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Fractional quantum anomalous Hall (FQAH) effects
* Theoretically, FQAH states were proposed about a decade ago:

Basic idea:
FQH: partially filled Flat Landau Level + Interactions
FQAH: partially filled nearly flat Chern band + Interactions

Sheng et.al, Nat. Comm. 2011
Neupert et.al, PRL 2011 Fractional Quantum Hall states

Tang et.al, PRL 2011 . . g
Regnault et.al, PRX 2011 in the absence of a magnetic field

Xiao et.al., Nat. Comm. 2011



Fractional quantum anomalous Hall (FQAH) effects

 FQAH states have been observed in experimental moiré systems
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1l . Cai et.al., Nature 2023 (MoTe2)
T - Park et.al., Science 2023 (MoTe2)

Zeng et. al., Nature 2023 (MoTle2)
Lu et.al., Nature 2024 (Graphene)
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Why FQAH states are interesting?

* Practical Reasons

No B-field: new experiments can be done (e.g., heterostructure with SC)

Larger energy scale: 2 2
€ €
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* Conceptual Reasons

More tunability: Richer phase diagrams

Potentially new physical regime/phases far from FQH (this talk)
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New FQAH physics far from FQH

: L 1
 Example: Composite Fermi Liquid atv = > (Halperin-Lee-Read, Haldane-

Pasquier...)
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What could happen in a FQAH system?




New FQAH physics far from FQH
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New FQAH physics far from FQH

: L 1
 Example: Composite Fermi Liquid atv = > (Halperin-Lee-Read, Haldane-

Pasquier...)

FQH
A ky
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Galilean invariance:
No Brillouin Zone, CF FS must be circular

FQAH

AN
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¢

Lattice symmetry:
Brillouin Zone, possible different CF FS topology



About “Mapping” between FQH and FQAH

* |t was well-known that the Bloch states in the C=1 band can be mapped into
the lowest Landau level, preserving all crystalline symmetries. (Jian & Qi...)

* Namely, there is no problem that the Hilbert spaces on the two sides can be
mapped for C=1 band.
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About “Mapping” between FQH and FQAH

* |t was well-known that the Bloch states in the C=1 band can be mapped into
the lowest Landau level, preserving all crystalline symmetries. (Jian & Qi...)

* Namely, there is no problem that the Hilbert spaces on the two sides can be
mapped for C=1 band.

* The real question is whether the many-body states on the two sides can be
mapped or not.

In a microscopic model, do we have theoretical
tool to tell which Fermi surface is realized?




Currently available theoretical tools

* Effective field theories: not microscopic



Currently available theoretical tools

* Effective field theories: not microscopic

* Brute force numerics: exact-diagonalization and DMRG
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What we want

A microscopic theory capable of describing FQAH physics far from FQH.
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What we want

A microscopic theory capable of describing FQAH physics far from FQH.

Historically, writing down the many-body microscopic wavefunctions is
known to be extremely powerful in FQH. (Laughlin)

C Yilal?

[[Gzi —2)%e

1<J

We really want to write down many-body wavefunctions for FQAH states.

But, how to generalize these FQH wavefunctions? It must be continuously
tunable...



The main claim

* Allthe general (FQH or FQAH) composite fermion states (and many others)
are Hyperdeterminant (Hdet) wavefunctions.
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The main claim

* Allthe general (FQH or FQAH) composite fermion states (and many others)
are Hyperdeterminant (Hdet) wavefunctions.

* These are natural generalizations or free fermion Slater determinants
wavefunctions to fractionalized states.

* There are efficient ways to (approximately) simulate these wavefunctions,

=>» (1) accurate microscopics

(2) direct access to the composite fermion band structure

(The generalization of states with pairing, e.g., Pfaffian state will be HyperPfaffian wavefunctions)



Preview: what Hdet theory can do

* Accurate microscopic variational wavefunction

Ot"-order-optimized Hdet already performs well
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Preview: what Hdet theory can do

* Accurate microscopic variational wavefunction
* Direct access to the fractionalized d.o.f. (e.g., composite fermion band structure)
 Applicable in the general context of correlated electron systems (including QSL)

Ot"-order-optimized Hdet already performs well
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Hdet: Mathemathical definition

det (4;;) = Z (—1)P A1) - Aop2) - - Anp(v)

PESN

Hdet (Tip) = Y, (1" (=) Tirmen Tereiqe « Tvranem)
P,QeSy

Hdet (Tju) = Z (—1)P(-=1)?(-1)* Tipmyom)ra) - Tep@)Q@)RE)- - - TNPVQN)R(Y)
P,QQ,RESN
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e Slater-determinant as a many-body wavefunction N
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e Slater-determinant as a many-body wavefunction
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Hdet: as a many-body wavefunction

e Slater-determinant as a many-body wavefunction N
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i=1,2,.. . dim%H, j=1,2,....N. L

Electron’s single-particle orbitals

Different A = Different |LIJ)
Ground state: optimal A

(i) | W) = det ()

Exponential-size many-body state captured by polynomial-size matrix
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Hdet: as a many-body wavefunction
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Hdet: as a many-body wavefunction
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Hdet: as a many-body wavefunction
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Hdet: as a many-body wavefunction
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Hdet: as a many-body wavefunction
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Hdet and the product of determinants

 Averyspecial case:

it Tijp = Aij - Bu
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Hdet and the product of determinants

 Averyspecial case:

it Tijn = Asj- B,

SVD

Recall: Laughlin wavefunction is indeed a product of Slater determinants
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Hdet and the product of determinants

en fIL 5O Ty = (919160 |67

 Averyspecial case:

if Ty = Aij-Bir,,  then Hdet(T) = det(A) - det(B)

1x1 Bg)

SVD

T | = |4V
J

Recall: Laughlin wavefunction is indeed a product of Slater determinants

i<j



Hdet and the product of determinants

en fIL 5O Ty = (919160 |67

* Avery special case:

if Tijx = Aij-Bix,  then Hdet(T) = det(A) - det(B)

1x1 BS)

SVD

(4) — (4)
T, = |4

Recall: Laughlin wavefunction is indeed a product of Slater determinants

In QSL context, Abrikosov fermion construction also leads to QSL states that g L

are products of determinants:




Hdet and the product of determinants

e 1 2
Ty = (017|817 67)

ot (B)

How about the next one in the Jain’s sequence in FQH?




Hdet and the product of determinants
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Hdet and the product of determinants
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Hdet and the product of determinants

en fIL 5O Ty = (919160 |67

ind gives:

Generally computing Hdet is NP-hard!

Hdet(T) = ) _ det(A,)det(B,)




Hdet and the product of determinants

en fOFO Ty = (475 |6))

ind gives:

Generally computing Hdet is NP-hard!

But we have developed ways to simulate it, with

(Projective-expansion) L %
I )
/fQL /\1
—_— ‘_m—
Hdet(T) = ) _ det(A,)det(B,)
a=1 P ——




Projective expansion: Benchmark Results

* We develop a technique to simulate Hdet wavefunctions, with
approximation improvable order-by-order.

Oth order
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The pair-correlation function for 1/3 Laughlin state
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Projective expansion: Benchmark Results

* We develop a technique to simulate Hdet wavefunctions, with
approximation improvable order-by-order.

Oth order
1st order
2nd order
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The pair-correlation function for 1/3 Laughlin state
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Similar to e-expansion in QFT, although there is no
small parameter in the problem, one can calculate
properties of Hdet as a power series.
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* We develop a technique to simulate Hdet wavefunctions, with
approximation improvable order-by-order.
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The pair-correlation function for 2/5 composite fermion state



Projective expansion: Benchmark Results

* We develop a technique to simulate Hdet wavefunctions, with
approximation improvable order-by-order.

Scil SciPost Phys. 14, 149 (2023)

Parametrization and thermodynamic scaling of pair correlation
functions for the fractional quantum Hall effect

Jorgen Fulsebakke!, Mikael Fremling’2, Niall Moran® and J. K. Slingerland’3
/ 1 Department of Theoretical Physics, National University of Ireland, Maynooth, Ireland

/ 2 Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena,
/ Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

/ Similar to e-expansion in QFT, although there is no
/ small parameter in the problem, one can calculate
properties of Hdet as a power series.

The pair-correlation function for 2/5 composite fermion state
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Projective expansion: Benchmark Results

e Square lattice periodic potential in lowest Landau level
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Projective expansion: Benchmark Results

e Square lattice periodic potential in lowest Landau level

H=)\N-Hy+V Hyg = Prrp Zeié'?PLLL
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Haldane V1=1 pseudopotential
H=MN Hxg+V

Energy spectrum by COM sector (A = 0.0)
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Haldane V1=1 pseudopotential

H=MN-Hxg+V
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Haldane V1=1 pseudopotential

H=M\- Hi+V Blue: parton particle-hole continuum
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Energy spectrum by COM sector (A = 0.0)
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Haldane V1=1 pseudopotential
H=MN Hxg+V

Energy spectrum by COM sector (A = 0.0)
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1 pseudopotential

Haldane V1

AN-Hip+V

H =

Energy spectrum by COM sector (A = 0.1)
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1 pseudopotential

Haldane V1

AN-Hip+V
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1 pseudopotential

Haldane V1

AN-Hip+V

H =

Energy spectrum by COM sector (A = 0.3)

Immeoe 00 @ 0 e o °
aneere ® o o Qe O =
DO GO GO 00 @ 00 ©
DalDeeeee ©¢ 0 0 @ @
DO GO GDO® 00 @ 00 ©
D DD C ® 00 0 o @
o o < ~
o o o o
AbJau3

6x4 exact diagonalization

0.0

20

15

10

COM sector



1 pseudopotential

Haldane V1

AN Hig+V

H =

Energy spectrum by COM sector (A = 0.4)
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1 pseudopotential

Haldane V1

AN Hig+V

H =

Energy spectrum by COM sector (A = 0.5)
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1 pseudopotential

Haldane V1

AN-Hip+V

H =

Energy spectrum by COM sector (A = 0.9)
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1 pseudopotential

Haldane V1

Parton particle-hole gap

AN-Hip+V

H =

Energy spectrum by COM sector (A = 0.8)
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Haldane V1=1 pseudopotential
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Ot"-order-optimized Hdet already performs well
Also provide parton’s bandstructure!
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Projective expansion: How it works

* The tensor T in Hdet has a local structure. Consequently, the Hdet
wavefunction can be viewed as a grassmann ) tensor-network
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Projective expansion: How it works

* The tensor T in Hdet has a local structure. Consequently, the Hdet
wavefunction can be viewed as a grassmann ) tensor-network
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Projective expansion: How it works

* ThetensorTin Hdet has a local structure. Consequently, the Hdet
wavefunction can be viewed as a (grassmann) tensor-network

/ / / ) \Z)B)

(! ”7® cr o\
e) (€) ’ =
; d)/ /» ) (é) ‘\

Wmr|O - T Bilvmr)  @mr|O-T1,(1 + AP [¢urr)

(Wur| I1; Pilvur) (Waer| T (1 + AP [9ur)

S
@F
S




Ongoing/Future directions: Explore FQAH phase diagram

* Parton band inversion = quantum phase transition
e.g. Bosonic Y2-filled FQAH < Superfluid (Barkeshli-McGreevy 2011)
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Ongoing/Future directions: Explore FQAH phase diagram

* Parton band inversion = quantum phase transition
e.g. Bosonic Y2-filled FQAH < Superfluid (Barkeshli-McGreevy 2011)
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Recent DMRG sees the continuous phase transition
But has no access to parton bandstructure

Continuous Transition between Bosonic Fractional
Chern Insulator and Superfluid

Hongyu Lu®', Han-Qing Wu?, Bin-Bin Chen'*, and Zi Yang Meng ®'f

Show more v

Phys. Rev. Lett. 134, 076601 - Published 18 February, 2025
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Ongoing/Future directions: Explore FQAH phase diagram

* Parton band inversion = quantum phase transition

e.g. Composite Fermi liquid <~ Fermi liquid (Barkeshli-McGreevy)
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Ongoing/Future directions: Explore FQAH phase diagram

* Parton band inversion = quantum phase transition
e.g. Bosonic Y2-filled FQAH < Superfluid
Fermionic Y2-filled CFL <> Fermi liquid

* Composite Fermi liquids

P

* Pairing and nonabelian states



Ongoing/Future directions: Dynamical Hdet

* Based on the Projective expansion, one can compute the time-evolution of
Hdet wavefunctions. Namely, we can really write down:

S — / dt (Hdet[T(t)]|i0; — H|Hdet|T(£)])

----- —r

Magnetoroton (Girvn-McDonald-Platzman 1986, Haldane 2011)

INTENSITY (A.U.)
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* This calculation will reveal the collective modes : %\\A ézegév(;gw
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FIG. 1. Temperature dependence of inelastic light scattering
spectra of a low-lying excitation of the FQHE at v=1%. The
single quantum well has density n=8.5x10'" cm ~2. The inset
shows the B dependence of the 0.5 K spectra. The light scatter-

ing peak, labeled *“‘gap excitation,” is interpreted as a ¢ =0 col-

lective gap excitation. The bands labeled Lo and L comprise

the characteristic doublets of intrinsic photoluminescence. The

temperature dependence of the Lo and Lg intensities is due to
) q the optical anomaly at v=1}.

Qoin. Pinczuk et.al, PRL 1993
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