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Fractional quantum anomalous Hall (FQAH) effects 

• Theoretically, FQAH states were proposed about a decade ago:

Basic idea: 

FQH:        partially filled Flat Landau Level           +    Interactions     

FQAH:    partially filled nearly flat Chern band    +    Interactions

Sheng et.al,  Nat. Comm. 2011
Neupert et.al, PRL 2011
Tang et.al, PRL 2011
Regnault et.al, PRX 2011
Xiao et.al., Nat. Comm. 2011
…..

Fractional Quantum Hall states
in the absence of a magnetic field



Fractional quantum anomalous Hall (FQAH) effects 

• FQAH states have been observed in experimental moiré systems

Cai et.al., Nature 2023 (MoTe2)
Park et.al., Science 2023 (MoTe2)
Zeng et. al., Nature 2023 (MoTe2)
Lu et.al., Nature 2024 (Graphene)
….

Fractional Quantum Hall states
in the absence of a magnetic field



Why FQAH states are interesting?

• Practical Reasons

        No B-field: new experiments can be done (e.g., heterostructure with SC)

        Larger energy scale: 
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• Conceptual Reasons
          
           More tunability: Richer phase diagrams
           Potentially new physical regime/phases far from FQH (this talk)



New FQAH physics far from FQH

• Example: Composite Fermi Liquid at	𝜈 = !
"
	 (Halperin-Lee-Read, Haldane-

Pasquier…)

Jain 1989
Fermi surface of charge-neutral
         composite fermion
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New FQAH physics far from FQH

• Example: Composite Fermi Liquid at	𝜈 = !
"
	 (Halperin-Lee-Read, Haldane-

Pasquier…)

FQH FQAH

Lattice symmetry: 
Brillouin Zone, possible different CF FS topology

Galilean invariance: 
No Brillouin Zone, CF FS must be circular

vs.



About “Mapping” between FQH and FQAH

• It was well-known that the Bloch states in the C=1 band can be mapped into 
the lowest Landau level, preserving all crystalline symmetries. (Jian & Qi…)

• Namely, there is no problem that the Hilbert spaces on the two sides can be 
mapped for C=1 band. 
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About “Mapping” between FQH and FQAH

• It was well-known that the Bloch states in the C=1 band can be mapped into 
the lowest Landau level, preserving all crystalline symmetries. (Jian & Qi…)

• Namely, there is no problem that the Hilbert spaces on the two sides can be 
mapped for C=1 band. 

• The real question is whether the many-body states on the two sides can be 
mapped or not. 

FQAHFQH

In a microscopic model, do we have ANY theoretical 
tool to tell which Fermi surface is realized?
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Currently available theoretical tools

• Effective field theories: not microscopic

• Brute force numerics: exact-diagonalization and DMRG

     

(1) Small system sizes
(2) No intuitive picture 
       (no access to fractionalized d.o.f., e.g. composite fermion)
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What we want

• A microscopic theory capable of describing FQAH physics far from FQH.

• Historically, writing down the many-body microscopic wavefunctions is 
known to be extremely powerful in FQH. (Laughlin)

• We really want to write down many-body wavefunctions for FQAH states. 

• But, how to generalize these FQH wavefunctions? It must be continuously 
tunable…
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The main claim

• All the general (FQH or FQAH) composite fermion states (and many others)  
are Hyperdeterminant (Hdet) wavefunctions.

• These are natural generalizations or free fermion Slater determinants 
wavefunctions to fractionalized states.

• There are efficient ways to (approximately) simulate these wavefunctions,
    è (1) accurate microscopics 

             (2) direct access to the composite fermion band structure

(The generalization of states with pairing, e.g., Pfaffian state will be HyperPfaffian wavefunctions)
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Preview: what Hdet theory can do

0th-order-optimized Hdet already performs well 

• Accurate microscopic variational wavefunction
• Direct access to the fractionalized d.o.f. (e.g., composite fermion band structure)
• Applicable in the general context of correlated electron systems (including QSL)

Composite fermion = parton



Hdet: Mathemathical definition
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Hdet: as a many-body wavefunction

(Bosonic) Electron orbitals Filled parton-(1) states Filled parton-(2) states

Exponential-size many-body state captured by polynomial-size tensor 

Different T è Different |Ψ⟩
Ground state: optimal T
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Hdet and the product of determinants

• A very special case:

If                                              , then

Recall: Laughlin wavefunction is indeed a product of Slater determinants 

=
1x1

SVD

In QSL context, Abrikosov fermion construction also leads to QSL states that 
are products of determinants: 



Hdet and the product of determinants

• A very special case:

If                                              , then

Recall: Laughlin wavefunction is indeed a product of Slater determinants 

=
1x1

SVDHow about the next one in the Jain’s sequence in FQH?
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Hdet and the product of determinants

=
3x3

SVD

• For 𝜈 = "
#

 Bosonic FQH state, the best electron orbital-i you can find gives:

Generally computing Hdet is NP-hard!

But we have developed ways to simulate it, with 
approximation improvable order-by-order.

(Projective-expansion)
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Haldane V1=1 pseudopotential

6x4 exact diagonalization Red: GMP magnetoroton collective mode

Blue: parton particle-hole continuum
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Haldane V1=1 pseudopotential

6x4 exact diagonalization



Haldane V1=1 pseudopotential

6x4 exact diagonalization

Parton particle-hole gap

Magnetoroton condense
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Bare Coulomb interaction

0th-order-optimized Hdet already performs well
Also provide parton’s bandstructure! 



Projective expansion: How it works

• The tensor T in Hdet has a local structure. Consequently, the Hdet 
wavefunction can be viewed as a (grassmann) tensor-network

--- Local fusion tensor
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Projective expansion: How it works

• The tensor T in Hdet has a local structure. Consequently, the Hdet 
wavefunction can be viewed as a (grassmann) tensor-network

Power expansion of 𝜆, then set 𝜆	=1.
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Recent DMRG sees the continuous phase transition
But has no access to parton bandstructure
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Ongoing/Future directions: Explore FQAH phase diagram

• Parton band inversion è quantum phase transition
e.g.     Bosonic ½-filled FQAH ó Superfluid 
            Fermionic ½-filled CFL ó Fermi liquid 

• Composite Fermi liquids

• Pairing and nonabelian states

vs.



Ongoing/Future directions: Dynamical Hdet

• Based on the Projective expansion, one can compute the time-evolution of 
Hdet wavefunctions. Namely, we can really write down:

• This calculation will reveal the collective modes
Magnetoroton (Girvn-McDonald-Platzman 1986, Haldane 2011)

Pinczuk et.al, PRL 1993



Thank you!


