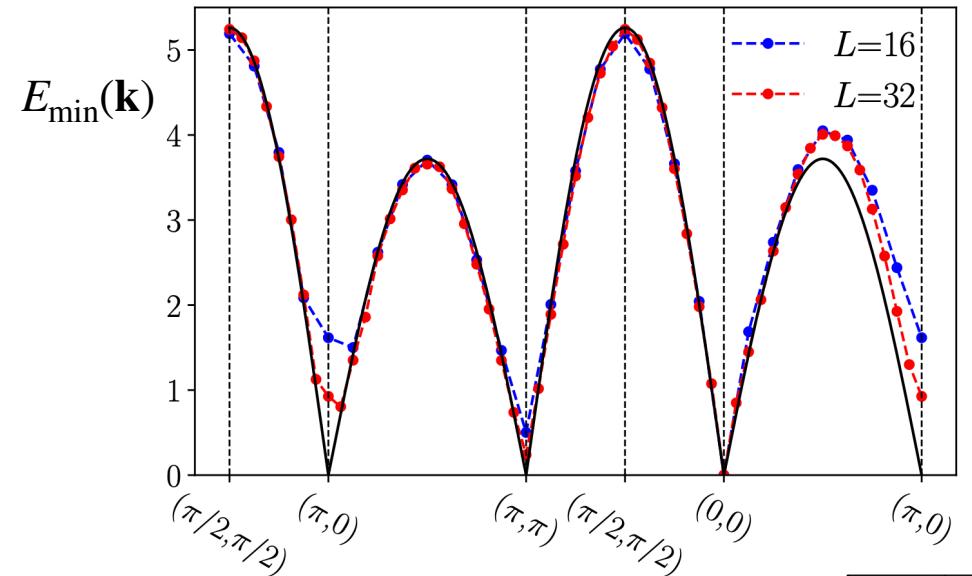
negative states filled

Spinon deconfinement on large length scales close to the critical point



At the transition point of the isotropic J-Q model ($Q=1, J=0.667, t=1, L=32$)

- an edge followed by continuum (no quasi-particle peak); use constraints discussed



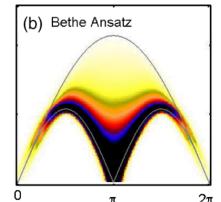
Different unit cells for phases (gauge) can be chosen in the π -flux model

- the dispersion relation is gauge invariant
- but the two-particle continuum depends on the gauge

Upper bound of the 2-spinon continuum: $E_{\max}(\mathbf{k}) = \max[\epsilon_s(\mathbf{k}_1) + \epsilon_s(\mathbf{k}_2)], \quad \mathbf{k} = \mathbf{k}_1 + \mathbf{k}_2$

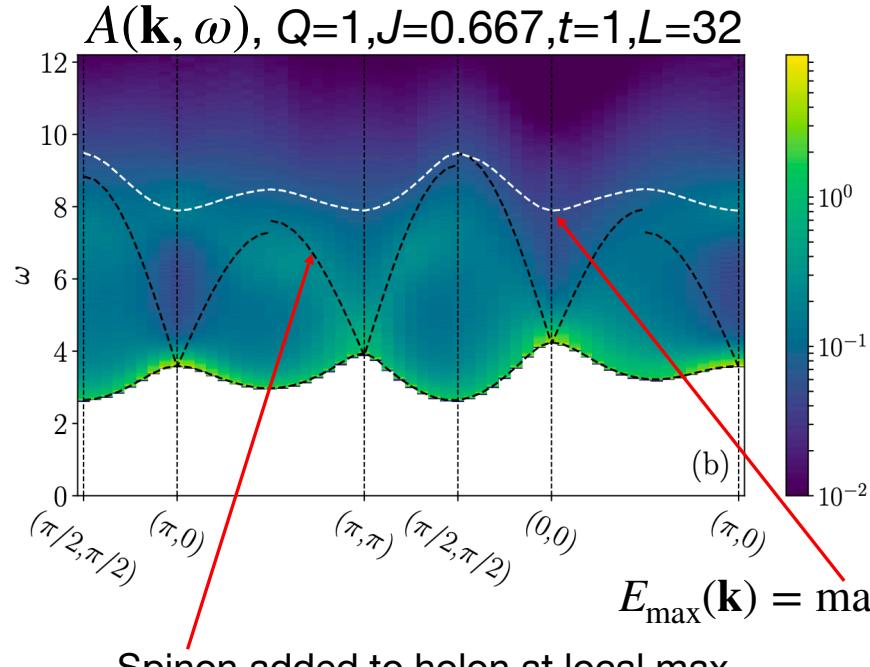
red: $|k_x| + |k_y| \leq \pi$ (similar to previous work)

white: $k_x, k_y \in [0, \pi]$ (motivated by spinons in Heisenberg chain)

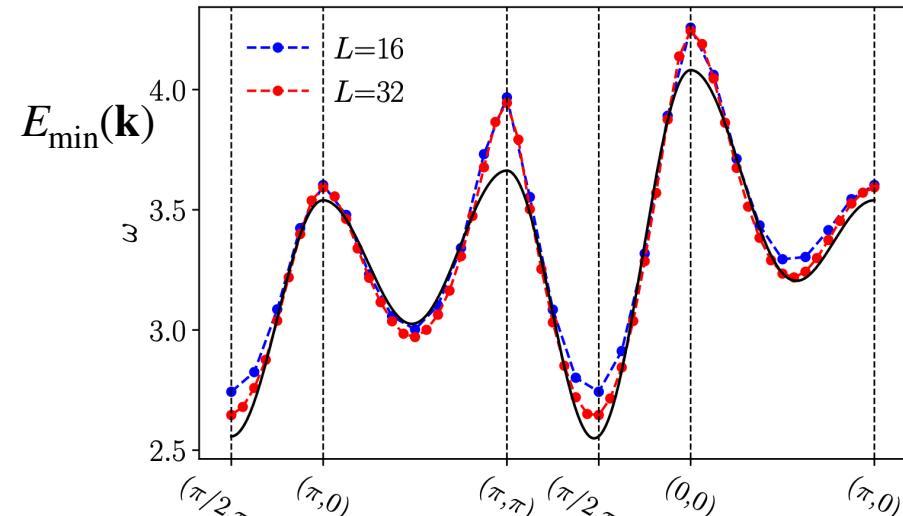


The smaller BZ seems to work better
- not completely clear...

Dynamic signatures of DQCP (2) spin-charge separation



Spinon added to holon at local max



$$\begin{aligned}
 E_{\min}(\mathbf{k}) = & t_1[\cos(k_x) + \cos(k_y)] \\
 & + t_2[\cos(k_x + k_y) + \cos(k_x - k_y)] \\
 & + t_3[\cos(2k_x) + \cos(2k_y)] + \mu,
 \end{aligned}$$

If spin-charge separation:

independently propagating spinon and holon, $\epsilon_{s+h}(k) \in \{\epsilon_s(k - q) + \epsilon_h(q)\}$, $q \in \text{BZ}$

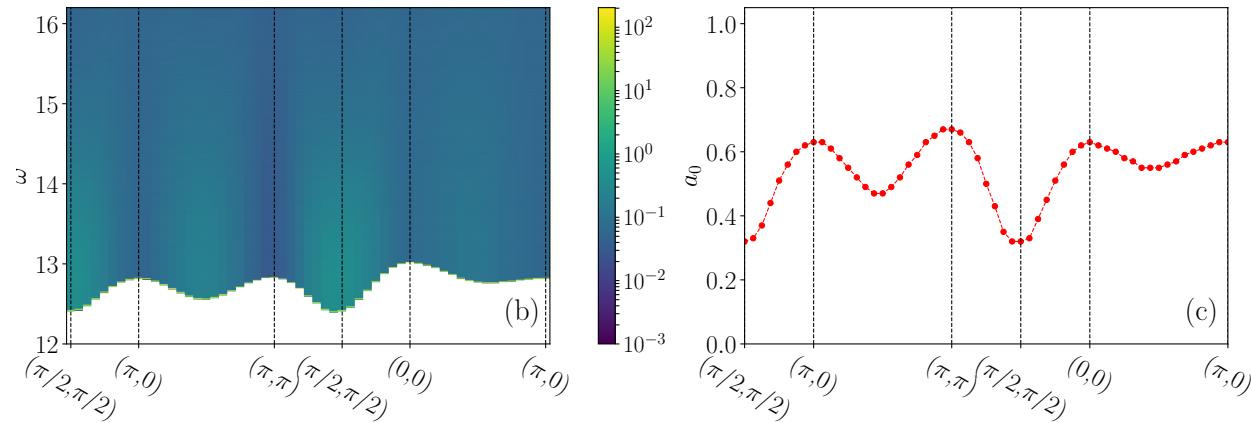
We have $\min[\epsilon_{s+h}(k)]$ and $\epsilon_s(k)$; solve for $\epsilon_h(k)$ and $\max[\epsilon_{s+h}(k)]$

- consistent solution if spinon $k_x, k_y \in [-\pi/2, \pi/2]$; then holon dispersion = lower bound

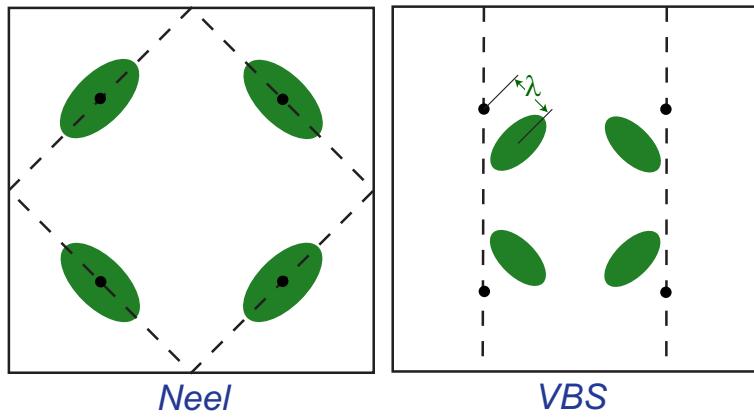
Shifted BZ for spinon similar to spin-charge separation in 1D

In the VBS phase: spin-polaron (spinon-holon bound state) expected

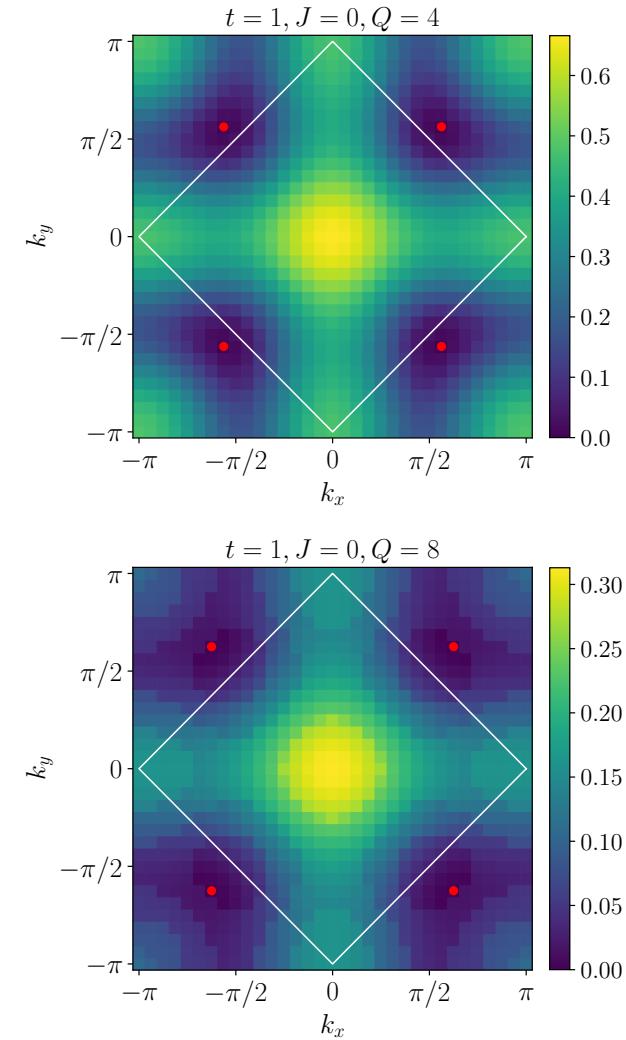
- impose δ -function quasi-particle peak



Kaul et al.: dispersion minimum moves away from $(\pi/2, \pi/2)$



- sign and magnitude of shift λ not determined
- QMC results in qualitative agreement



Summary & Conclusions

Deconfined quantum criticality is still not fully understood
(but we are getting very close)

Role of J-Q models studied by QMC and numerical analytic continuation

- reliable results on large lattices
- advances in analytic continuation offer more spectral details

Deconfined spinons seem to be described by π -flux model with $k_x, k_y \in [0, \pi]$

Gives consistent holon dispersion, spinon-holon continuum

- if spinon BZ shifted to $k_x, k_y \in [-\pi/2, \pi/2]$

Similar to spinon deconfinement and spin-charge separation in 1D