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Temperature (K)

Observation of the Yamaiji Effect

Nat. Phys. (2025)

Observation of the Yamaji effect in a cuprate superconductor
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The AKLT model: a recap
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Ancilla Layer Model |
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Ancilla Layer Model |

Zhang & Sachdev, PRR 2, 023172 (2020)
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Ancilla Layer Model Ii

Zhang & Sachdev, PRR 2, 023172 (2020)
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FL phase

Zhang & Sachdev, PRR 2, 023172 (2020)
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FL* phase
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7-Flux Spin Liquid
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Bosonic Chargons Theory

Christos et al., PNAS 120, 2302701120 (2023)
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Beyond Mean-Field Theory
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Thermal Bosonic Chargons

Pandey, Christos, PMB, Shanker, Nikolaenko, Sharma, Sachdev, arXiv:2507.05336 (2025)

Consider effective classical theory for the chargons at finite temperature 1
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KT transition

Pandey, Christos, PMB, Shanker, Nikolaenko, Sharma, Sachdev, arXiv:2507.05336 (2025)
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Fermi Surface topology

Pandey, Christos, PMB, Shanker, Nikolaenko, Sharma, Sachdev, arXiv:2507.05336 (2025)
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Dynamical Spin Structure Factor
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Dynamical Spin Structure Factor
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Dynamical Spin Structure Factor

-flux SL + period-4 CDW
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Dynamical Spin Structure Factor
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Low Temperature Measurements
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Contactless resistivity (a.u.)

- oscillation frequency (in T « Fermi Surface ~2% of the BZ

Low Temperature Measurements

Quantum Oscillations _
Hall Resistance

section f,; = hA,/(2me) I
Electron Pockets b= 0.10
* underdoped regime: sing T T

frequency corresponding -cbWorder g T """"""""""""
area r 014 | T,

[ ' ' j ' ' ' ] . *
5 ; ’ | p=0.108 _ + FL™ above TCDW 01

| M | 1-0*T—r—7k:1.5}<' ————

(@)
Fourier transform
amplitude (a.u.)
(@)
(0]
[
w
o
By
o
o
I

| | 0 25 50 75
-5 F ] ”\ T
u 00 6\_/\“/\/}60 1,000 =
. ] ' LeBoeuf, et al., Nature 450, 533 (2007)

0.01 0.02 0.03 0.04 F(T)
1/B (T)

Sebastian & Proust, Ann. Rev. Cond. Matt. Phys. 6, 411 (2015)

100

16



CDW* vs CDW

CDW*

nonuniform density + deconfined SU(2) gauge field
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Fermi surfaces in the CDW phase

PMB, Christos, Sachdev, PNAS 121 (50), e2418633121 (2024)
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Quantum Oscillations in the DOS
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Excess Specific Heat

PHYSICAL REVIEW B 102, 014506 (2020)

High density of states in the pseudogap phase of the cuprate superconductor HgBa,CuQ4, s from
low-temperature normal-state specific heat

C. Girod ®,12 A. Legros,>> A. Forget,? D. Colson,> C. Marcenat ®,* A. Demuer,’ D. LeBoeuf,’ L. Taillefer,>%" and T. Klein'-'

Second, the high y value implies that the Fermi surface must consist of more than the single electronlike pocket
detected by quantum oscillations in HgBa,CuO,4,s at p >~ 0.09, whose effective mass m* = 2.7my yields only
y = 4.0 mJ/K? mol. This missing mass imposes a revision of the current scenario for how pseudogap and charge
order, respectively, transform and reconstruct the Fermi surface of cuprates.

The elongated hole pockets might account for the excess specific heat
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Summary

FL* is a good candidate 'mother state' for the low-temperature physics of underdoped cuprates

Ancilla Layer Model has a mean-field FL* phase

FL* can eventually confine and form Néel/VBS or can be Higgsed down to form a d-wave superconductor/ CDW

FL* can explain the presence of Fermi arcs in photoemission experiments and of small Fermi surfaces in QO experiments
Dynamical Spin structure factor displays spinon bound states forming an "hourglass” spectrum

Spin liquid is crucial to obtain the FS topology seen in QO experiments in the CDW phase and 4 nodes in the d-SC phase
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