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Pseudogap Phase in Cuprates

Keimer et al., Nature 518, 179 (2015)
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Observation of the Yamaji Effect
Nat. Phys. (2025)

kcal(φ) =
3π
4c

tan[θYamaji(φ)]

Hole pockets have sizes of 
1.3% of the BZ


 p
8

= 1.25 %

Compatible with FL* scenario!
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FL* Theory



Kondo Lattice

e e e

JK

2D layers!
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Kondo Lattice

e e e

JK

composite 
electrons 

w FS 
volume 
1 + n

Heavy Fermi Liquid

S = f †σf




U(1) symmetry


⟨c†f⟩ ≠ 0

c → eiαc
f → eiαf

's are half-filled!f

e e e

JK

electrons w 
FS volume 

n

spin liquid

Senthil, Sachdev Vojta, PRL 2003

Senthil, Vojta, Sachdev, PRB 2004

Fermi Liquid *




U(1) symmetry


⟨c†f⟩ = 0

c → eiαc
f → f
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from Wikipedia.org

H = ∑
⟨i,j⟩

P(2)
ij

The AKLT model: a recap

• Enlarge Hilbert space:  

to 


• Project out local singlets 

| + ⟩, |0⟩, | − ⟩
| ↑↑ ⟩, | ↑↓ ⟩, | ↓↑ ⟩, | ↓↓ ⟩,

1

2
( | ↑↓ ⟩ − | ↓↑ ⟩)
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Ancilla Layer Model I
consider a model of interacting spin-   electrons1

2

4 local states  |0⟩, | ↑ ⟩, | ↓ ⟩, | ↑↓ ⟩

5

Zhang & Sachdev, PRR 2, 023172 (2020)



consider a model of interacting spin-   electrons1
2

4 local states  |0⟩, | ↑ ⟩, | ↓ ⟩, | ↑↓ ⟩

 add a singlet → |0,s⟩, | ↑ , s⟩, | ↓ , s⟩, | ↑↓ , s⟩
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Ancilla Layer Model I
Zhang & Sachdev, PRR 2, 023172 (2020)



ancillas

consider a model of interacting spin-   electrons1
2

4 local states  |0⟩, | ↑ ⟩, | ↓ ⟩, | ↑↓ ⟩

 add a singlet → |0,s⟩, | ↑ , s⟩, | ↓ , s⟩, | ↑↓ , s⟩

 enlarge to    


 project onto 

→

|0, ↑↑ ⟩, | ↑ , ↑↑ ⟩, | ↓ , ↑↑ ⟩, | ↑↓ , ↑↑ ⟩
|0, ↑↓ ⟩, | ↑ , ↑↓ ⟩, | ↓ , ↑↓ ⟩, | ↑↓ , ↑↓ ⟩
|0, ↓↑ ⟩, | ↑ , ↓↑ ⟩, | ↓ , ↓↑ ⟩, | ↑↓ , ↓↑ ⟩
|0, ↓↓ ⟩, | ↑ , ↓↓ ⟩, | ↓ , ↓↓ ⟩, | ↑↓ , ↓↓ ⟩

→
1

2
( |Ω, ↑↓ ⟩ − |Ω, ↓↑ ⟩)

5

Ancilla Layer Model I
Zhang & Sachdev, PRR 2, 023172 (2020)



"soft projection"  ,   −J⊥ S1 ⋅ S2 J⊥ ≫ Emodel

ancillas

consider a model of interacting spin-   electrons1
2

4 local states  |0⟩, | ↑ ⟩, | ↓ ⟩, | ↑↓ ⟩

 add a singlet → |0,s⟩, | ↑ , s⟩, | ↓ , s⟩, | ↑↓ , s⟩

 enlarge to    


 project onto 

→

|0, ↑↑ ⟩, | ↑ , ↑↑ ⟩, | ↓ , ↑↑ ⟩, | ↑↓ , ↑↑ ⟩
|0, ↑↓ ⟩, | ↑ , ↑↓ ⟩, | ↓ , ↑↓ ⟩, | ↑↓ , ↑↓ ⟩
|0, ↓↑ ⟩, | ↑ , ↓↑ ⟩, | ↓ , ↓↑ ⟩, | ↑↓ , ↓↑ ⟩
|0, ↓↓ ⟩, | ↑ , ↓↓ ⟩, | ↓ , ↓↓ ⟩, | ↑↓ , ↓↓ ⟩

→
1

2
( |Ω, ↑↓ ⟩ − |Ω, ↓↑ ⟩)

J⊥

5

Ancilla Layer Model I
Zhang & Sachdev, PRR 2, 023172 (2020)



J1

J2

t

project out triplet states perturbatively in  


  


Nikolaenko et al., PRB 103, 235138 (2021)





1/J⊥

→ Hel = − ∑
ij

tijc†
i cj + U∑

i

ni,↑ni,↓ − ∑
ij

Jij (c†
i σci) ⋅ (c†

j σcj)

U =
3J2

K

8J⊥
+

3J3
K

16J2
⊥

+ 𝒪(1/J3
⊥)

J =
J2

K (J1 + J2)
4J2

⊥
+ 𝒪(1/J3

⊥)

H = −∑
i,j

tij c†
i cj+J⊥ ∑

i

S1,i ⋅ S2,i

+JK ∑
i

c†
i σci ⋅ S1,i

+∑
ij

J1,ij S1,i ⋅ S1,j + ∑
ij

J2,ij S2,i ⋅ S2,j

soft projector

interaction

ancillas self-interactions

Zhang & Sachdev, PRR 2, 023172 (2020)
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Ancilla Layer Model II



FL phase
Zhang & Sachdev, PRR 2, 023172 (2020)

VFS = 1 + p

U(1) symmetry


c → eiαc
f1,2 → f1,2

Auxiliary fermion representation

S2,i = f †
2,i σ f2,i f †

2,i f2,i = 1

S1,i = f †
1,i σ f1,i f †

1,i f1,i = 1

itinerant electrons

rung singlets
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FL* phase
Zhang & Sachdev, PRR 2, 023172 (2020)

Auxiliary fermion representation Hybridized ϕ ∼ c†
i fi

spin liquid S2,i = f †
2,i σ f2,i f †

2,i f2,i = 1

S1,i = f †
1,i σ f1,i f †

1,i f1,i = 1

VFS = (1 + p + 1) mod 2 = p

U(1) symmetry



⟨c†f1⟩ ≠ 0

c → eiαc
f1 → eiαf1
f2 → f2
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-Flux Spin Liquidπ
Affleck & Marston, PRB 37, 3774(R) (1988)

2 Dirac cones

E±
k = ± 2J (sin kx)2 + (sin ky)2

ei,i± ̂x = ± i ei,i± ̂y = ± i(−1)x

   link fieldUij ∼ e−i∑3
a=1 (ri−rj)⋅Aa

(i+j)/2
σa
2 ∈ SU(2)

SU(2) gauge invariance!

ψi = (f2,i,↑ , f †
2,i,↓)

T

ℋQSL
π−flux = J∑

⟨i,j⟩

ψ†
i eij Uij ψj

π

π

π

π

π

π

π

π

π

Stable at intermediate energy scales,  
eventually unstable to Néel or VBS order

C. Wang et al., Phys. Rev. X 7, 
031051 (2017) 


confinem
ent co

nf
in
em

en
t

DCQP
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Bosonic Chargons Theory
Christos et al., PNAS 120, e2302701120 (2023)

condensation of    confines the SU(2) gauge field + additional ordersBi ⇒

Christos et al., PNAS (2023)

Gauge invariant bilinears 

• charge density OP

• bond density OP

• current density OP

• superconducting OP

ρi = B†
i Bi ∼ c†

i ci ⇒

Qij = Re{B†
i eijUijBj} ∼ c†

i cj + c†
j ci ⇒

Jij = Im{B†
i eijUijBj} ∼ i(c†

i cj − c†
j ci) ⇒

Δij = Bieij[iσ2]UijBj ∼ ci[iσ2]cj ⇒

 : -flux hoppings eij π

Decouple complex boson field 

,  

−J⊥ ∑
i

S1,i ⋅ S2,i ⇒ (B1,i, B2,i)T

B1 ∼ f †
1,σ f2,σ B2 ∼ f †

1,↑ f †
2,↓ − f †

1,↓ f †
2,↑

• EM charge  (  has charge  in FL* phase)

• no SU(2) spin

•  fundamental of SU(2)  -flux background

e f1 e

∈ ⇒ π
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Beyond Mean-Field Theory

Pandey, Christos, PMB, Shanker, Nikolaenko, Sharma, Sachdev, arXiv:2507.05336 (2025)

 chargonB

 spinonf2
Mean-Field Theory
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Thermal Bosonic Chargons
Pandey, Christos, PMB, Shanker, Nikolaenko, Sharma, Sachdev, arXiv:2507.05336 (2025)


ℰ2[B, U] = κ∑
□

[1 −
1
2

ReTr ∏
i, j∈□

Uij] + r∑
i

B†
i Bi − iw∑

⟨i, j⟩

B†
i eijUijBj

ℰ4[B, U] =
u
2 ∑

i

ρ2
i + V1 ∑

i

ρi(ρi+x̂ + ρi+ŷ) + g∑
⟨i, j⟩

|Δij |
2 + J1 ∑

⟨i, j⟩

Q2
ij

+K1 ∑
⟨ij⟩

J2
ij + V11 ∑

i

ρi(ρi+x̂+ŷ + ρi+x̂−ŷ)

+V22 ∑
i

ρi(ρi+2x̂+2ŷ + ρi+2x̂−2ŷ)

Consider effective classical theory for the chargons at finite temperature T

r = − 0.732, w = 0.40, u = 0, V1 = 0, g = 0.02,

J1 = K1 = 2/(1 + 2)2

MF phase diagram

12

𝜋-flux hoppingsSU(2) gauge field



KT transition
Pandey, Christos, PMB, Shanker, Nikolaenko, Sharma, Sachdev, arXiv:2507.05336 (2025)

argΔij = arg {BiϵUijBj} Qij = Re {B†
i eijUijBj}

•  charge-  OP but  vortices


•period-4 CDW in the vortex cores

e
h
2e

Hoffman et al., Science 295, 466 (2002) 13



Fermi Surface topology

MF vs BO spectral function 

Pandey, Christos, PMB, Shanker, Nikolaenko, Sharma, Sachdev, arXiv:2507.05336 (2025)

ℋ = − ∑
i, j

tc
ijc

†
i cj − ∑

i, j

tf
ij f †

1,i f1, j + iJ∑
⟨i, j⟩

f †
2,ieijUij f2, j + g∑

i
[B1,i f †

2,i f1,i−B2,i f2,i(0 −1
1 0 )f1,i + H.c.]

"Born-Oppenheimer" approx.  sample  &  according to  then average→ U B e−β(ℰ2[B,U]+ℰ4[B,U])

Quantum oscillations

freq. p/8
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Dynamical Spin Structure Factor
Nikolaenko, PMB, Sachdev, arXiv:2511.03792 (2025)

𝜋-flux SL 


ℋ = w∑
⟨i,j⟩

(1+Qij) ψ†
i eijψj 
χspin(q, ω) = χ0(q, ω)

bare 𝜋-flux susc.

spinon continuum
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Dynamical Spin Structure Factor
Nikolaenko, PMB, Sachdev, arXiv:2511.03792 (2025)

𝜋-flux SL + period-4 CDW  


ℋ = w∑
⟨i,j⟩

(1+Qij) ψ†
i eijψj 
χspin(q, ω) = χ0(q, ω)

bare 𝜋-flux + CDW susc.

spinon continuum

gap opening
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Dynamical Spin Structure Factor

−Imχspin(q, ω)

Nikolaenko, PMB, Sachdev, arXiv:2511.03792 (2025)

𝜋-flux SL + period-4 CDW  


ℋ = w∑
⟨i,j⟩

(1+Qij) ψ†
i eijψj + ∑

ij

Jij (1+Qij) ( f †
i σfi) ⋅ ( f †

j σfj) 


Willsher & Knolle, arXiv:2503.13831 (2025)

χspin(q, ω) =
χ0(q, ω)

1 − J(q)χ0(q, ω)

bare 𝜋-flux + CDW susc.

S=1 2-spinon bound states

spinon continuum

Hourglass spectrum
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Dynamical Spin Structure Factor
Nikolaenko, PMB, Sachdev, arXiv:2511.03792 (2025)

𝜋-flux SL + period-4 CDW  


ℋ = w∑
⟨i,j⟩

(1+Qij) ψ†
i eijψj + ∑

ij

Jij (1+Qij) ( f †
i σfi) ⋅ ( f †

j σfj)+coupling to electrons 


Willsher & Knolle, arXiv:2503.13831 (2025)

χspin(q, ω) =
χ0(q, ω)

1 − J(q)χ0(q, ω)

bare 𝜋-flux + CDW + 
electrons susc.

−Imχspin(q, ω)

spinon continuum

S=1 2-spinon bound statesbroadening of the 
bound state dispersions 15



Low Temperature Measurements



Low Temperature Measurements

Keimer et al., Nature 518, 179 (2015)
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Low Temperature Measurements

• oscillation frequency (in T) gives FS cross 
section  


• underdoped regime: single oscillation 
frequency corresponding to ~2% of the BZ 
area

fH = ℏA⊥/(2πe)

Sebastian & Proust, Ann. Rev. Cond. Matt. Phys. 6, 411 (2015)

Quantum Oscillations

LeBoeuf, et al., Nature 450, 533 (2007)

Hall Resistance
•Fermi Surface ~2% of the BZ


•Electron Pockets


•CDW order


•+ FL* above TCDW
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CDW* vs CDW
CDW*  

nonuniform density + deconfined SU(2) gauge field

CDW 


nonuniform density + confined SU(2) gauge field

• add  modulated potential  to 

the physical electrons


• the SU(2) gauge field remains deconfined

V∑
i

[cos(Qx) + cos(Qy)] c†
i ci • condensation of  such that

, 



• the SU(2) gauge field is fully confined

Bi
ρi = B†

i Bi = |b |2 (1 − [(−1)x + (−1)y]/2) cos2(qx)cos2(qy)
Jij = Δij = 0

V

ϕ ≠ 0 ϕ ≠ 0

  induces CDWB ≠ 0 →

17



Fermi surfaces in the CDW phase

• CDW* gives two electron pockets, one made by 
the physical electrons, one made by the 
-spinons


• the condensation of  hybridizes the larger 
eletron pocket with its shifted copies and gives 2 
small, elongated hole pockets

f1
Bi

PMB, Christos, Sachdev, PNAS 121 (50), e2418633121 (2024)
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Quantum Oscillations in the DOS
Period-4 b-CDW*/CDW

,   fα ∼ 1500T fβ ∼ 3300T

Period-6 b-CDW*/CDW

,   fα ∼ 650T fβ ∼ 1400T

• the CDW* phase has a 
significant peak at the 
-pocket frequency


• the CDW phase has a single 
significant contribution at the   

-pocket frequency


• the period-6 CDW has 
oscillations frequencies close 
to the experimental values of 
500 T to 800 T.

β

α
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Excess Specific Heat

The elongated hole pockets might account for the excess specific heat

19



d-SC phase
Christos, Sachdev, NPQ Quantum Materials 9, 4 (2024)

20

Spin liquid nodes hybridize with 
backsides for FL*  d-SC→



Summary
• FL* is a good candidate 'mother state' for the low-temperature physics of underdoped cuprates


• Ancilla Layer Model has a mean-field FL* phase


• FL* can eventually confine and form Néel/VBS or can be Higgsed down to form a d-wave superconductor/ CDW


• FL* can explain the presence of Fermi arcs in photoemission experiments and of small Fermi surfaces in QO experiments


• Dynamical Spin structure factor displays spinon bound states forming an "hourglass" spectrum


• Spin liquid is crucial to obtain the FS topology seen in QO experiments in the CDW phase and 4 nodes in the d-SC phase 

PMB, Christos, Nikolaenko, Patel, Sachdev, arXiv:2508.20164 (2025) 
Critical quantum liquids and the cuprate high temperature superconductors

21

Review article



Thank you!


