

Hyperdeterminants wavefunctions

Ying Ran
(Boston College)

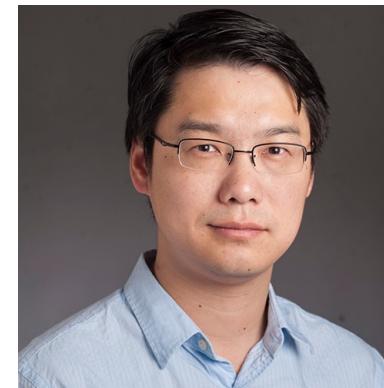
ICTP program “Quantum Matter”, Dec 2025

Acknowledgement:

- **Collaborators:**

Guan-Lin Lin
BC

Xiaodong Hu
Univ. of Washington



Di Xiao

Reference: Phys. Rev. B 109, 245125 (2024)

Plan

- Motivation
- Main Claim
- Benchmark Results
- Ongoing/Future directions

Fractional quantum anomalous Hall (FQAH) effects

- Theoretically, FQAH states were proposed about a decade ago:

Basic idea:

FQH: partially filled Flat Landau Level + Interactions

FQAH: partially filled nearly flat Chern band + Interactions

Sheng et.al, Nat. Comm. 2011

Neupert et.al, PRL 2011

Tang et.al, PRL 2011

Regnault et.al, PRX 2011

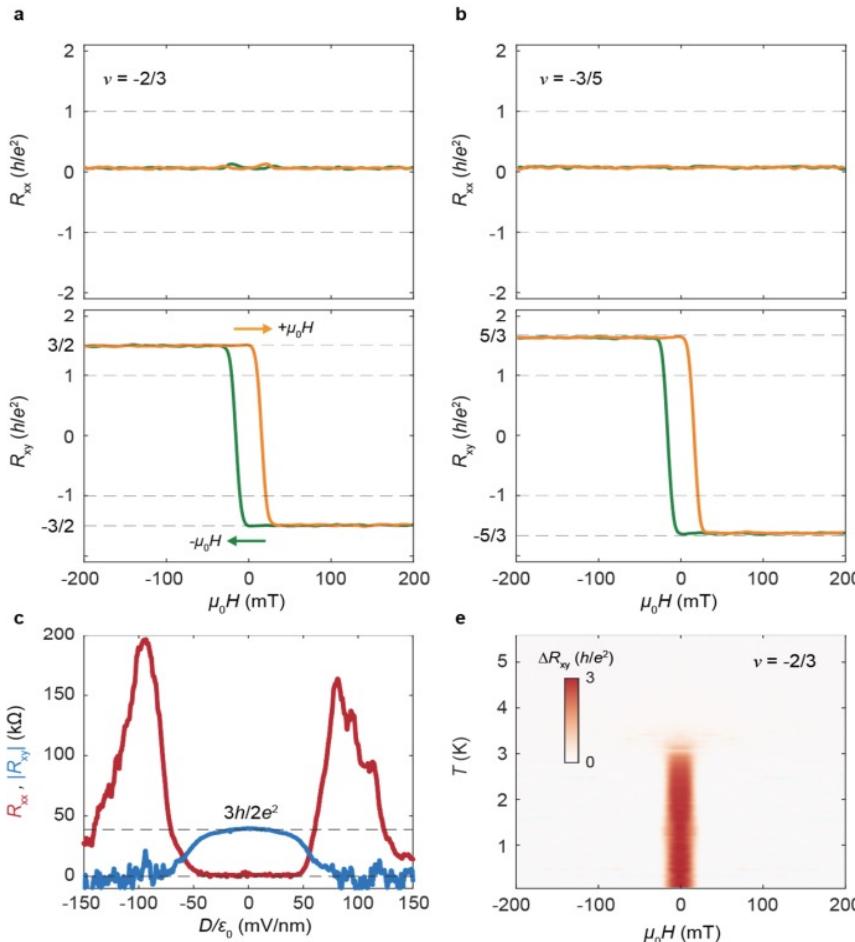
Xiao et.al., Nat. Comm. 2011

.....

Fractional Quantum Hall states
in the absence of a magnetic field

Fractional quantum anomalous Hall (FQAH) effects

- FQAH states have been observed in experimental moiré systems



Cai et.al., Nature 2023 (MoTe2)
Park et.al., Science 2023 (MoTe2)
Zeng et. al., Nature 2023 (MoTe2)
Lu et.al., Nature 2024 (Graphene)
....

Fractional Quantum Hall states
in the absence of a magnetic field

Why FQAH states are interesting?

- Practical Reasons

No B-field: new experiments can be done (e.g., heterostructure with SC)

Larger energy scale:

$$\Delta_g \sim \frac{e^2}{\varepsilon \cdot l_B} \Rightarrow \Delta_g \sim \frac{e^2}{\varepsilon \cdot a}$$

Why FQAH states are interesting?

- Practical Reasons

No B-field: new experiments can be done (e.g., heterostructure with SC)

Larger energy scale:

$$\Delta_g \sim \frac{e^2}{\varepsilon \cdot l_B} \Rightarrow \Delta_g \sim \frac{e^2}{\varepsilon \cdot a}$$

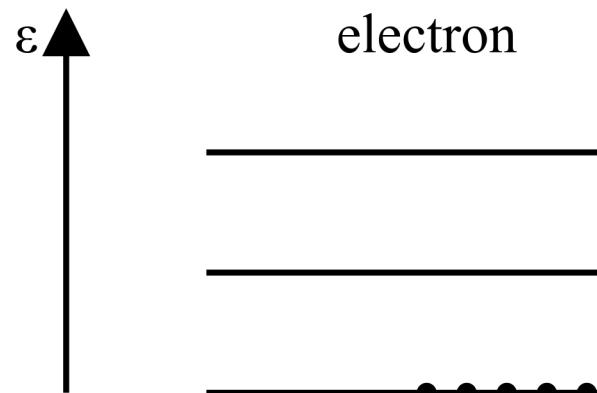
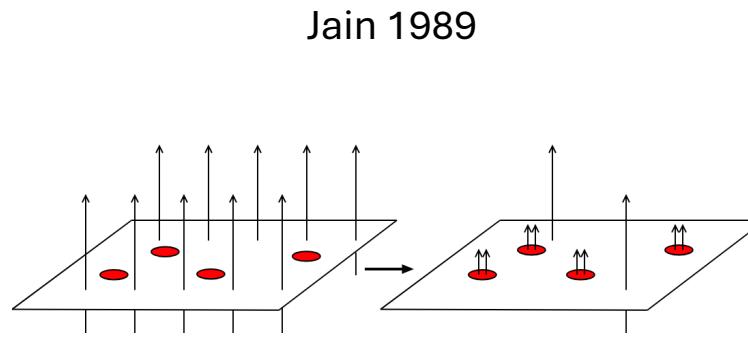
- Conceptual Reasons

More tunability: Richer phase diagrams

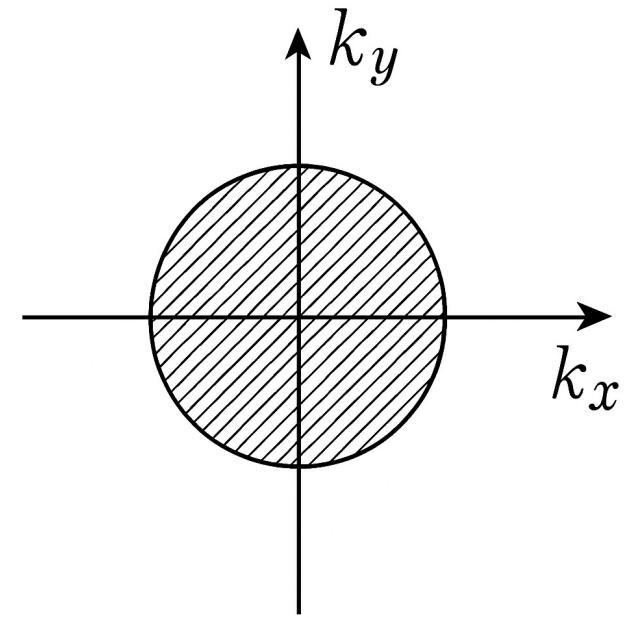
Potentially new physical regime/phases far from FQH (this talk)

New FQAH physics far from FQH

- Example: Composite Fermi Liquid at $\nu = \frac{1}{2}$ (Halperin-Lee-Read, Haldane-Pasquier...)

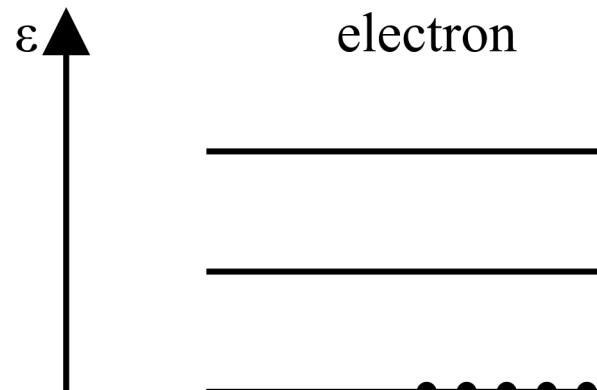
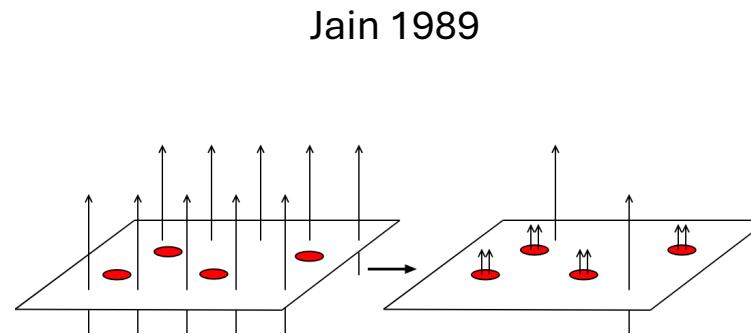


Fermi surface of **charge-neutral composite fermion**

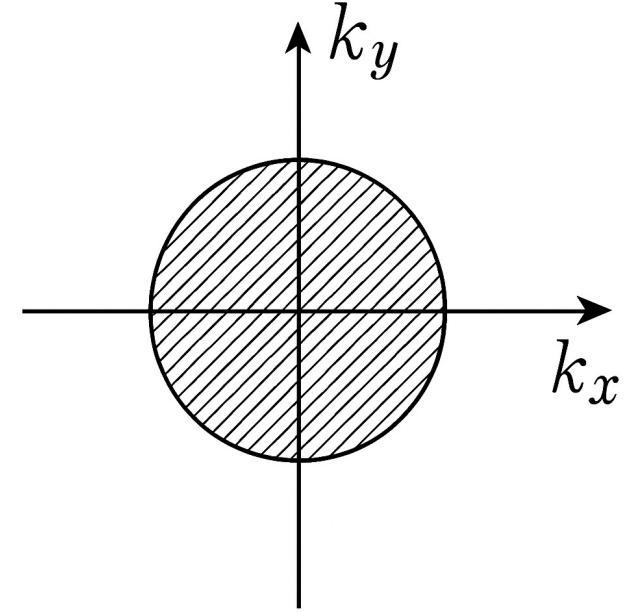


New FQAH physics far from FQH

- Example: Composite Fermi Liquid at $\nu = \frac{1}{2}$ (Halperin-Lee-Read, Haldane-Pasquier...)



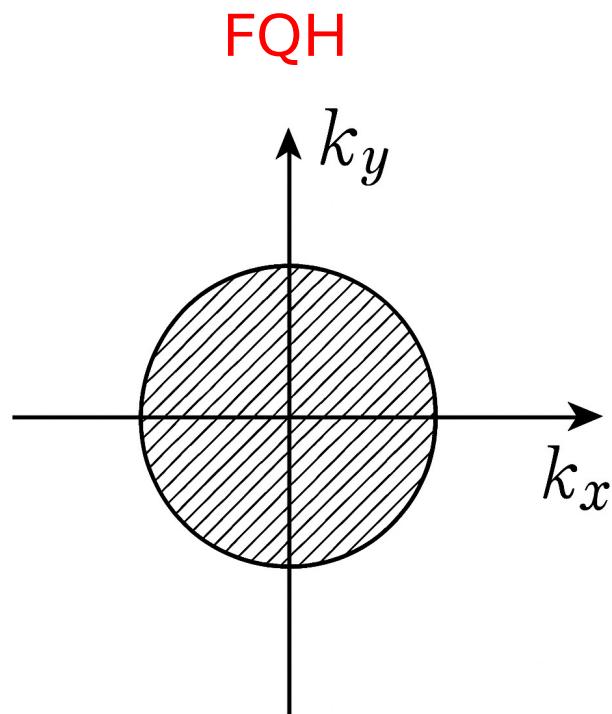
Fermi surface of **charge-neutral composite fermion**



What could happen in a FQAH system?

New FQAH physics far from FQH

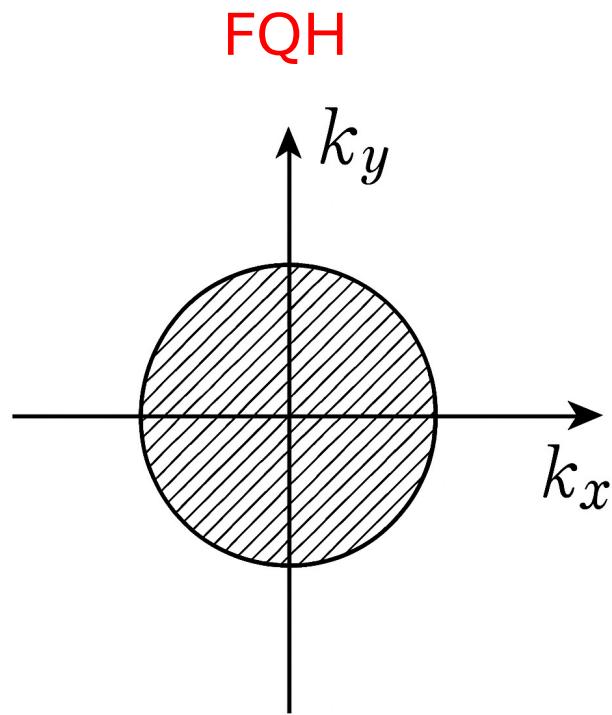
- Example: Composite Fermi Liquid at $\nu = \frac{1}{2}$ (Halperin-Lee-Read, Haldane-Pasquier...)



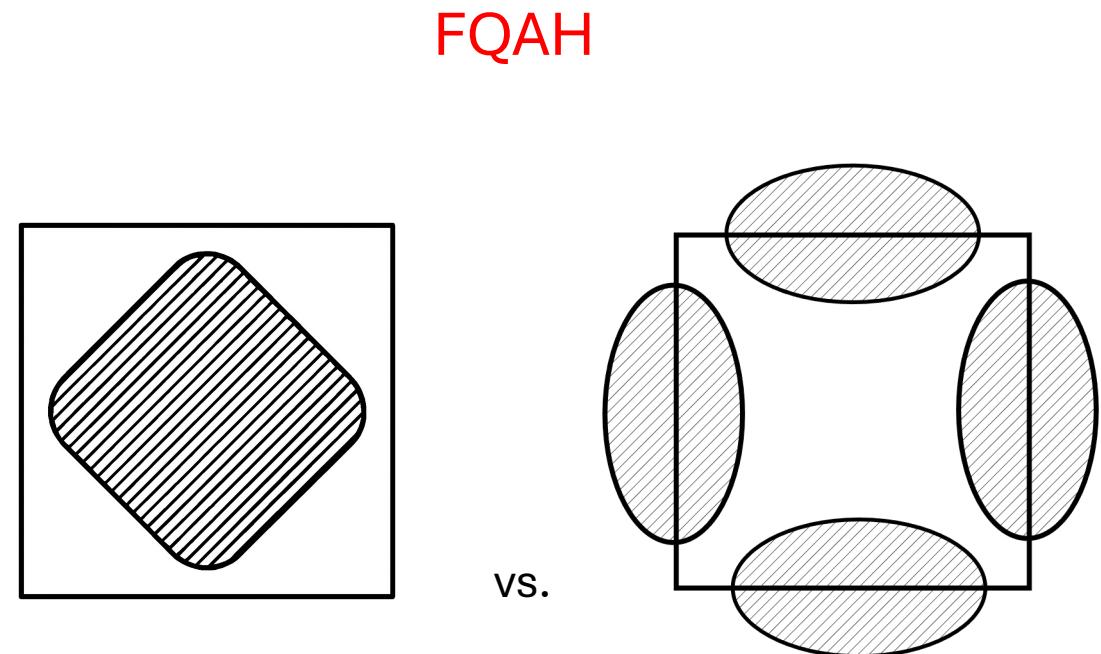
Galilean invariance:
No Brillouin Zone, CF FS must be circular

New FQAH physics far from FQH

- Example: Composite Fermi Liquid at $\nu = \frac{1}{2}$ (Halperin-Lee-Read, Haldane-Pasquier...)



Galilean invariance:
No Brillouin Zone, CF FS must be circular



Lattice symmetry:
Brillouin Zone, possible different CF FS topology

About “Mapping” between FQH and FQAH

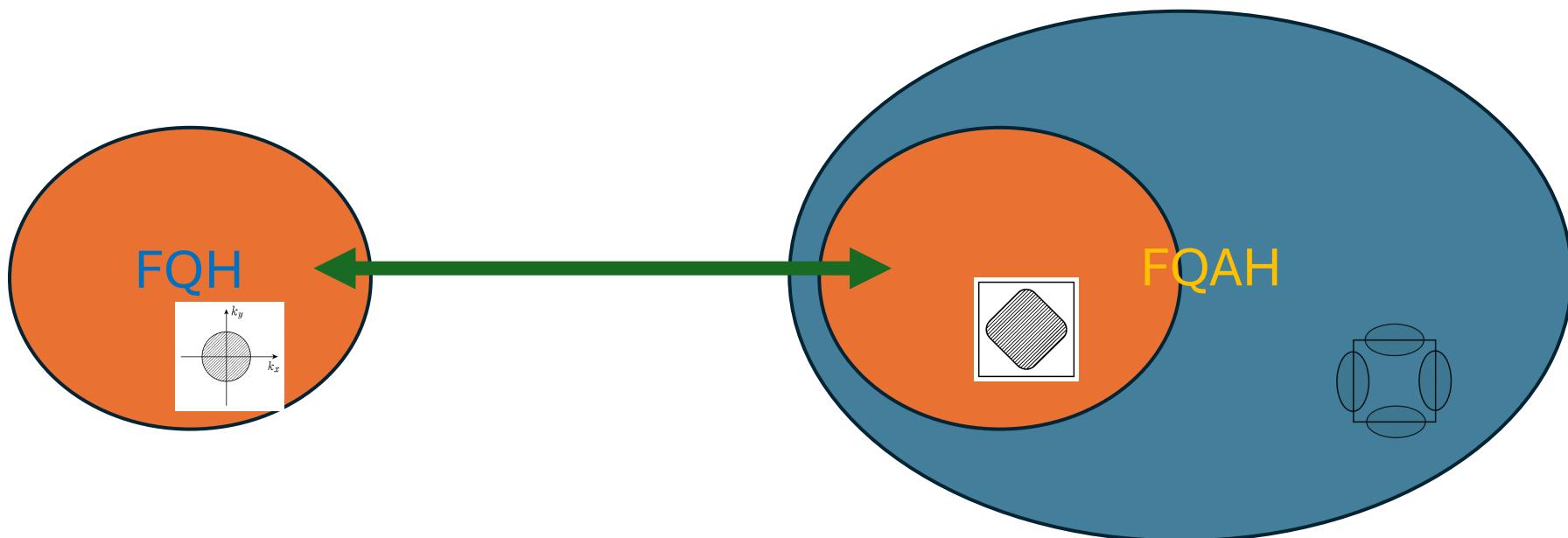
- It was well-known that the Bloch states in the C=1 band can be mapped into the lowest Landau level, preserving all crystalline symmetries. (Jian & Qi...)
- Namely, there is no problem that the Hilbert spaces on the two sides can be mapped for C=1 band.

About “Mapping” between FQH and FQAH

- It was well-known that the Bloch states in the C=1 band can be mapped into the lowest Landau level, preserving all crystalline symmetries. (Jian & Qi...)
- Namely, there is no problem that the Hilbert spaces on the two sides can be mapped for C=1 band.
- The real question is whether the many-body states on the two sides can be mapped or not.

About “Mapping” between FQH and FQAH

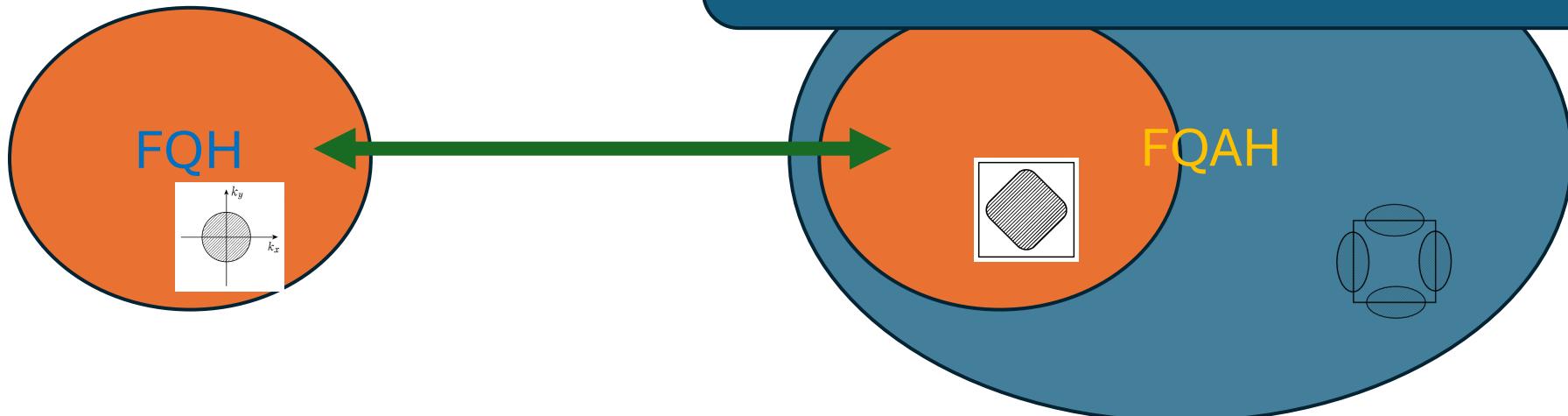
- It was well-known that the Bloch states in the C=1 band can be mapped into the lowest Landau level, preserving all crystalline symmetries. (Jian & Qi...)
- Namely, there is no problem that the Hilbert spaces on the two sides can be mapped for C=1 band.
- The real question is whether the many-body states on the two sides can be mapped or not.



About “Mapping” between FQH and FQAH

- It was well-known that the Bloch states in the C=1 band can be mapped into the lowest Landau level, preserving all crystalline symmetries. (Jian & Qi...)
- Namely, there is no problem that the Hilbert spaces on the two sides can be mapped for C=1 band.
- The real question is whether the many-body states on the two sides can be mapped or not.

In a microscopic model, do we have **ANY** theoretical tool to tell which Fermi surface is realized?



Currently available theoretical tools

- Effective field theories: not microscopic

Currently available theoretical tools

- Effective field theories: not microscopic
- Brute force numerics: exact-diagonalization and DMRG



- (1) Small system sizes
- (2) No intuitive picture
(no access to fractionalized d.o.f., e.g. composite fermion)

What we want

- A **microscopic** theory capable of describing FQAH physics **far from FQH**.

What we want

- A **microscopic** theory capable of describing FQAH physics **far from FQH**.
- Historically, writing down the many-body microscopic wavefunctions is known to be extremely powerful in FQH. (Laughlin)

$$\prod_{i < j} (z_i - z_j)^3 e^{-\frac{\sum_i |z_i|^2}{4l_B^2}}$$

What we want

- A **microscopic** theory capable of describing FQAH physics **far from FQH**.
- Historically, writing down the many-body microscopic wavefunctions is known to be extremely powerful in FQH. (Laughlin)

$$\prod_{i < j} (z_i - z_j)^3 e^{-\frac{\sum_i |z_i|^2}{4l_B^2}}$$

- We really want to write down many-body wavefunctions for FQAH states.

What we want

- A **microscopic** theory capable of describing FQAH physics **far from FQH**.
- Historically, writing down the many-body microscopic wavefunctions is known to be extremely powerful in FQH. (Laughlin)

$$\prod_{i < j} (z_i - z_j)^3 e^{-\frac{\sum_i |z_i|^2}{4l_B^2}}$$

- We really want to write down many-body wavefunctions for FQAH states.
- But, how to generalize these FQH wavefunctions? It must be **continuously tunable**...

The main claim

- All the general (FQH or FQAH) composite fermion states (and many others) are Hyperdeterminant (H_{det}) wavefunctions.

The main claim

- All the general (FQH or FQAH) composite fermion states (and many others) are Hyperdeterminant (H_{det}) wavefunctions.
- These are natural generalizations of free fermion Slater determinants wavefunctions to fractionalized states.

The main claim

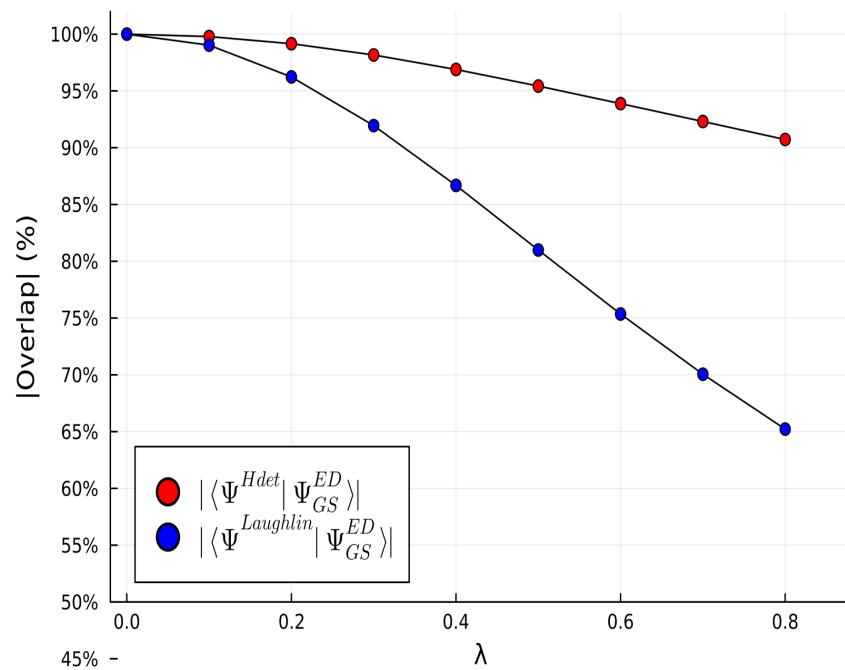
- All the general (FQH or FQAH) composite fermion states (and many others) are Hyperdeterminant (H_{det}) wavefunctions.
- These are natural generalizations of free fermion Slater determinants wavefunctions to fractionalized states.
- There are efficient ways to (approximately) simulate these wavefunctions,
 - ➔ (1) accurate microscopics
 - (2) direct access to the composite fermion band structure

(The generalization of states with pairing, e.g., Pfaffian state will be HyperPfaffian wavefunctions)

Preview: what Hdet theory can do

- Accurate microscopic variational wavefunction

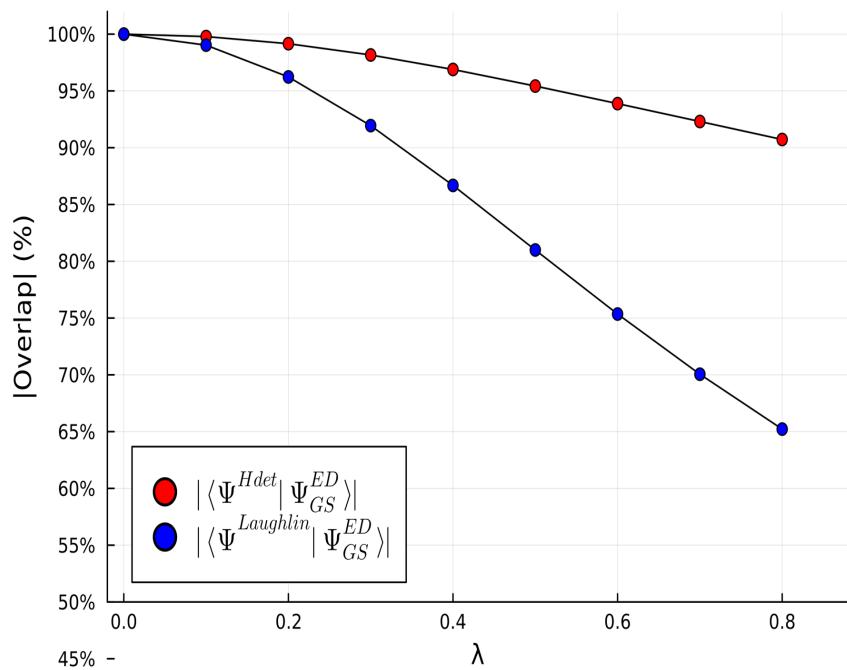
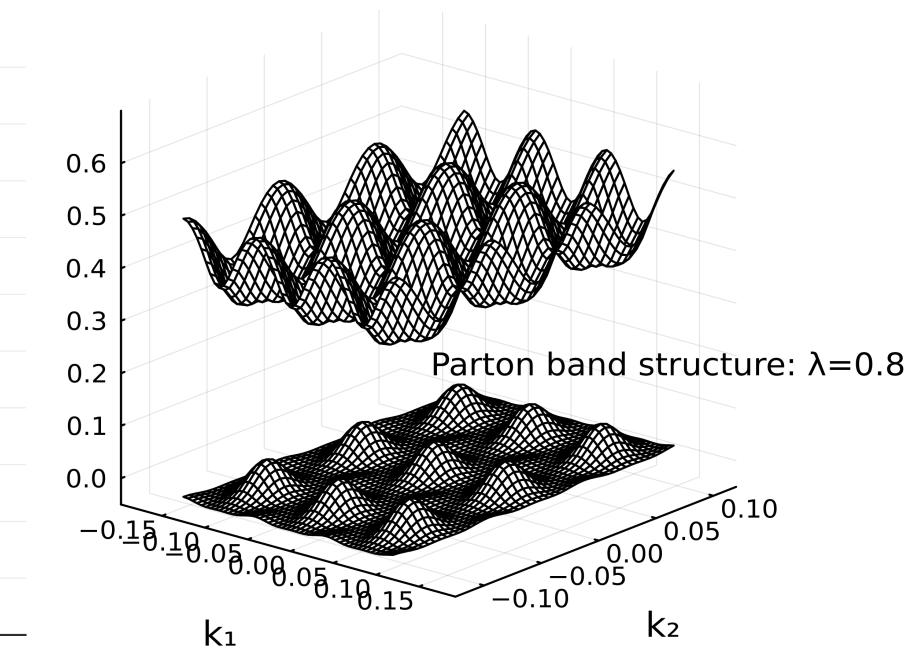
0th-order-optimized Hdet already performs well



Preview: what Hdet theory can do

- Accurate microscopic variational wavefunction
- Direct access to the fractionalized d.o.f. (e.g., composite fermion band structure)

0th-order-optimized Hdet already performs well



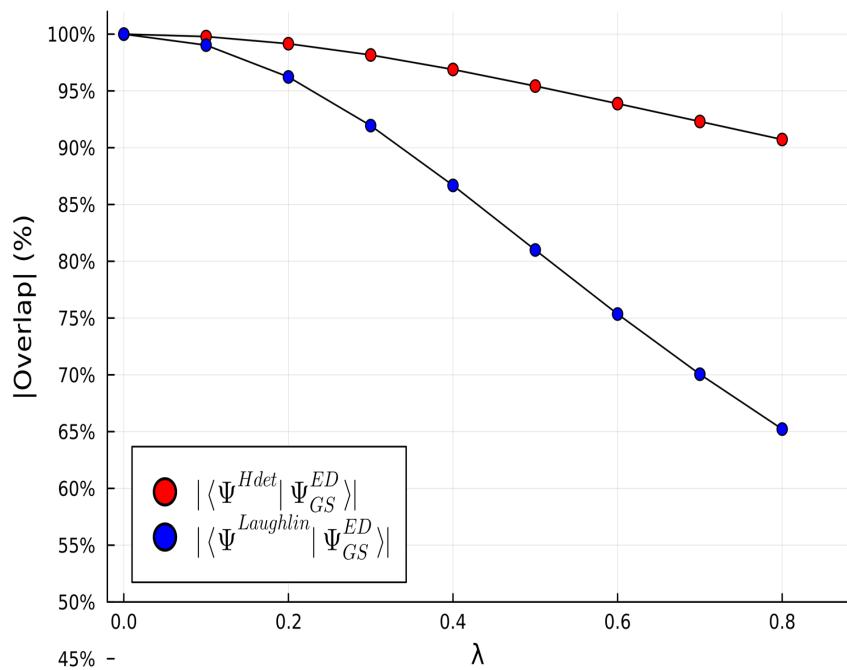
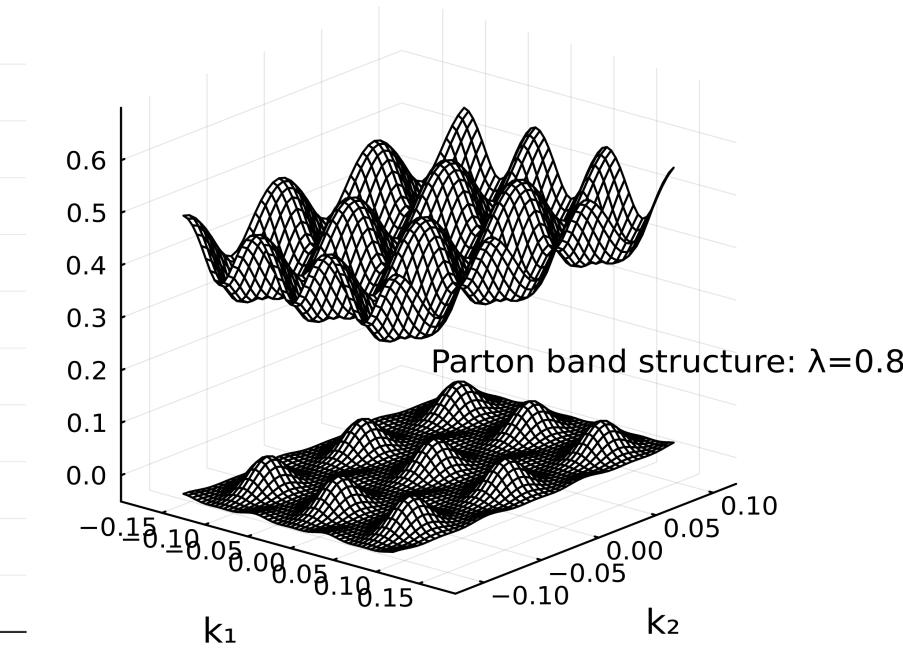
Composite fermion = parton

$$e \sim f^{(1)} \cdot f^{(2)} \cdot f^{(3)}$$

Preview: what Hdet theory can do

- Accurate microscopic variational wavefunction
- Direct access to the fractionalized d.o.f. (e.g., composite fermion band structure)
- Applicable in the general context of correlated electron systems (including QSL)

0th-order-optimized Hdet already performs well



Composite fermion = parton

$$e \sim f^{(1)} \cdot f^{(2)} \cdot f^{(3)}$$

Hdet: Mathematical definition

$$\det(A_{ij}) \equiv \sum_{p \in S_N} (-1)^p A_{1p(1)} \cdot A_{2p(2)} \cdots A_{Np(N)}$$

$$\text{Hdet}(T_{ijk}) \equiv \sum_{P,Q \in S_N} (-1)^P \cdot (-1)^Q \cdot T_{1P(1)Q(1)} T_{2P(2)Q(2)} \cdots T_{NP(N)Q(N)}$$

$$\text{Hdet}(T_{ijkl}) \equiv \sum_{P,Q,R \in S_N} (-1)^P (-1)^Q (-1)^R T_{1P(1)Q(1)R(1)} \cdot T_{2P(2)Q(2)R(2)} \cdots T_{NP(N)Q(N)R(N)}$$

Hdet: as a many-body wavefunction

- Slater-determinant as a many-body wavefunction

$$A_{ij} = \langle \psi_i^{(e)} | \phi_j^{(e)} \rangle$$

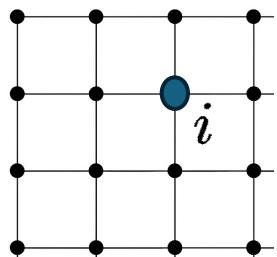
Hdet: as a many-body wavefunction

- Slater-determinant as a many-body wavefunction

$$A_{ij} = \langle \psi_i^{(e)} | \phi_j^{(e)} \rangle$$

$i = 1, 2, \dots \dim \mathcal{H}_e$

Electron's single-particle orbitals



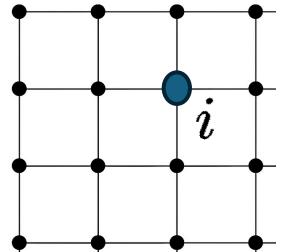
Hdet: as a many-body wavefunction

- Slater-determinant as a many-body wavefunction

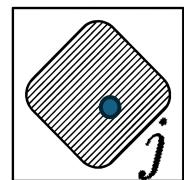
$$A_{ij} = \langle \psi_i^{(e)} | \phi_j^{(e)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$ $j = 1, 2, \dots, N_e$

Electron's single-particle orbitals



Filled states



Hdet: as a many-body wavefunction

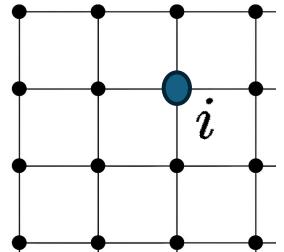
- Slater-determinant as a many-body wavefunction

$$A_{ij} = \langle \psi_i^{(e)} | \phi_j^{(e)} \rangle$$

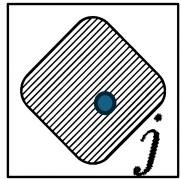
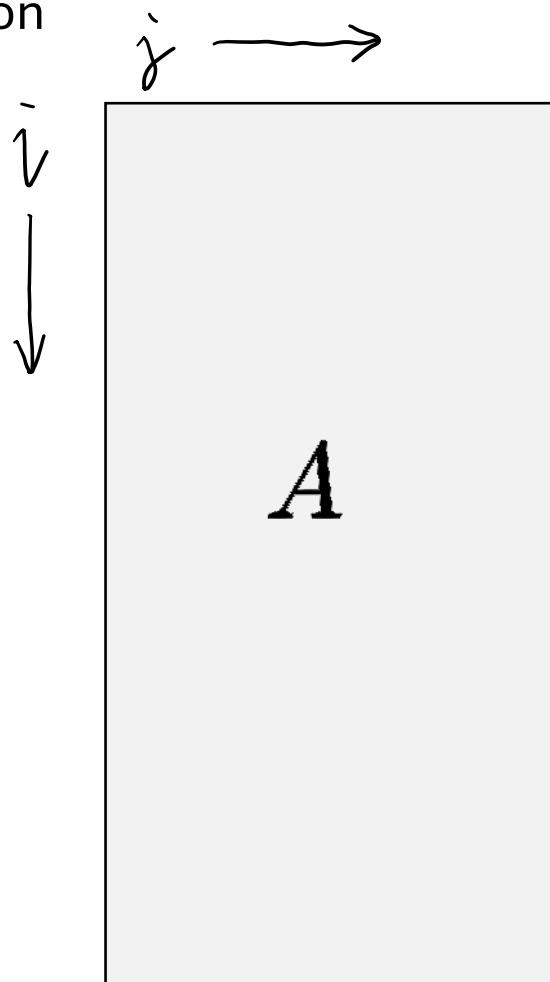
$i = 1, 2, \dots, \dim \mathcal{H}_e$

$j = 1, 2, \dots, N_e$

Electron's single-particle orbitals



Filled states



Hdet: as a many-body wavefunction

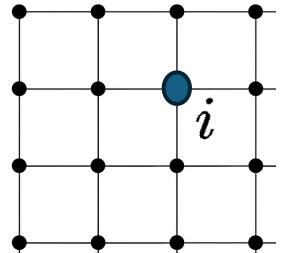
- Slater-determinant as a many-body wavefunction

$$A_{ij} = \langle \psi_i^{(e)} | \phi_j^{(e)} \rangle$$

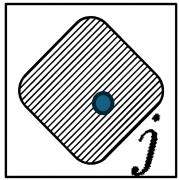
$i = 1, 2, \dots, \dim \mathcal{H}_e$

$j = 1, 2, \dots, N_e$

Electron's single-particle orbitals



Filled states



$$\langle \psi_{i_1}^{(e)} \psi_{i_2}^{(e)} \dots \psi_{i_{N_e}}^{(e)} | \Psi \rangle \equiv \det (A_{\text{sub}})$$



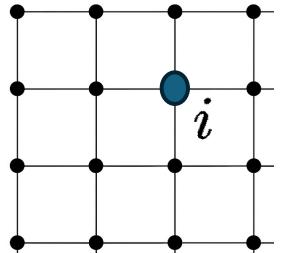
Hdet: as a many-body wavefunction

- Slater-determinant as a many-body wavefunction

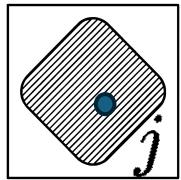
$$A_{ij} = \langle \psi_i^{(e)} | \phi_j^{(e)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$

Electron's single-particle orbitals

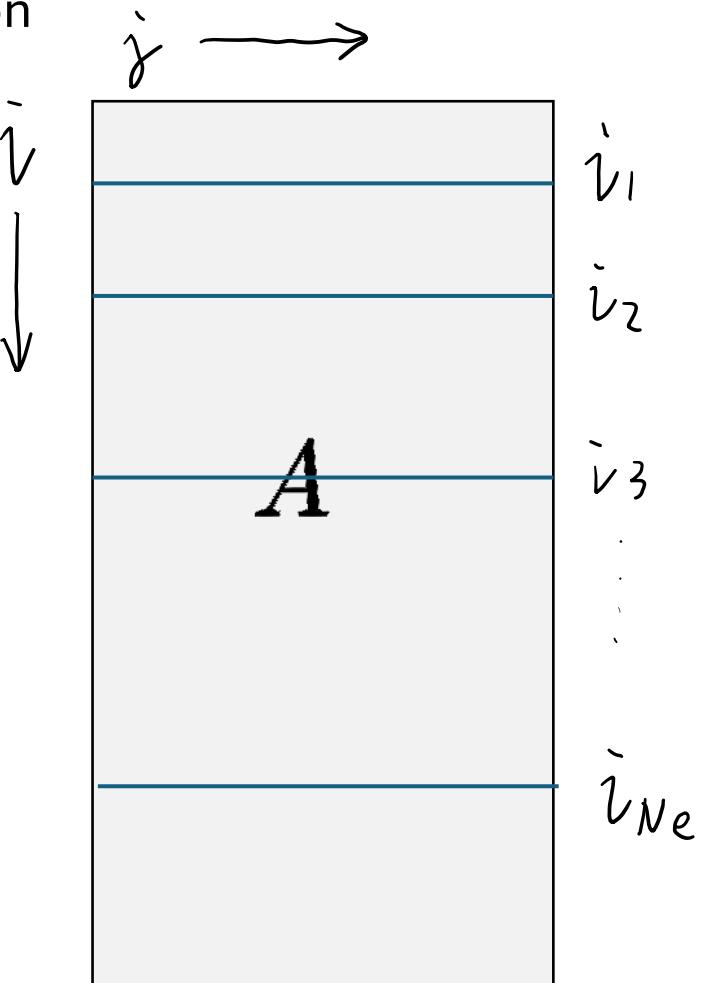


Filled states



$j = 1, 2, \dots, N_e$

$$\langle \psi_{i_1}^{(e)} \psi_{i_2}^{(e)} \dots \psi_{i_{N_e}}^{(e)} | \Psi \rangle \equiv \det (A_{\text{sub}})$$



Exponential-size many-body state captured by polynomial-size matrix

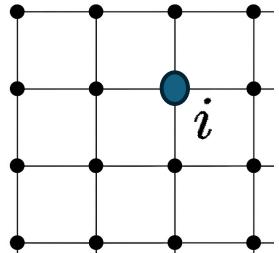
Hdet: as a many-body wavefunction

- Slater-determinant as a many-body wavefunction

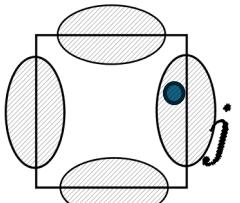
$$A_{ij} = \langle \psi_i^{(e)} | \phi_j^{(e)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$

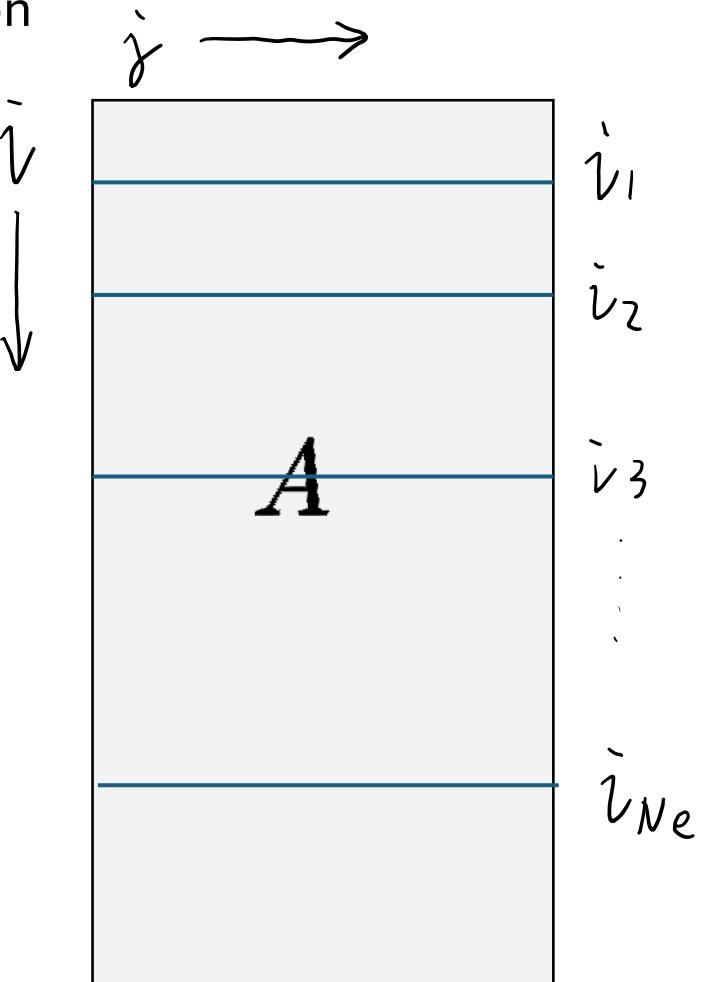
Electron's single-particle orbitals



Filled states



$$\langle \psi_{i_1}^{(e)} \psi_{i_2}^{(e)} \dots \psi_{i_{N_e}}^{(e)} | \Psi \rangle \equiv \det (A_{\text{sub}})$$



Exponential-size many-body state captured by polynomial-size matrix

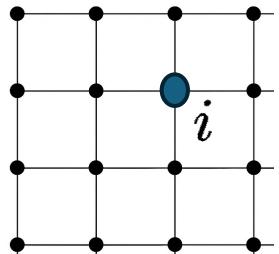
Hdet: as a many-body wavefunction

- Slater-determinant as a many-body wavefunction

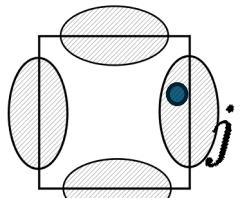
$$A_{ij} = \langle \psi_i^{(e)} | \phi_j^{(e)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$

Electron's single-particle orbitals

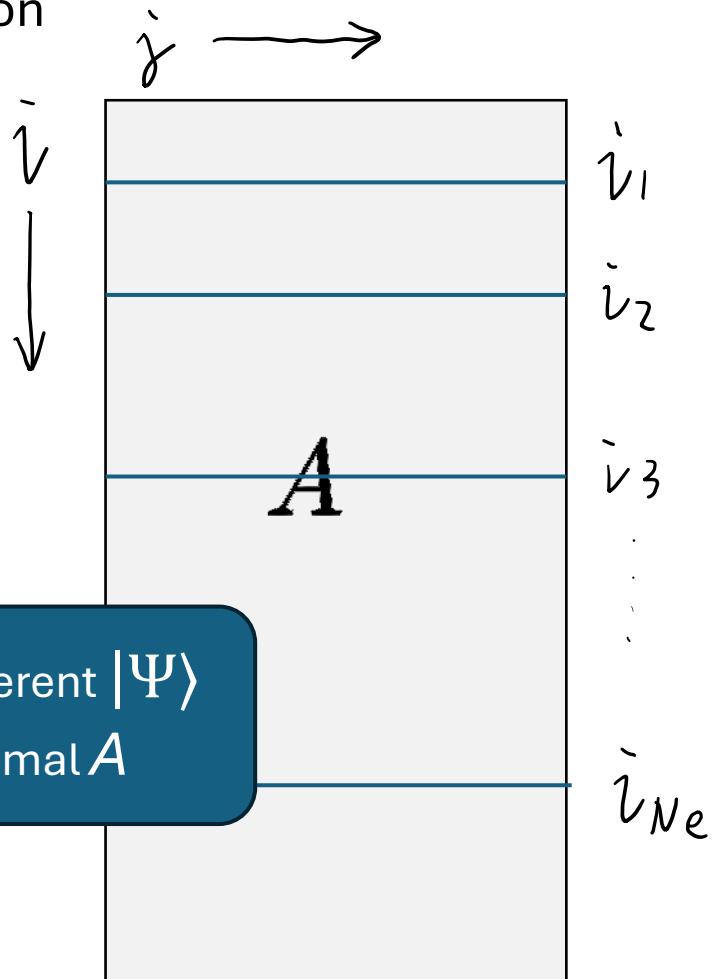


Filled states



$$\langle \psi_{i_1}^{(e)} \psi_{i_2}^{(e)} \dots \psi_{i_{N_e}}^{(e)} | \Psi \rangle \equiv \det (A_{\text{sub}})$$

Different $A \rightarrow$ Different $|\Psi\rangle$
Ground state: optimal A



Exponential-size many-body state captured by polynomial-size matrix

Hdet: as a many-body wavefunction

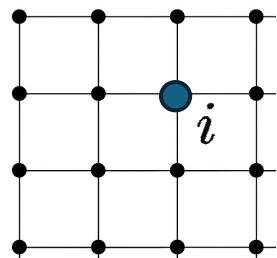
$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

Hdet: as a many-body wavefunction

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

$$i = 1, 2, \dots \dim \mathcal{H}_e$$

(Bosonic) Electron orbitals



Hdet: as a many-body wavefunction

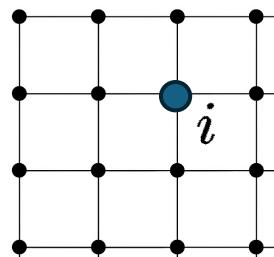
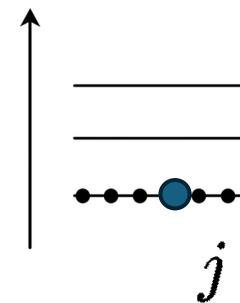
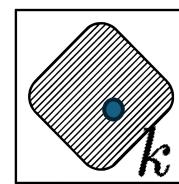
$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$

$j = 1, 2, \dots, N_e$

$k = 1, 2, \dots, N_e$

(Bosonic) Electron orbitals **Filled** parton-(1) states **Filled** parton-(2) states

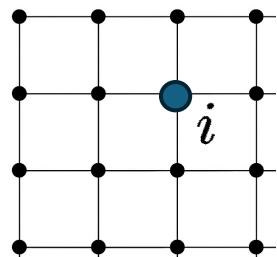
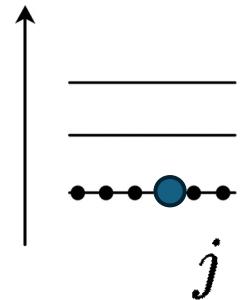
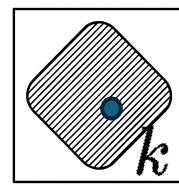
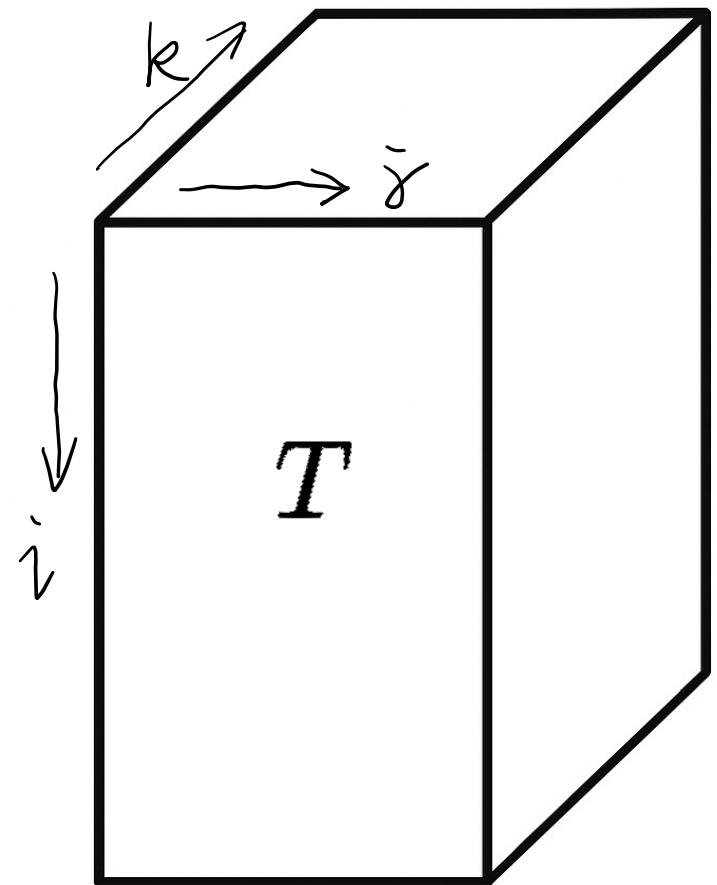


Hdet: as a many-body wavefunction

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$ $j = 1, 2, \dots, N_e$ $k = 1, 2, \dots, N_e$

(Bosonic) Electron orbitals Filled parton-(1) states Filled parton-(2) states

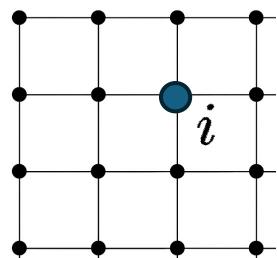
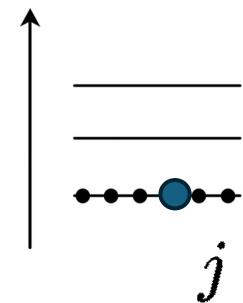
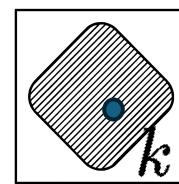


Hdet: as a many-body wavefunction

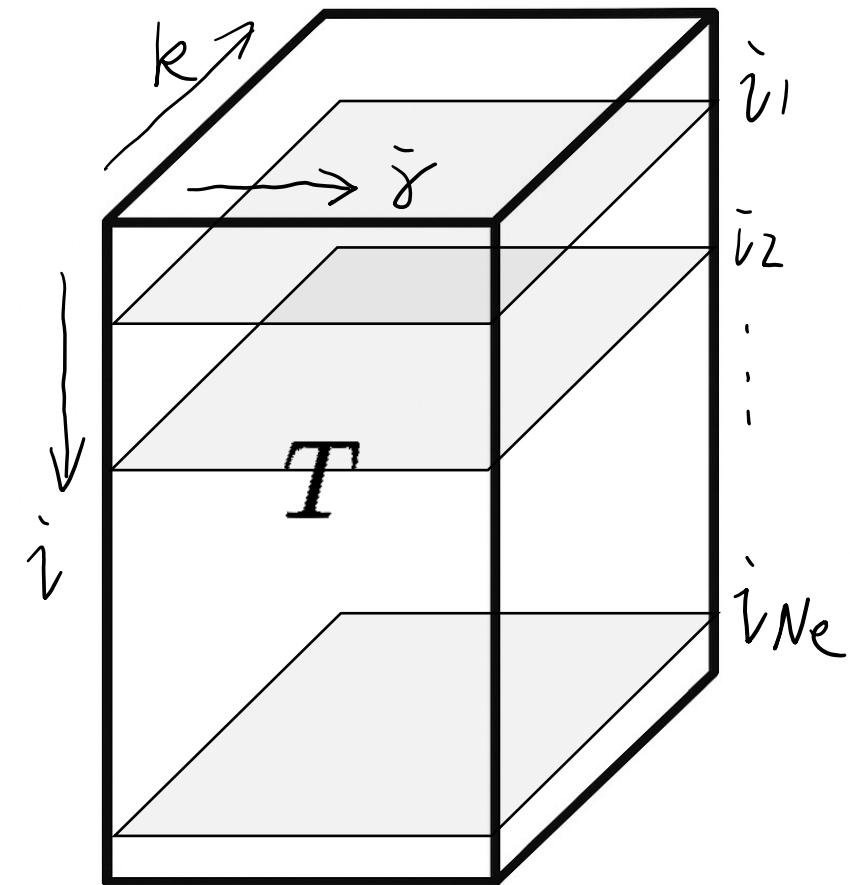
$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$ $j = 1, 2, \dots, N_e$ $k = 1, 2, \dots, N_e$

(Bosonic) Electron orbitals Filled parton-(1) states Filled parton-(2) states



$$\langle \psi_{i_1}^{(e)} \psi_{i_2}^{(e)} \dots \psi_{i_{N_e}}^{(e)} | \Psi \rangle \equiv \text{Hdet} (T_{\text{sub}})$$

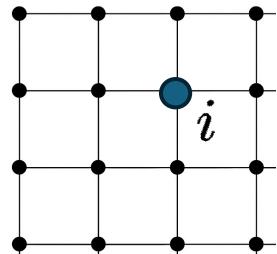
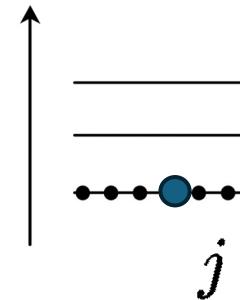
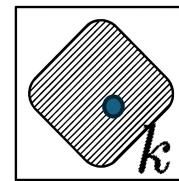


Hdet: as a many-body wavefunction

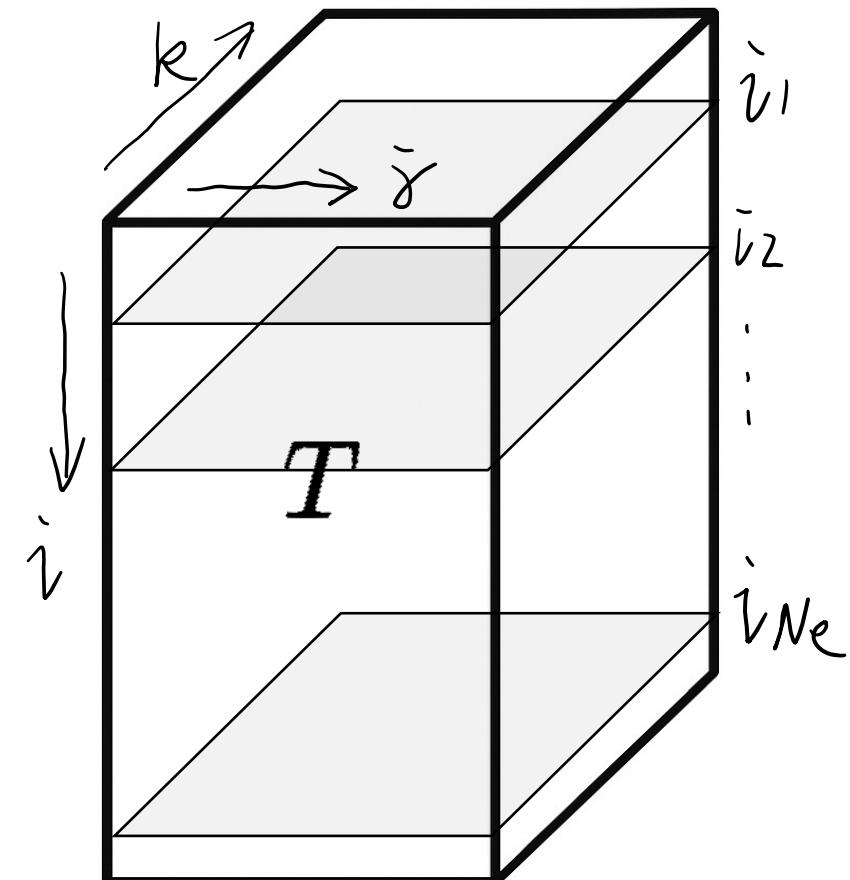
$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$ $j = 1, 2, \dots, N_e$ $k = 1, 2, \dots, N_e$

(Bosonic) Electron orbitals Filled parton-(1) states Filled parton-(2) states



$$\langle \psi_{i_1}^{(e)} \psi_{i_2}^{(e)} \dots \psi_{i_{N_e}}^{(e)} | \Psi \rangle \equiv \text{Hdet}(T_{\text{sub}})$$

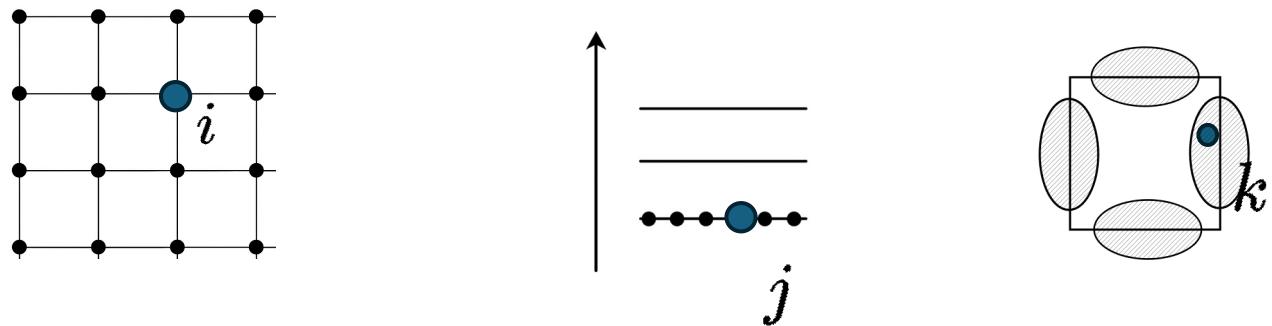


Exponential-size many-body state captured by polynomial-size tensor

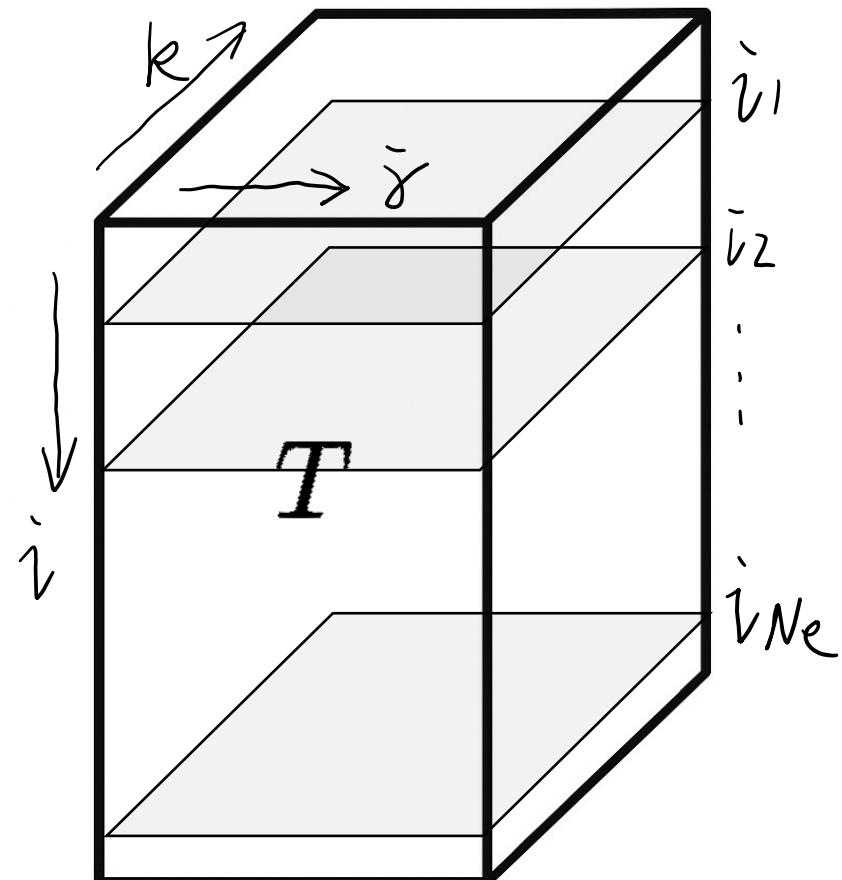
Hdet: as a many-body wavefunction

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$ $j = 1, 2, \dots, N_e$ $k = 1, 2, \dots, N_e$
 (Bosonic) Electron orbitals Filled parton-(1) states Filled parton-(2) states



$$\langle \psi_{i_1}^{(e)} \psi_{i_2}^{(e)} \dots \psi_{i_{N_e}}^{(e)} | \Psi \rangle \equiv \text{Hdet} (T_{\text{sub}})$$

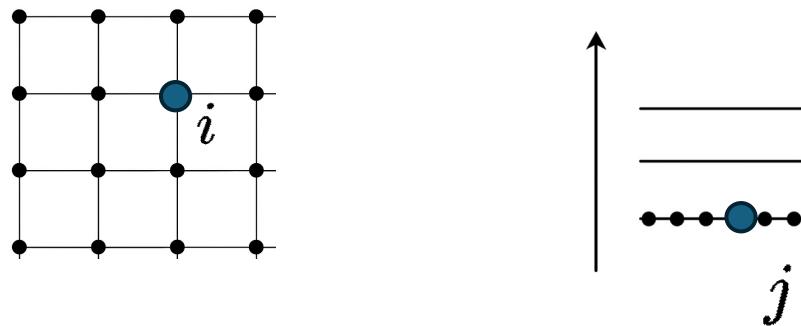
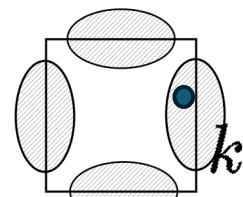


Exponential-size many-body state captured by polynomial-size tensor

Hdet: as a many-body wavefunction

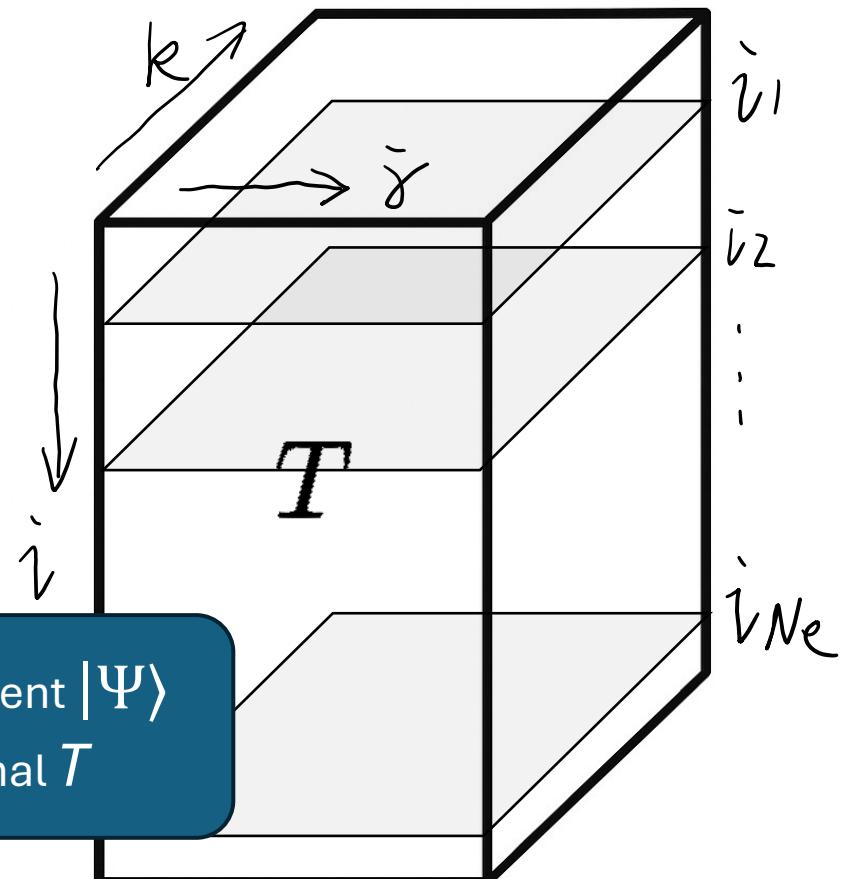
$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

$i = 1, 2, \dots, \dim \mathcal{H}_e$ $j = 1, 2, \dots, N_e$ $k = 1, 2, \dots, N_e$
 (Bosonic) Electron orbitals Filled parton-(1) states Filled parton-(2) states



Different $T \rightarrow$ Different $|\Psi\rangle$
 Ground state: optimal T

$$\langle \psi_{i_1}^{(e)} \psi_{i_2}^{(e)} \dots \psi_{i_{N_e}}^{(e)} | \Psi \rangle \equiv \text{Hdet}(T_{\text{sub}})$$



Exponential-size many-body state captured by polynomial-size tensor

Hdet and the product of determinants

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

Hdet and the product of determinants

- A **very special** case:

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

If $T_{ijk} = A_{ij} \cdot B_{ik}$, then $\text{Hdet}(T) = \det(A) \cdot \det(B)$

Hdet and the product of determinants

- A **very special** case:

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

If $T_{ijk} = A_{ij} \cdot B_{ik}$, then $\text{Hdet}(T) = \det(A) \cdot \det(B)$

$$T_{jk}^{(i)} \underset{\text{SVD}}{=} A_j^{(i)} \cdot \begin{matrix} 1 \times 1 \\ B_k^{(i)} \end{matrix}$$

Hdet and the product of determinants

- A **very special** case:

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

If $T_{ijk} = A_{ij} \cdot B_{ik}$, then $\text{Hdet}(T) = \det(A) \cdot \det(B)$

$$\boxed{T_{jk}^{(i)}} \underset{\text{SVD}}{=} \boxed{A_j^{(i)}} \cdot \boxed{1 \times 1} \cdot \boxed{B_k^{(i)}}$$

Recall: Laughlin wavefunction is indeed a product of Slater determinants

$$\prod_{i < j} (z_i - z_j)^2 e^{-\sum_i |z_i|^2 / 4l_B^2}$$

Hdet and the product of determinants

- A **very special** case:

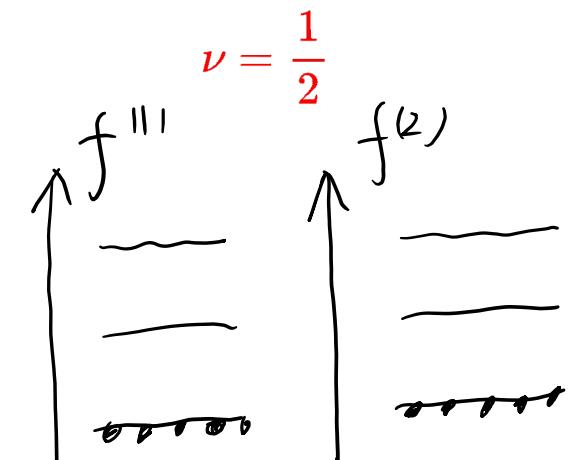
$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

If $T_{ijk} = A_{ij} \cdot B_{ik}$, then $\text{Hdet}(T) = \det(A) \cdot \det(B)$

$$T_{jk}^{(i)} = \begin{matrix} \text{SVD} \\ = \end{matrix} \begin{matrix} A_j^{(i)} \\ 1 \times 1 \\ B_k^{(i)} \end{matrix}$$

Recall: Laughlin wavefunction is indeed a product of Slater determinants

$$\prod_{i < j} (z_i - z_j)^2 e^{-\sum_i |z_i|^2 / 4l_B^2}$$



Hdet and the product of determinants

- A **very special** case:

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

If $T_{ijk} = A_{ij} \cdot B_{ik}$, then $\text{Hdet}(T) = \det(A) \cdot \det(B)$

$$T_{jk}^{(i)} = \begin{matrix} \text{SVD} \\ = \end{matrix} \begin{matrix} A_j^{(i)} \\ 1 \times 1 \\ B_k^{(i)} \end{matrix}$$

Recall: Laughlin wavefunction is indeed a product of Slater determinants

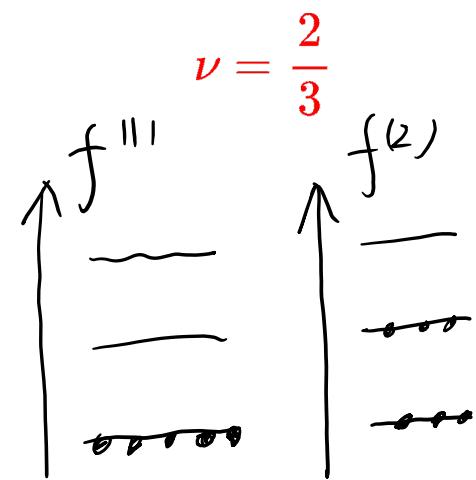
In QSL context, Abrikosov fermion construction also leads to QSL states that are products of determinants: $\vec{S} = f_\alpha^+ \frac{\vec{\sigma}_{\alpha\beta}}{2} f_\beta$

Hdet and the product of determinants

$$T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

$\text{det}(B)$

How about the next one in the Jain's sequence in FQH?

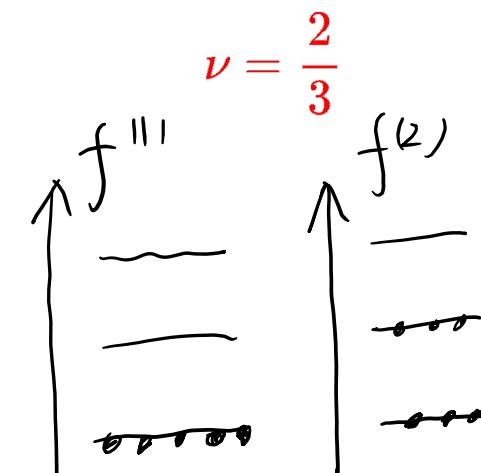


Hdet and the product of determinants

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

- For $\nu = \frac{2}{3}$ Bosonic FQH state, the best electron orbital- i you can find gives:

$$T_{jk}^{(i)} = \text{SVD} = A_j^{(i)} \text{ 3x3 } B_k^{(i)}$$



Hdet and the product of determinants

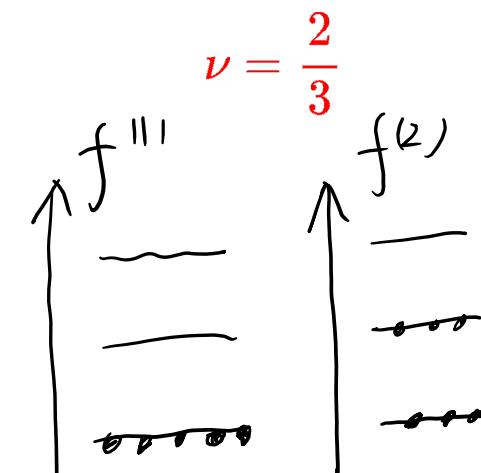
$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

- For $\nu = \frac{2}{3}$ Bosonic FQH state, the best electron orbital- i you can find gives:

$$T_{jk}^{(i)} = A_j^{(i)} B_k^{(i)}$$

SVD

$$\text{Hdet}(T) = \sum_{\alpha=1}^{3^{N_e}} \det(A_\alpha) \det(B_\alpha)$$



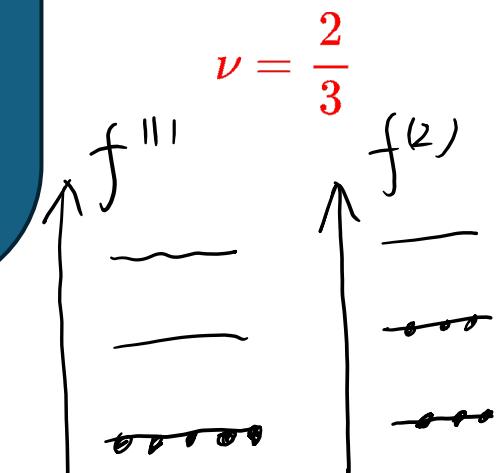
Hdet and the product of determinants

$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

find gives:

Generally computing Hdet is NP-hard!

$$\text{Hdet}(T) = \sum_{\alpha=1}^{3^{N_e}} \det(A_\alpha) \det(B_\alpha)$$



Hdet and the product of determinants

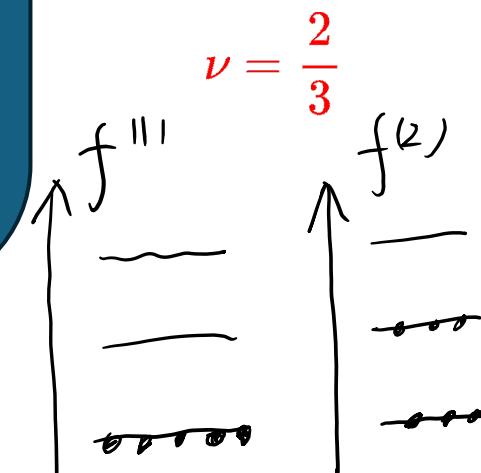
$$e \sim f^{(1)} \cdot f^{(2)} \quad T_{ijk} = \langle \psi_i^{(e)} | \phi_j^{(1)} \rangle | \phi_k^{(2)} \rangle$$

find gives:

Generally computing Hdet is NP-hard!

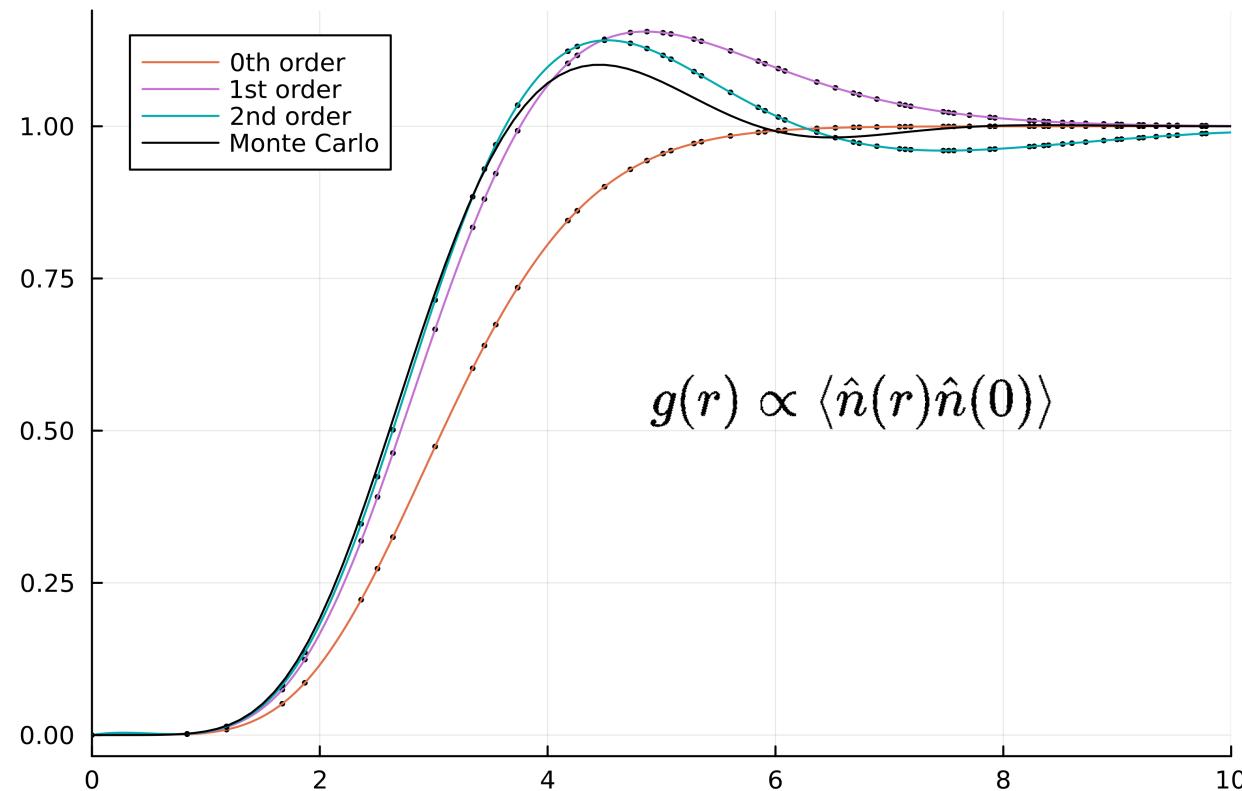
But we have developed ways to simulate it, with
approximation improvable order-by-order.
(Projective-expansion)

$$\text{Hdet}(T) = \sum_{\alpha=1}^{3^{N_e}} \det(A_\alpha) \det(B_\alpha)$$



Projective expansion: Benchmark Results

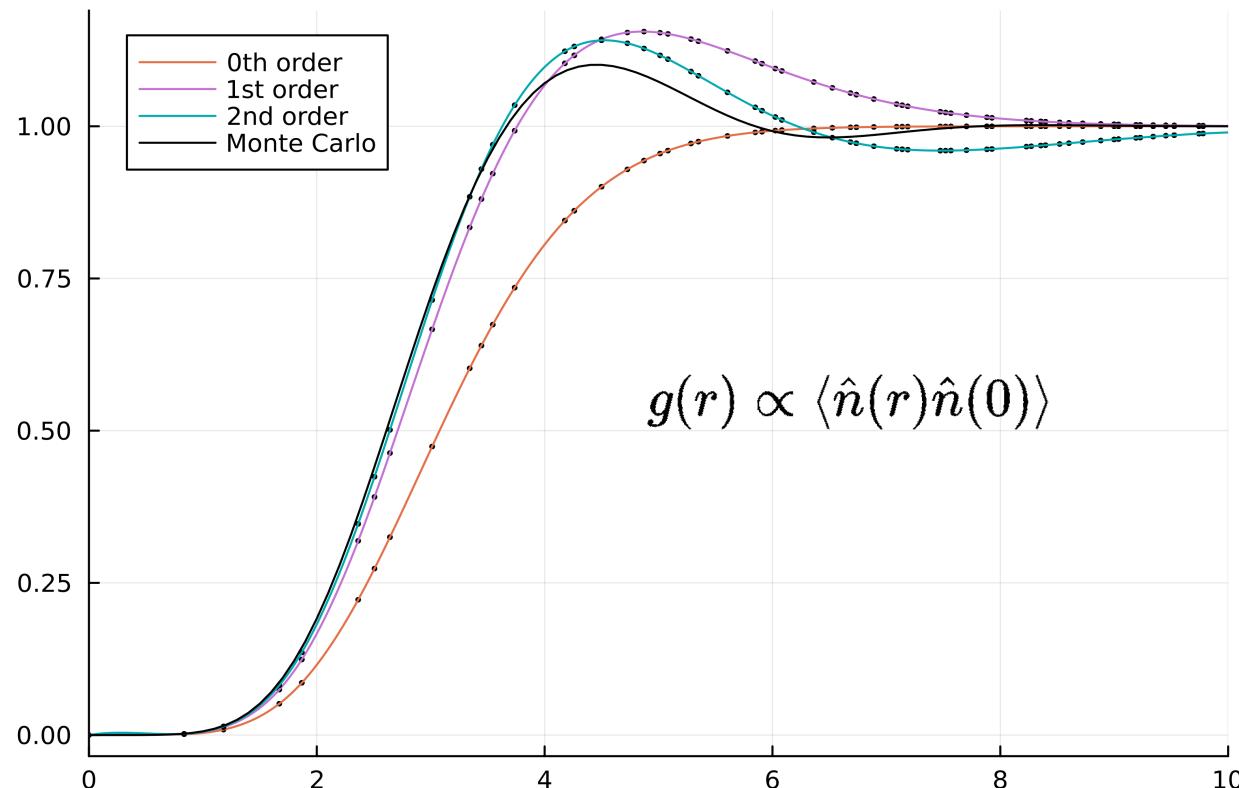
- We develop a technique to simulate Hdet wavefunctions, with approximation improvable order-by-order.



The pair-correlation function for 1/3 Laughlin state

Projective expansion: Benchmark Results

- We develop a technique to simulate Hdet wavefunctions, with **approximation improvable order-by-order**.

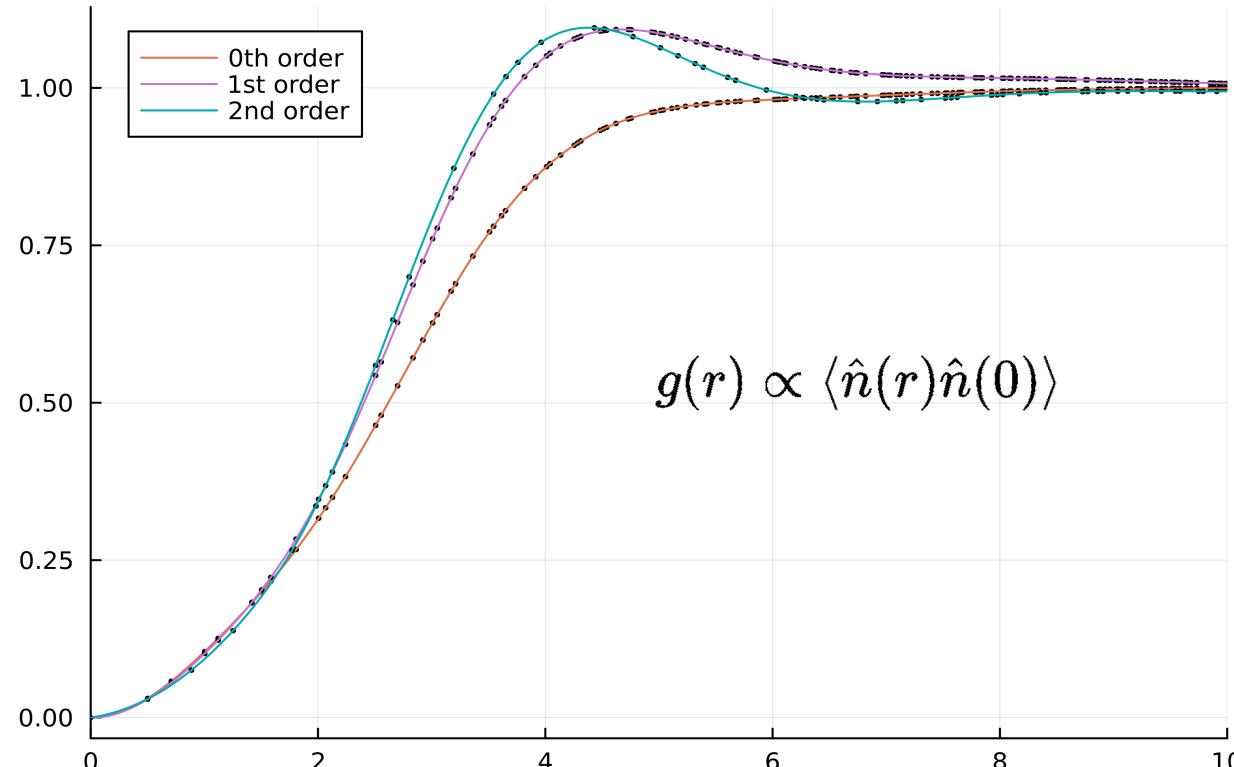


The pair-correlation function for **1/3** Laughlin state

Similar to ε -expansion in QFT, although there is no small parameter in the problem, one can calculate properties of Hdet as a power series.

Projective expansion: Benchmark Results

- We develop a technique to simulate Hdet wavefunctions, with **approximation improvable order-by-order**.

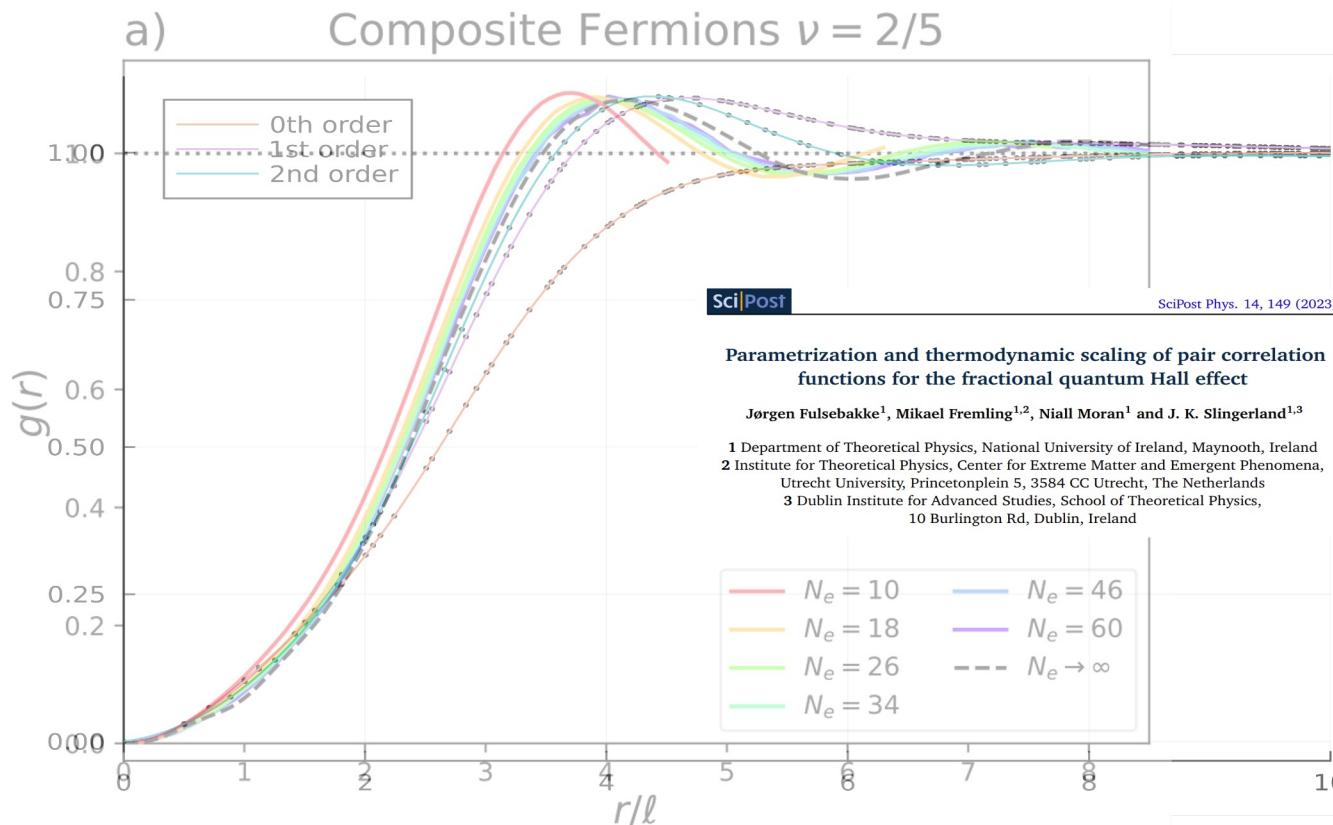


The pair-correlation function for **2/5** composite fermion state

Similar to ε -expansion in QFT, although there is no small parameter in the problem, one can calculate properties of Hdet as a power series.

Projective expansion: Benchmark Results

- We develop a technique to simulate Hdet wavefunctions, with **approximation improvable order-by-order**.



Similar to ε -expansion in QFT, although there is no small parameter in the problem, one can calculate properties of Hdet as a power series.

The pair-correlation function for **2/5** composite fermion state

Projective expansion: Benchmark Results

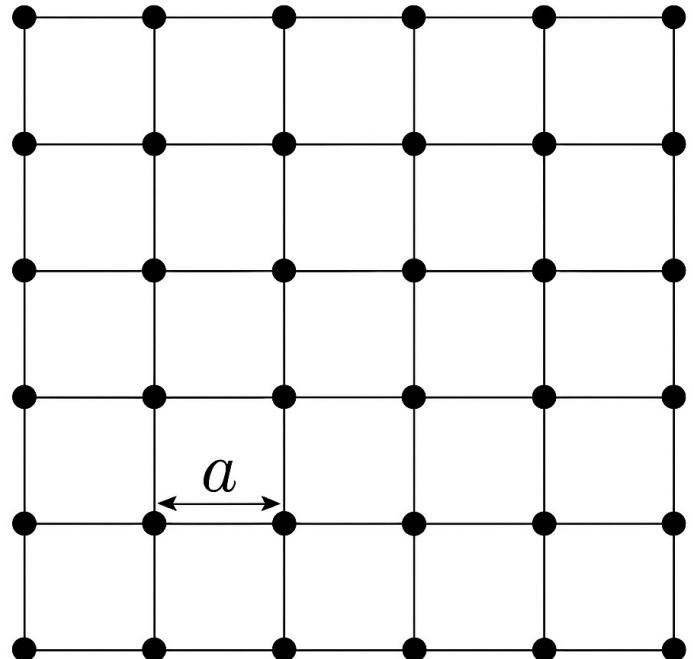
- Square lattice periodic potential in lowest Landau level

$$H = \lambda \cdot H_K + V$$

Projective expansion: Benchmark Results

- Square lattice periodic potential in lowest Landau level

$$H = \lambda \cdot H_K + V$$



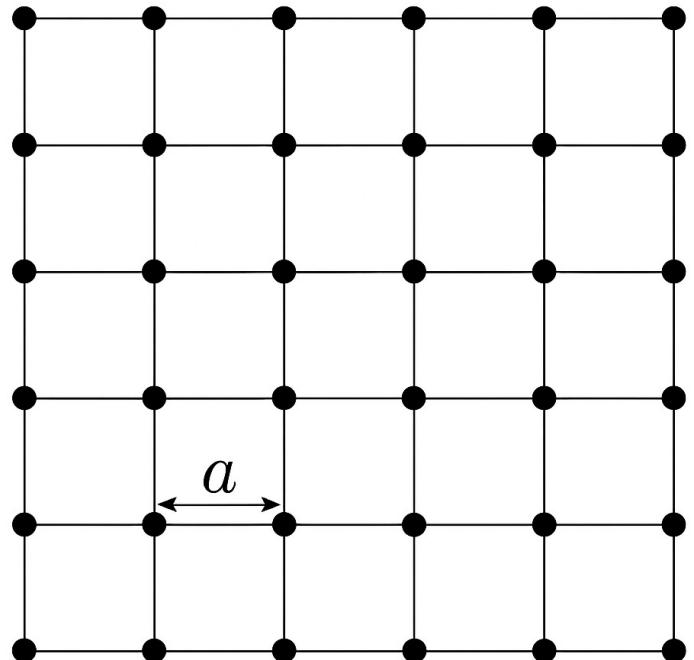
$$H_K = P_{LLL} \sum_{\vec{G}} e^{i\vec{G} \cdot \vec{r}} P_{LLL}$$

$$\vec{G} = \left(\pm \frac{2\pi}{a}, 0 \right), \left(0, \pm \frac{2\pi}{a} \right)$$

Projective expansion: Benchmark Results

- Square lattice periodic potential in lowest Landau level

$$H = \lambda \cdot H_K + V$$



$$H_K = P_{LLL} \sum_{\vec{G}} e^{i\vec{G} \cdot \vec{r}} P_{LLL}$$

$$\vec{G} = \left(\pm \frac{2\pi}{a}, 0 \right), \left(0, \pm \frac{2\pi}{a} \right)$$

Two Cases:

$$(1) \quad V = V_1 \sum_{i < j} \hat{P}_{ij}^{(m_{\text{rel}}=1)}$$

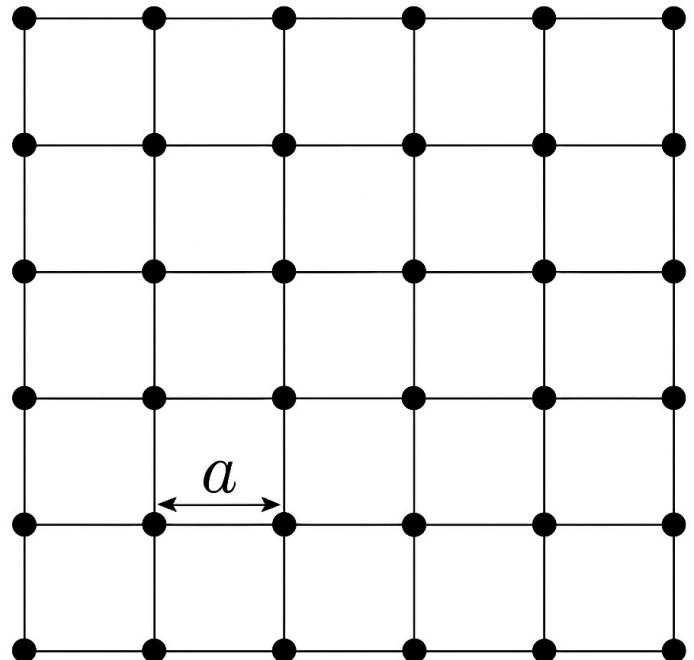
Haldane pseudopotential

$$(2) \quad V = V_{\text{coulomb}}$$

Projective expansion: Benchmark Results

- Square lattice periodic potential in lowest Landau level

$$H = \lambda \cdot H_K + V$$



$$H_K = P_{LLL} \sum_{\vec{G}} e^{i\vec{G} \cdot \vec{r}} P_{LLL}$$

$$\vec{G} = \left(\pm \frac{2\pi}{a}, 0 \right), \left(0, \pm \frac{2\pi}{a} \right)$$

Two Cases:

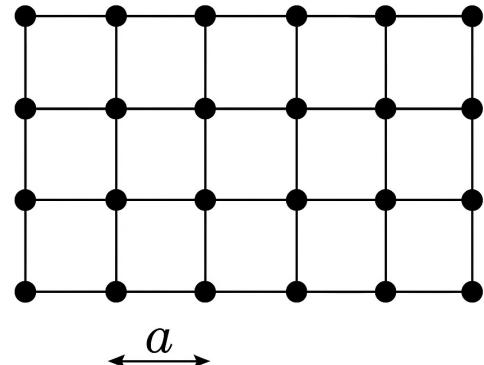
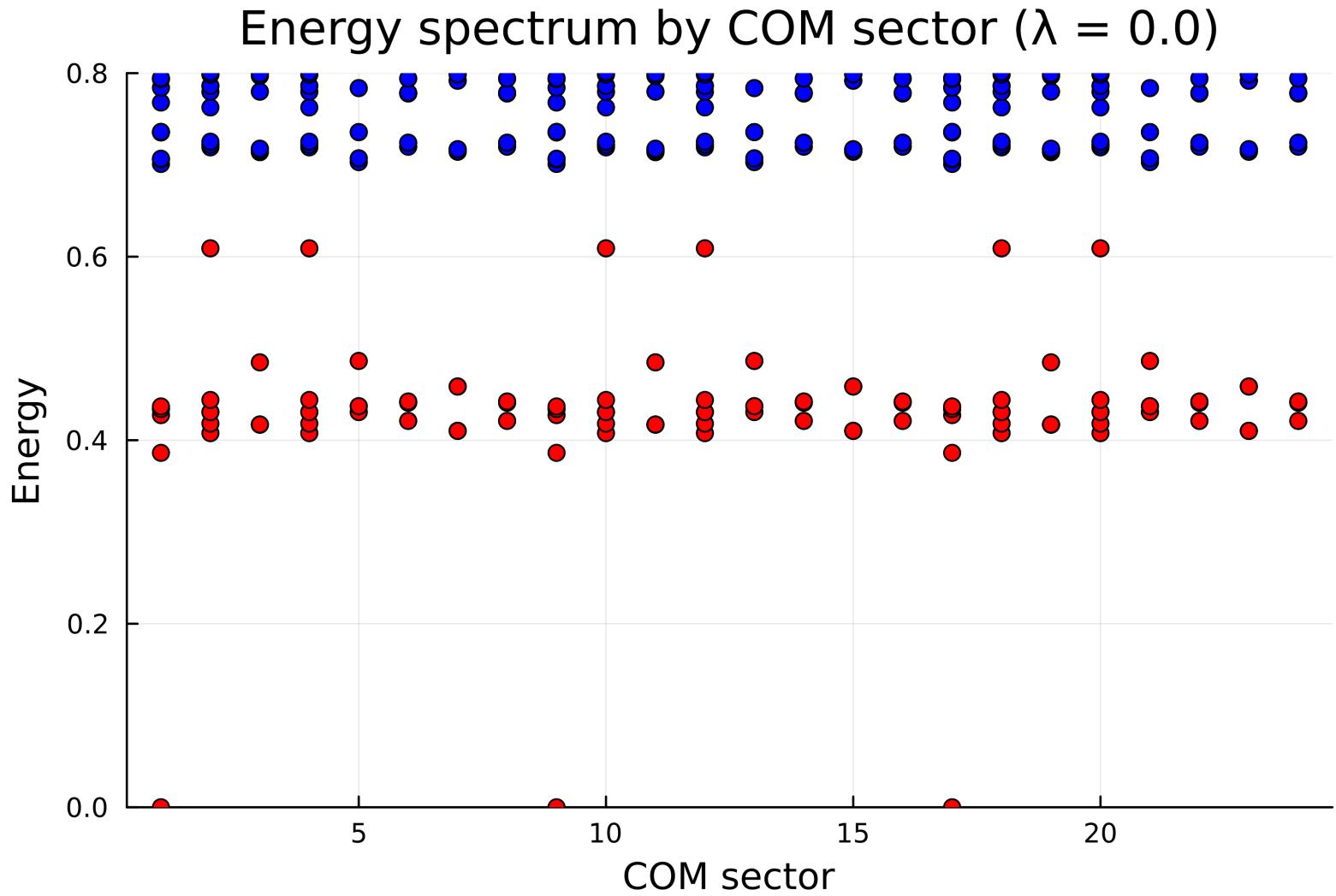
$$(1) \quad V = V_1 \sum_{i < j} \hat{P}_{ij}^{(m_{\text{rel}}=1)}$$

Haldane pseudopotential

$$(2) \quad V = V_{\text{coulomb}}$$

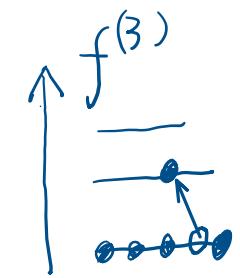
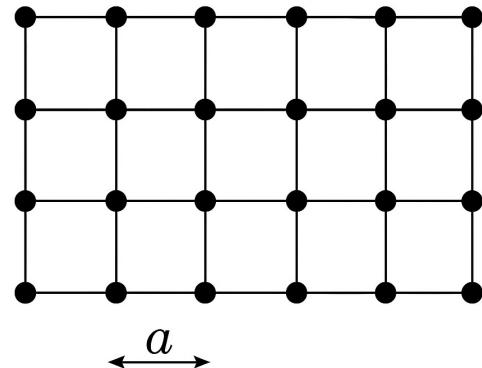
Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$



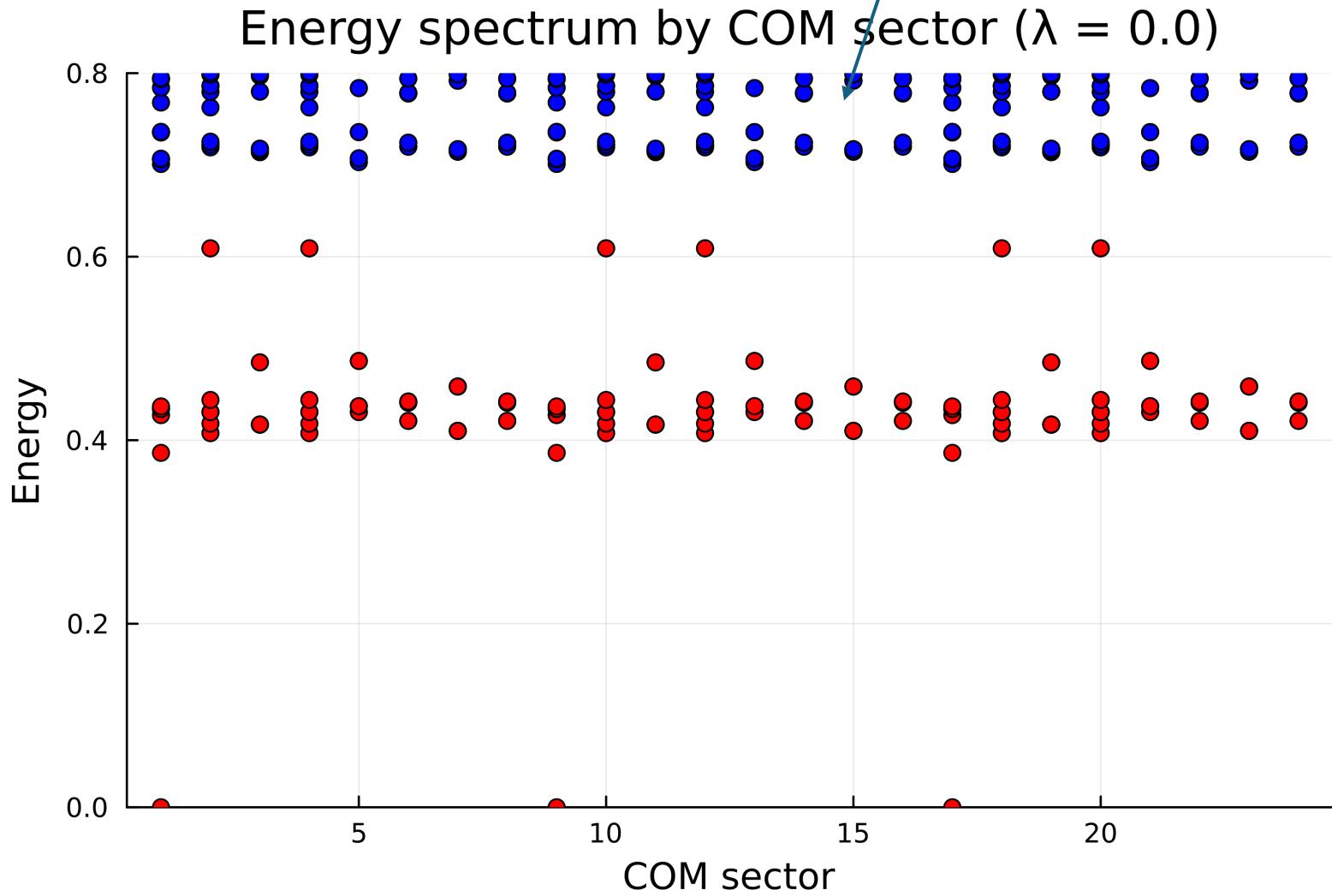
Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$



6x4 exact diagonalization

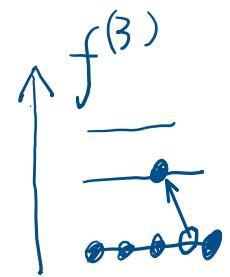
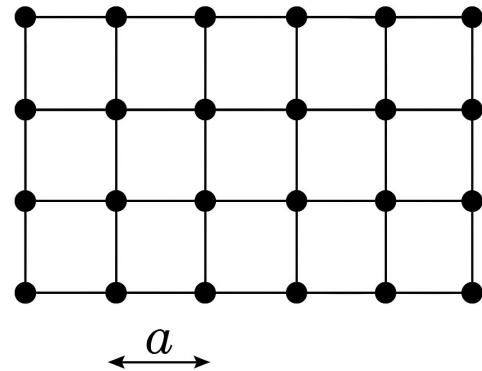
Blue: parton particle-hole continuum



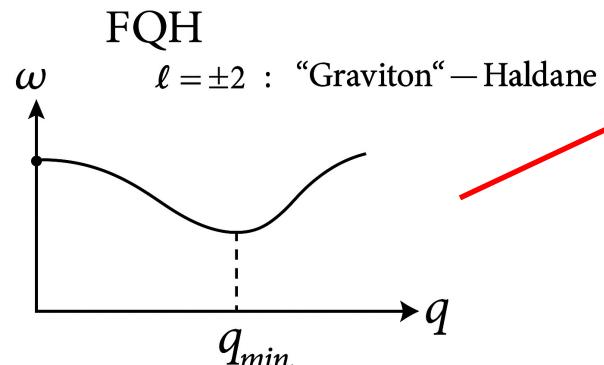
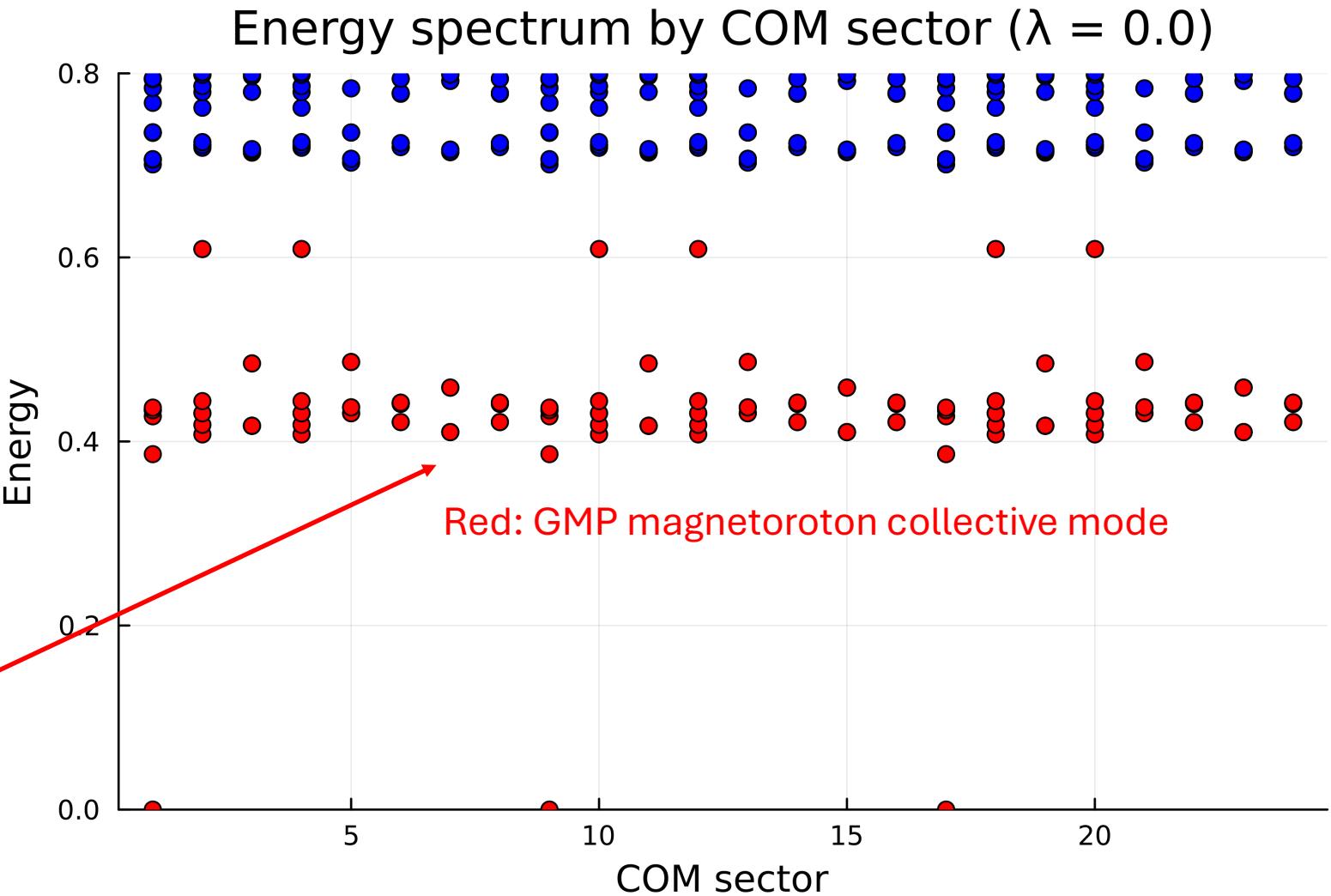
Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

Blue: parton particle-hole continuum

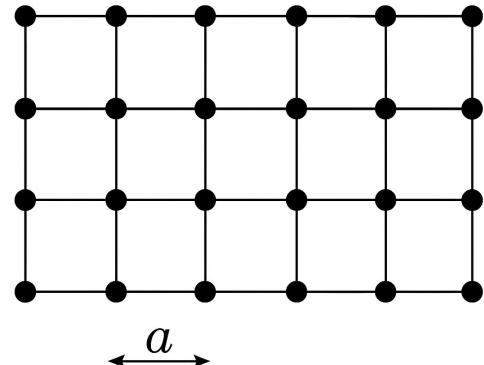
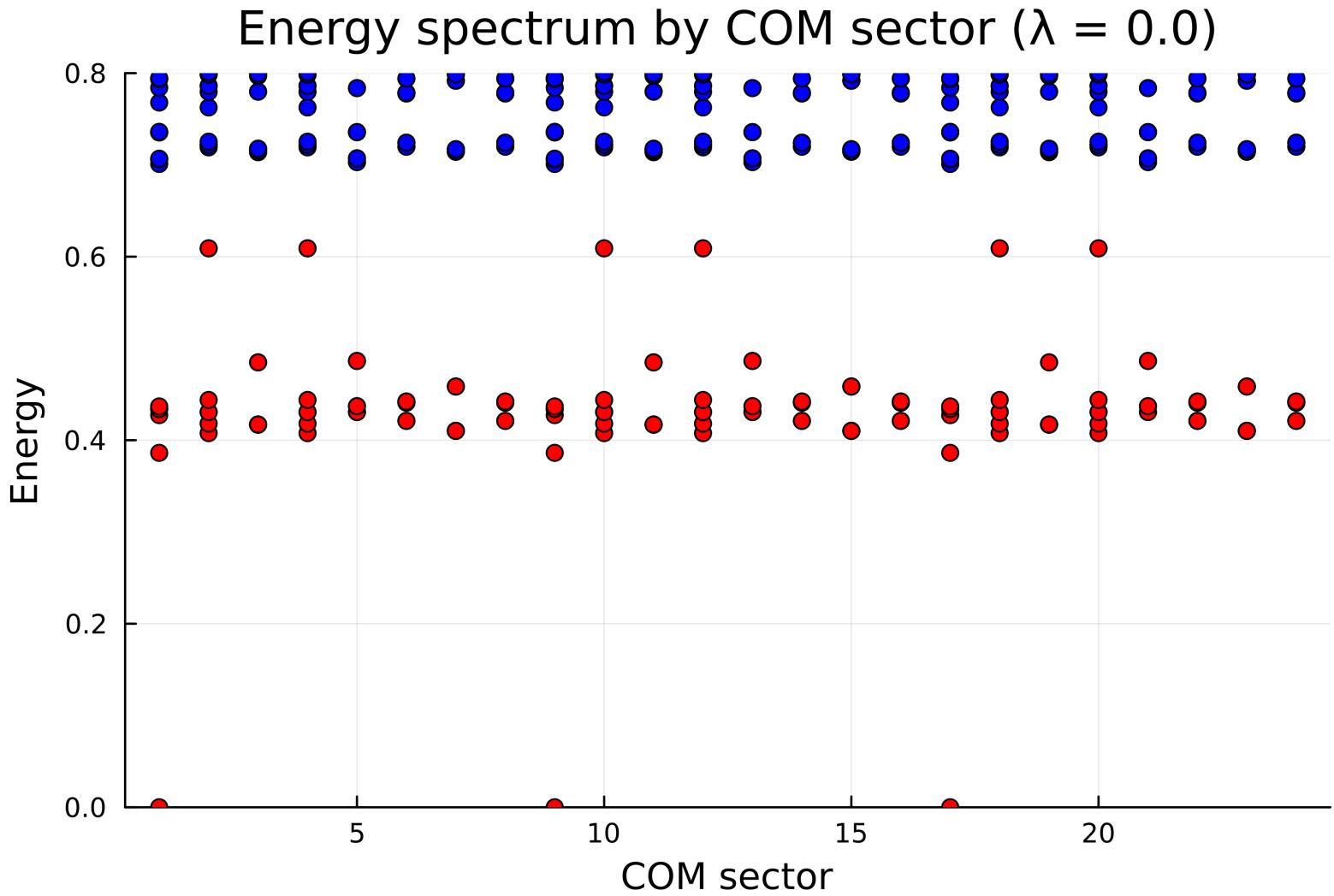


6x4 exact diagonalization



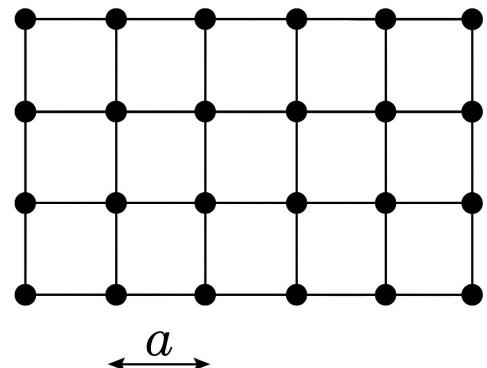
Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

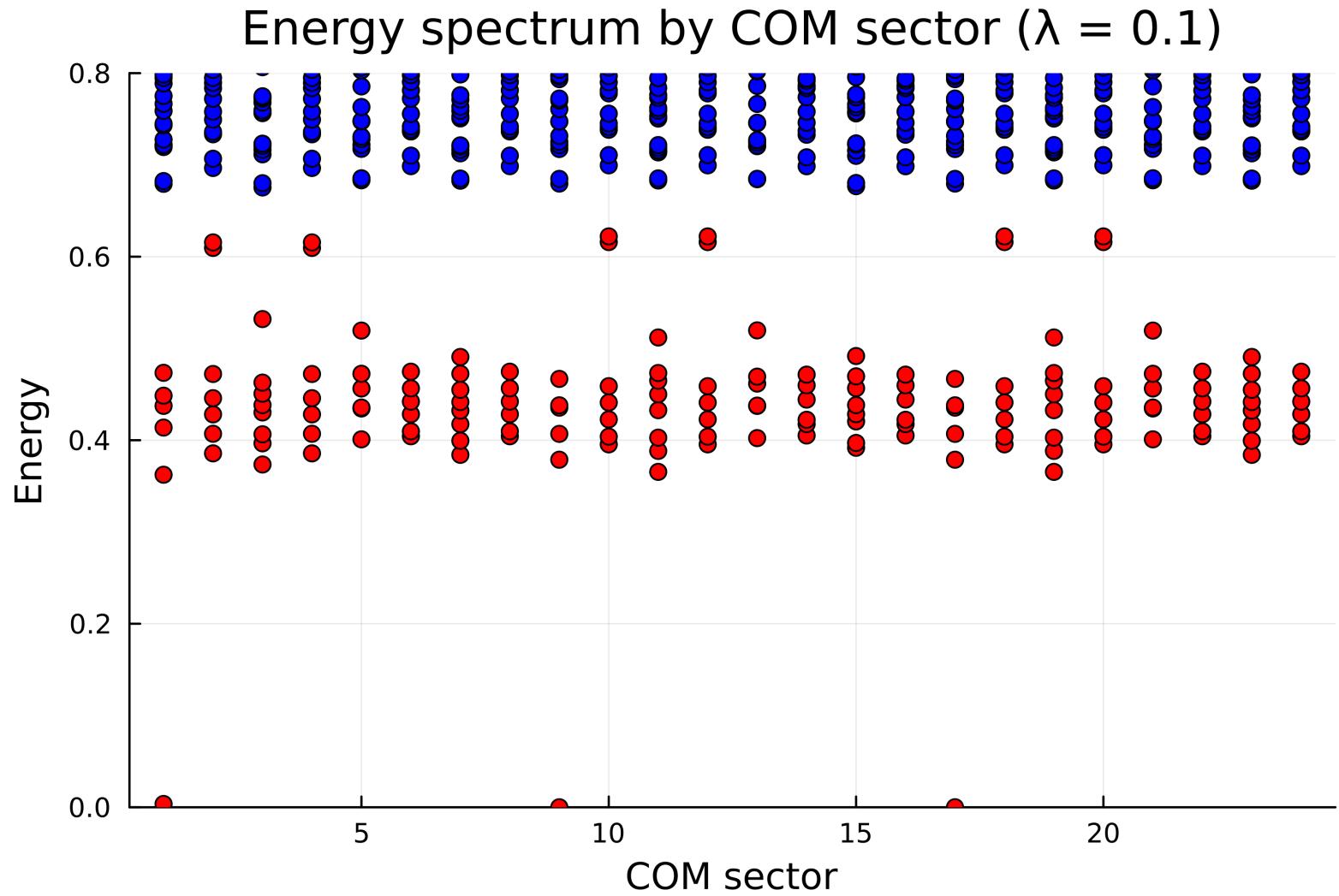


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

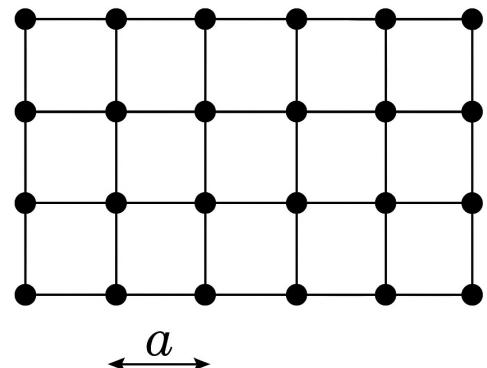


6x4 exact diagonalization

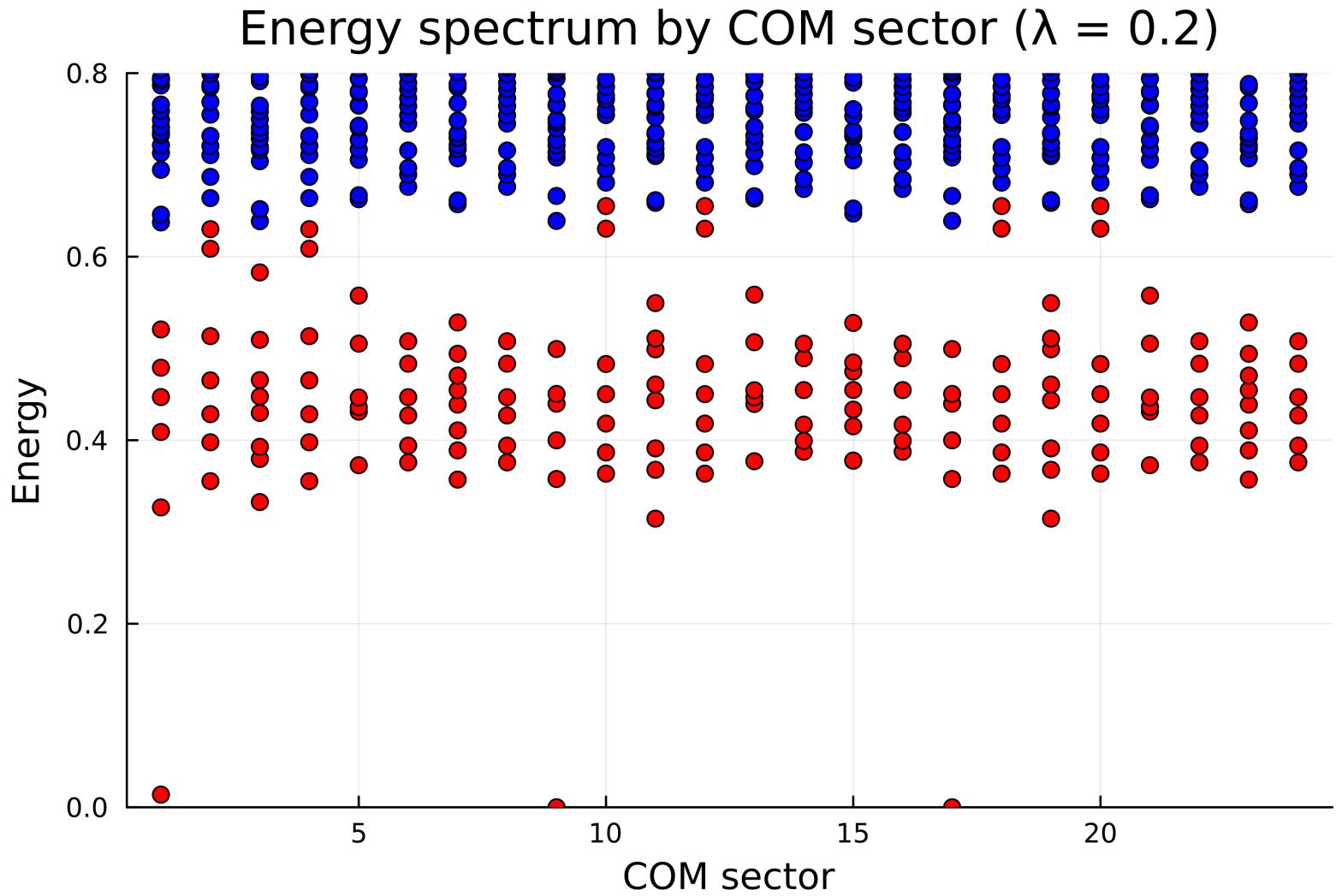


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

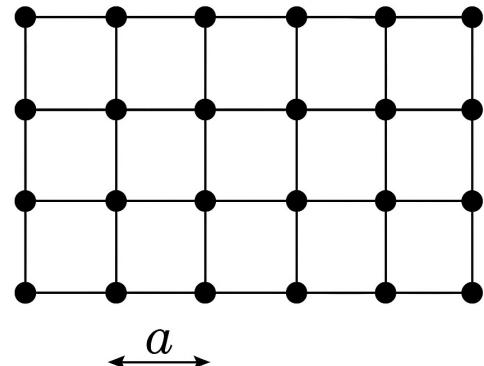


6x4 exact diagonalization

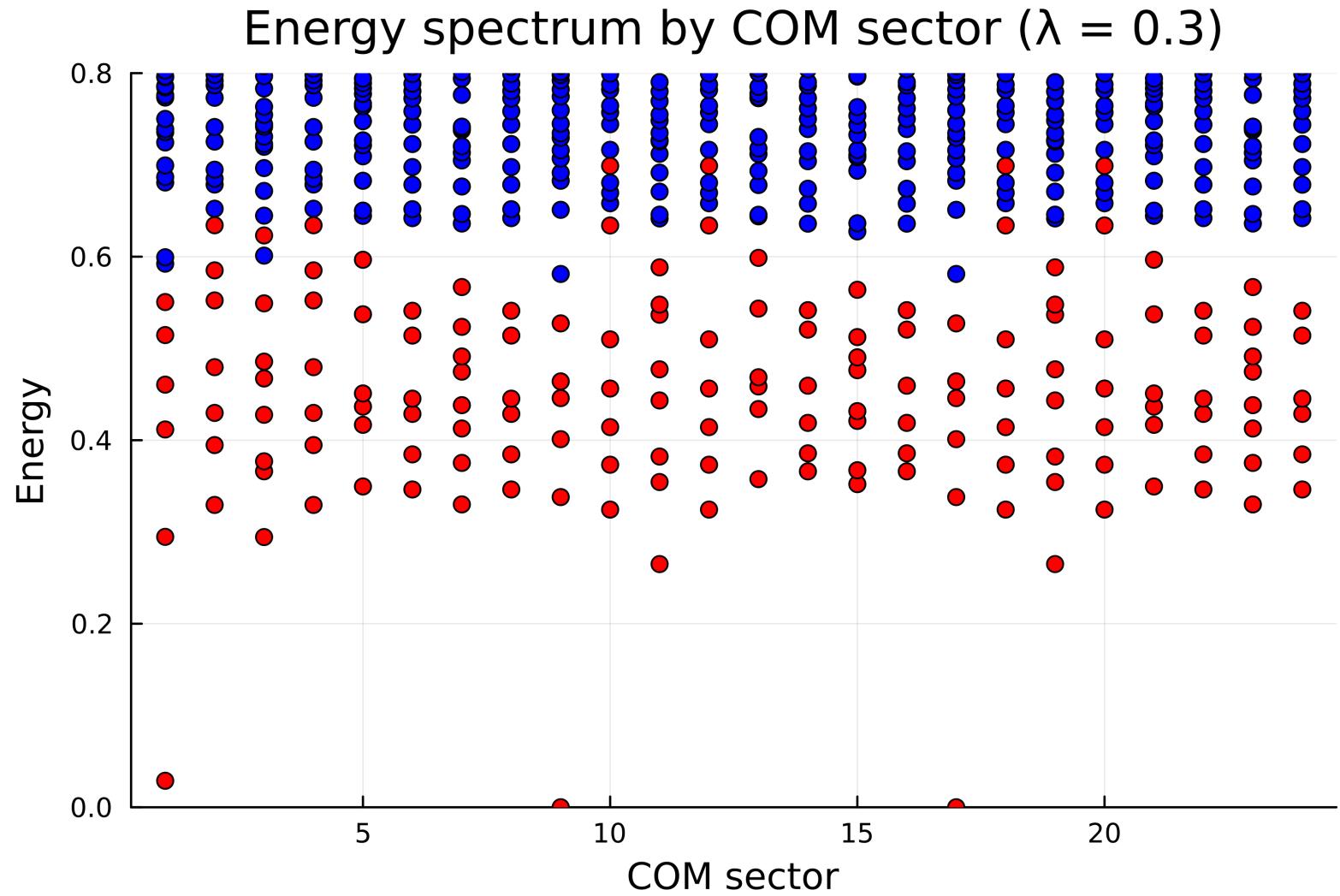


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

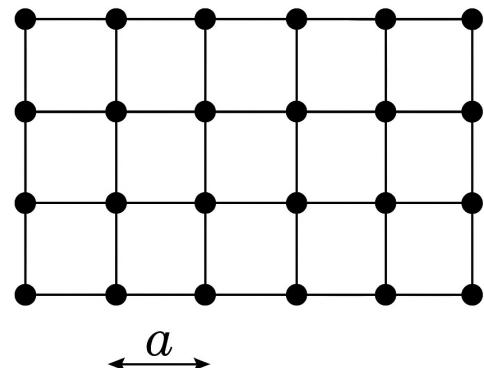


6x4 exact diagonalization

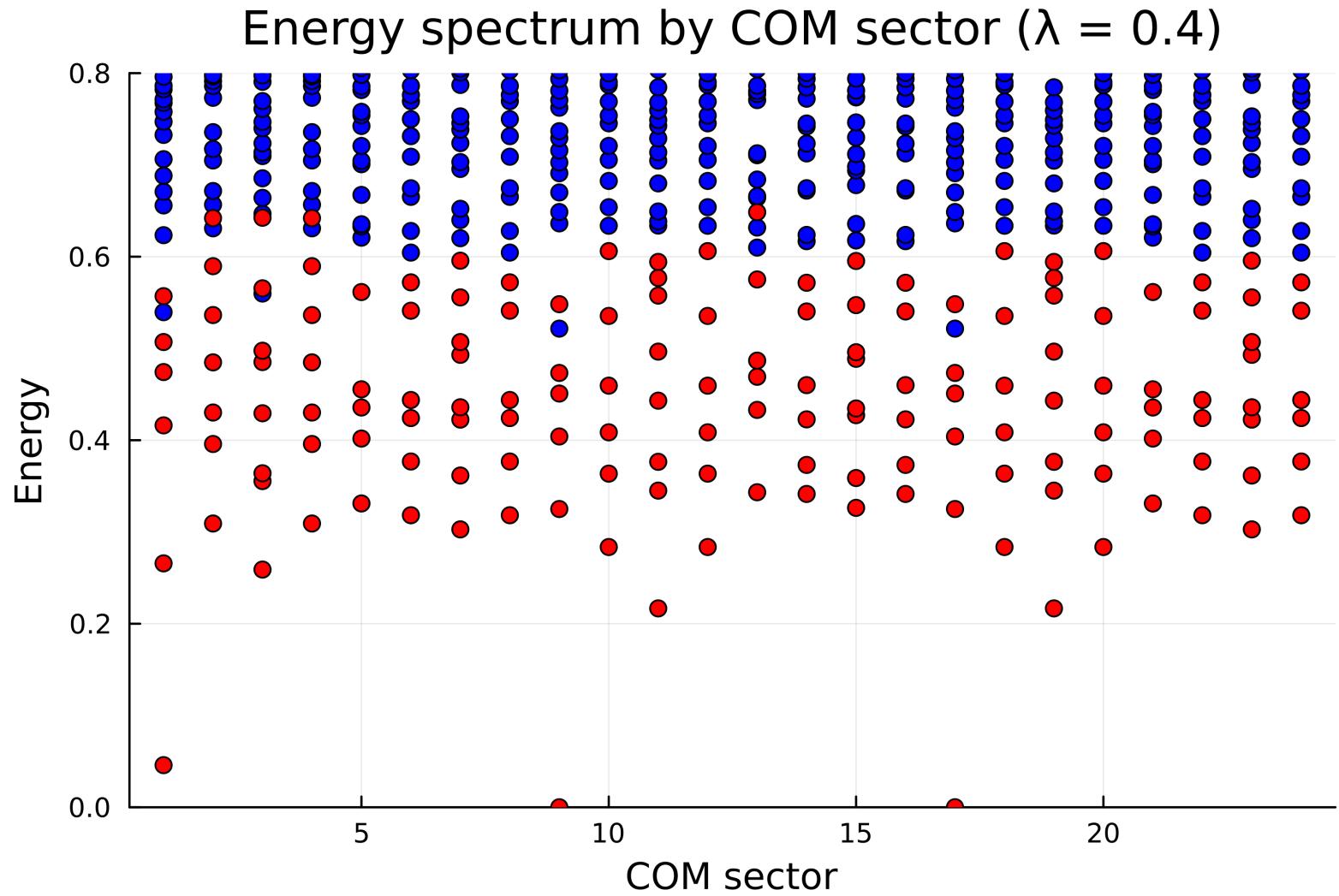


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

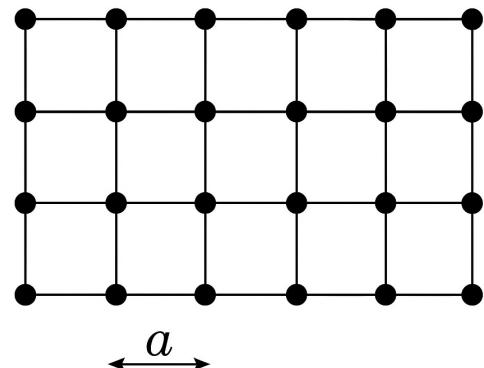


6x4 exact diagonalization

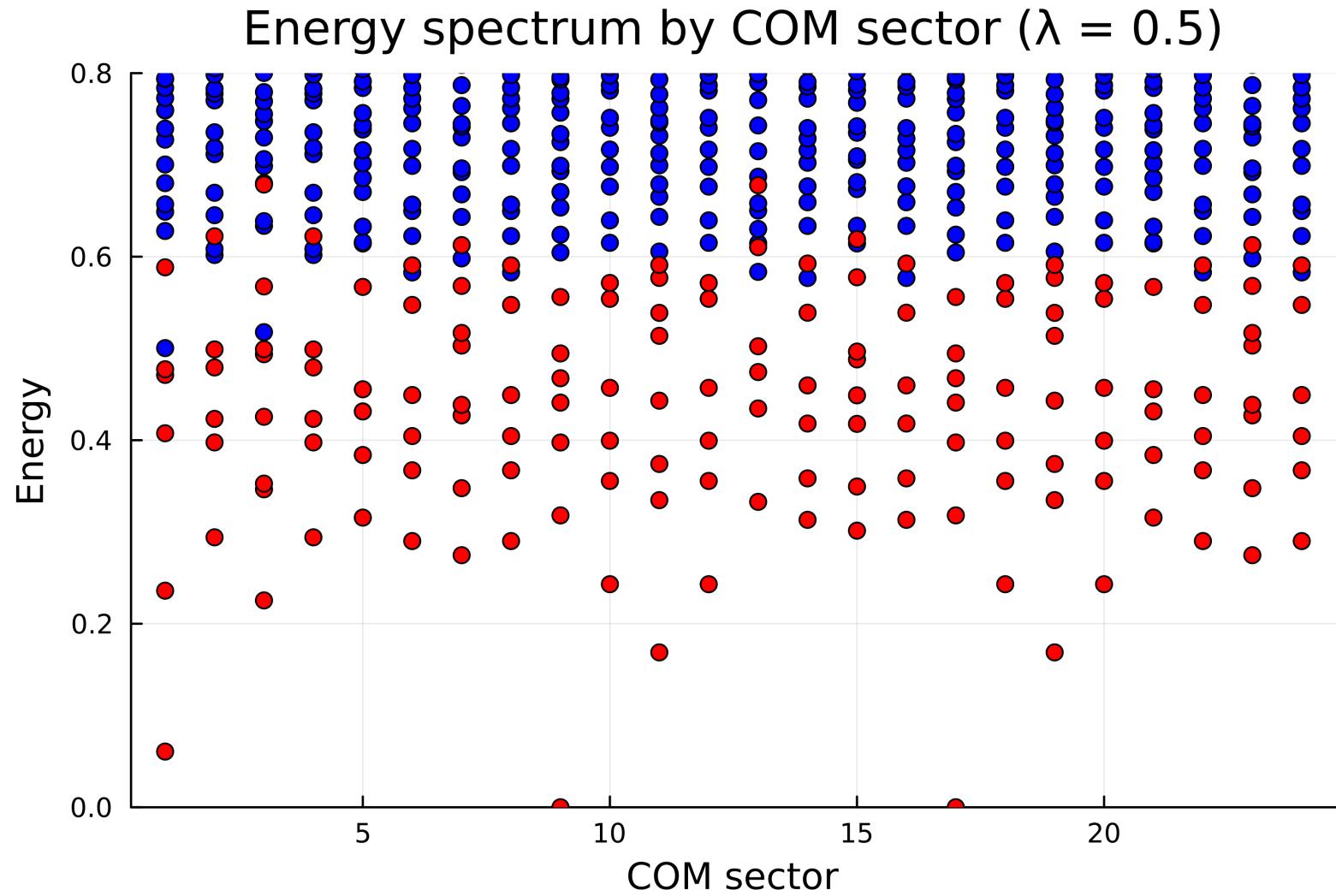


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

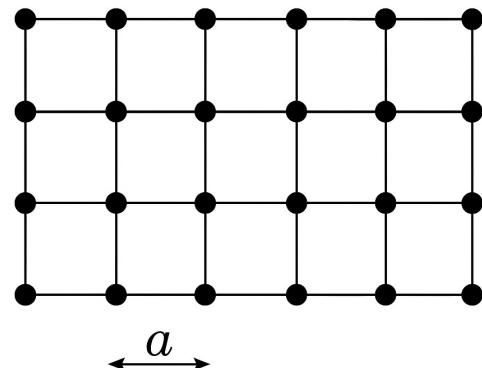


6x4 exact diagonalization

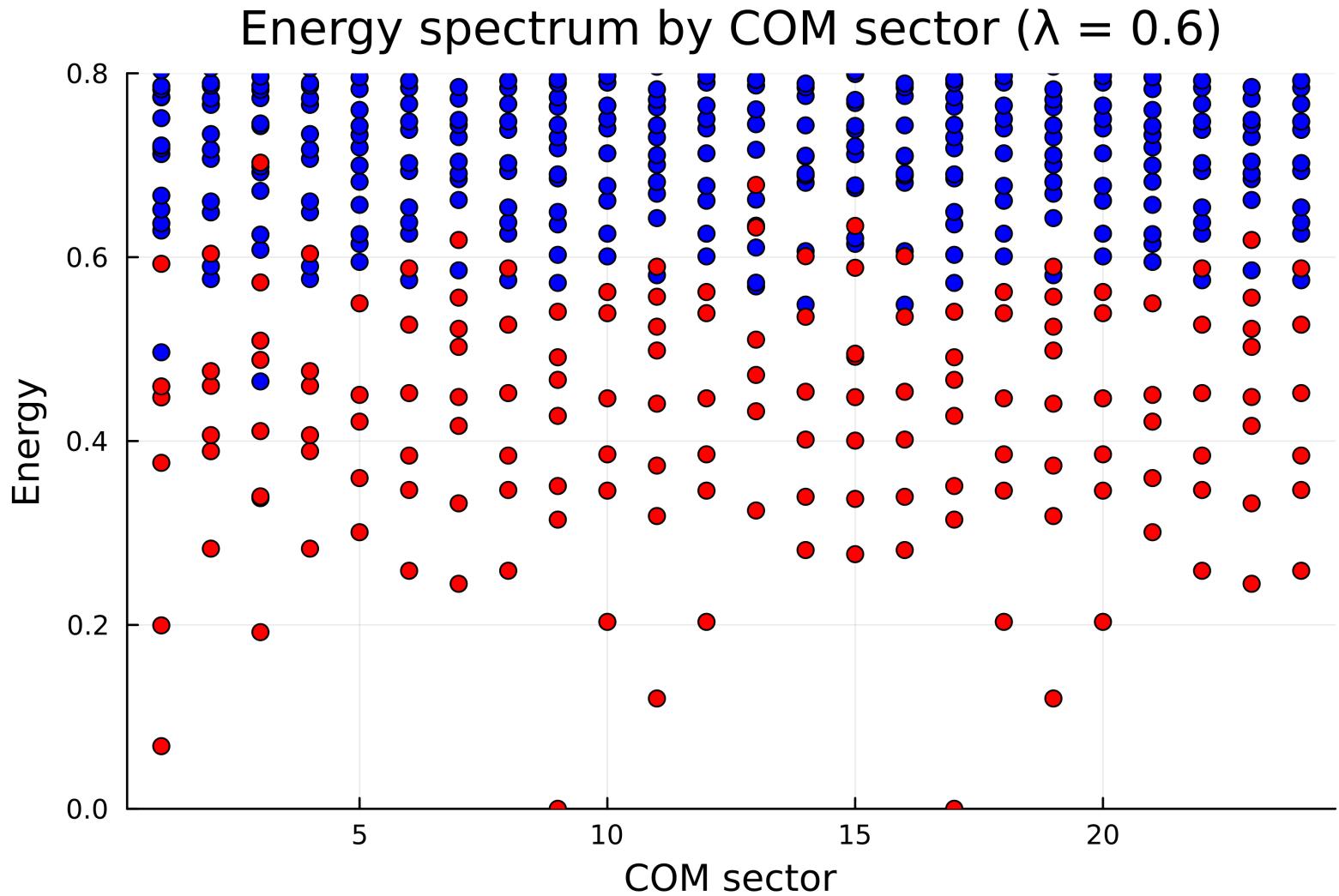


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

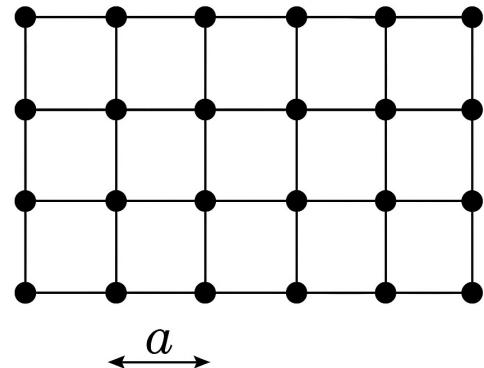


6x4 exact diagonalization

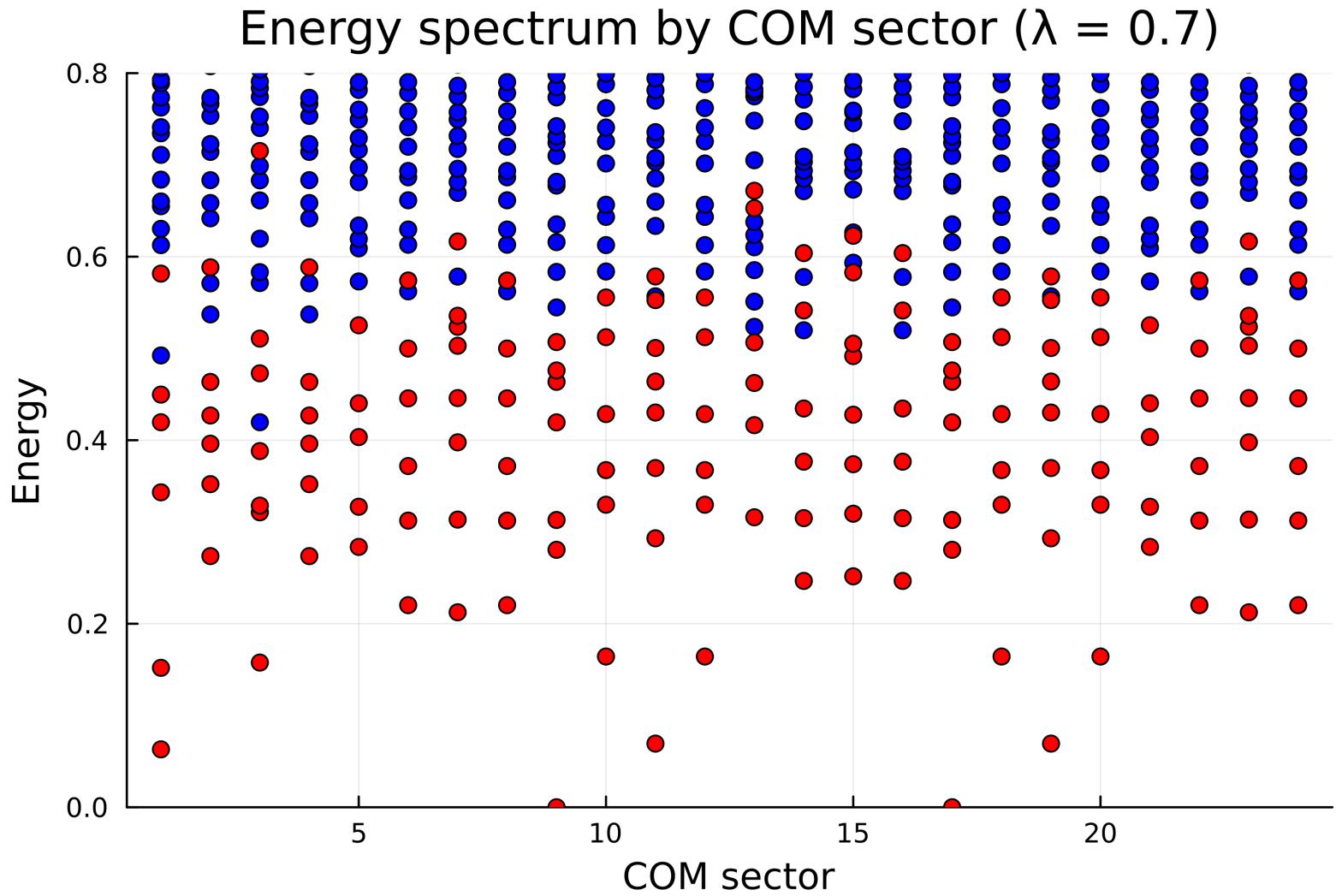


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

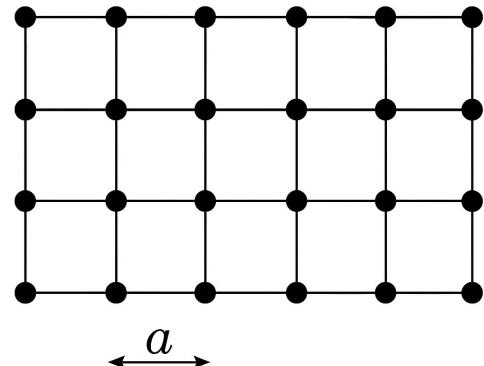


6x4 exact diagonalization

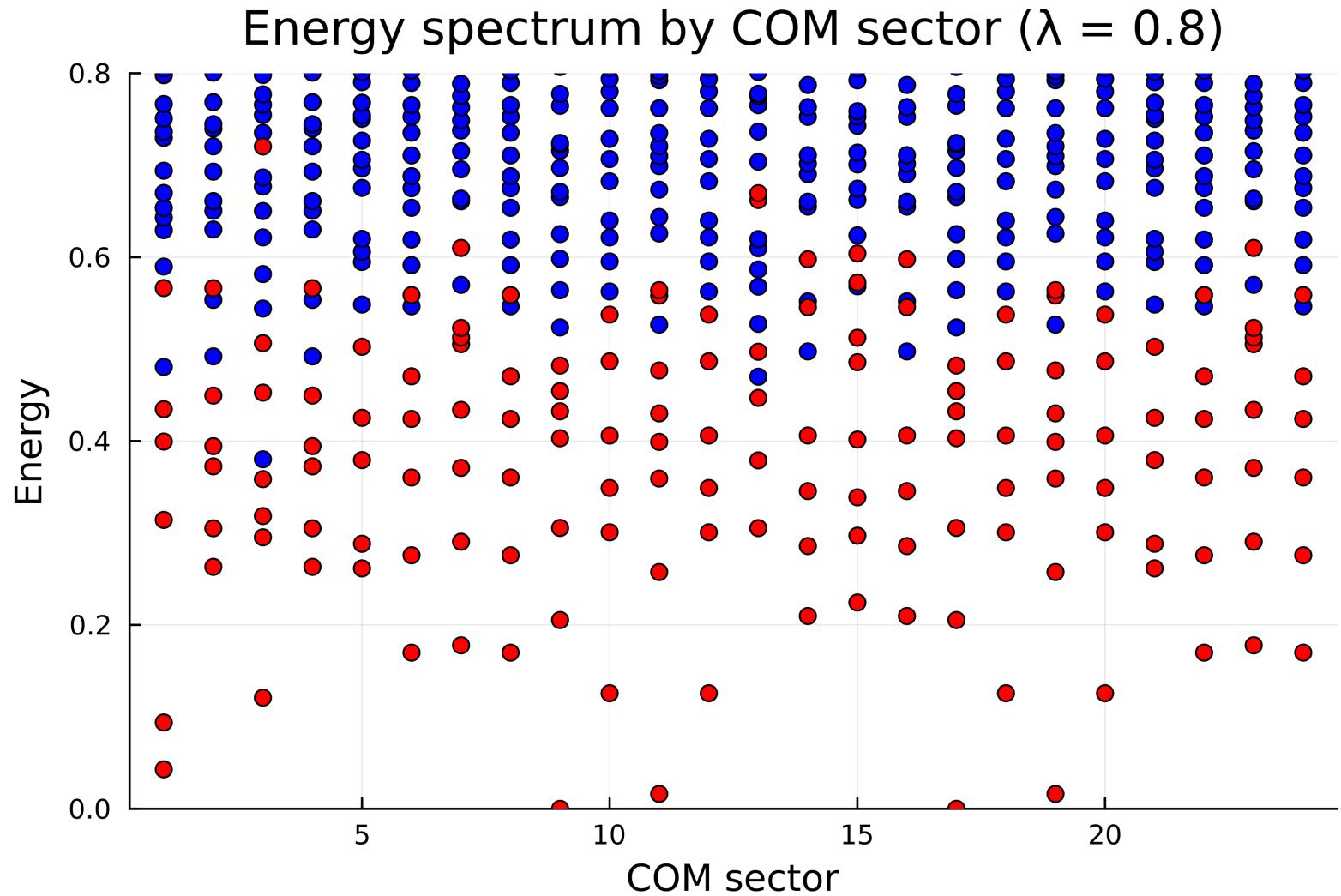


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

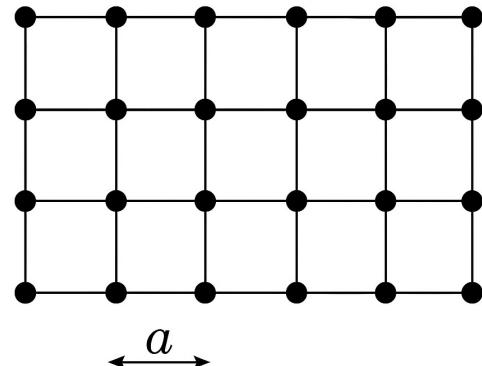


6x4 exact diagonalization

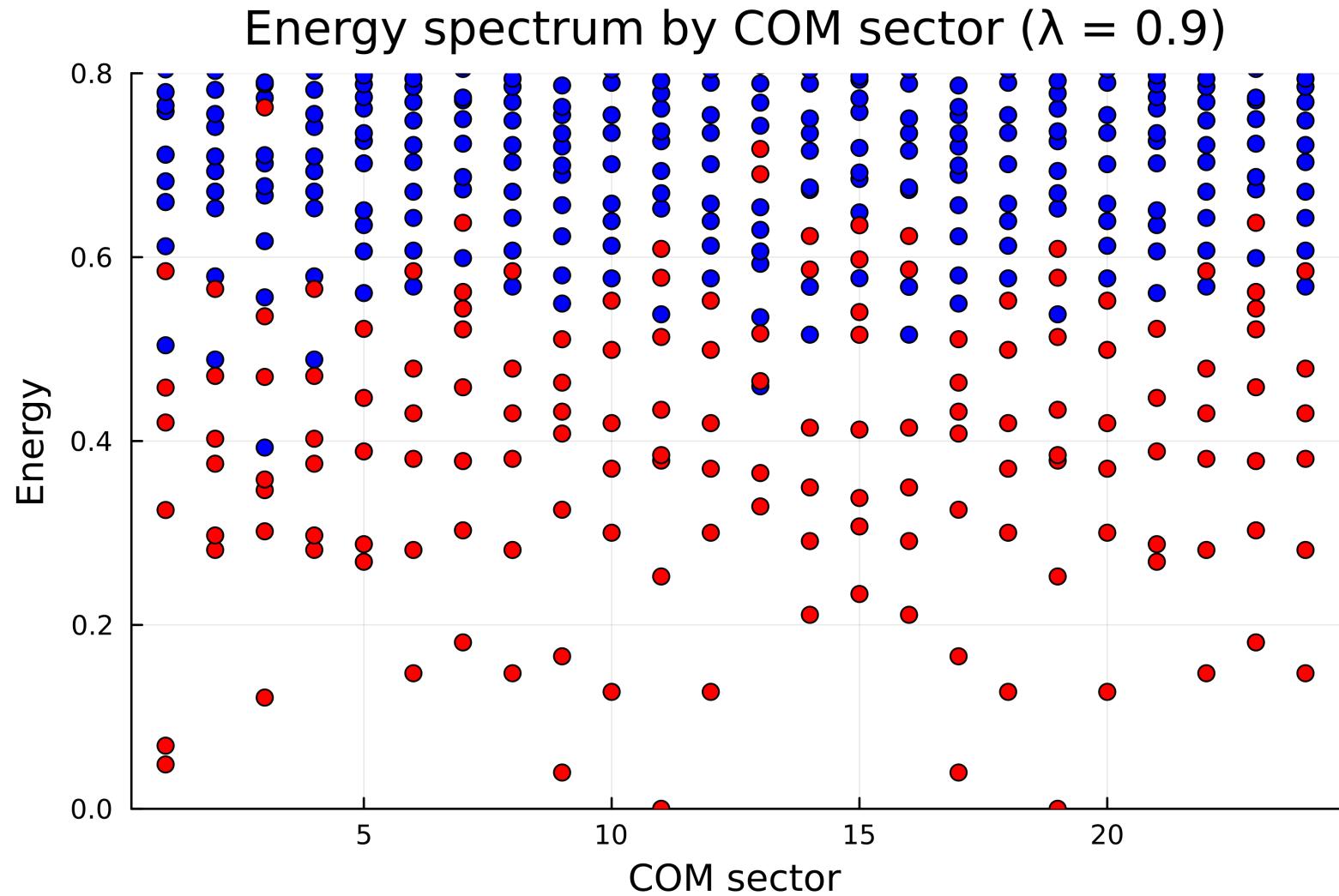


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$



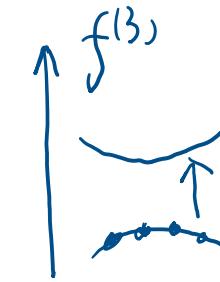
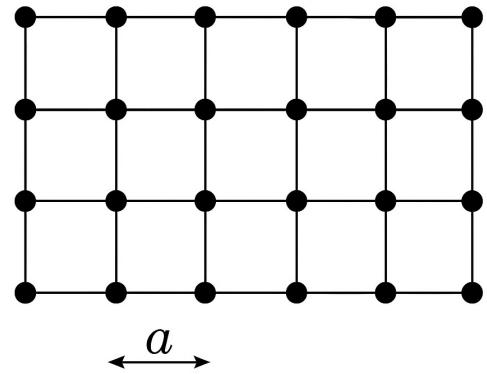
6x4 exact diagonalization



Haldane V1=1 pseudopotential

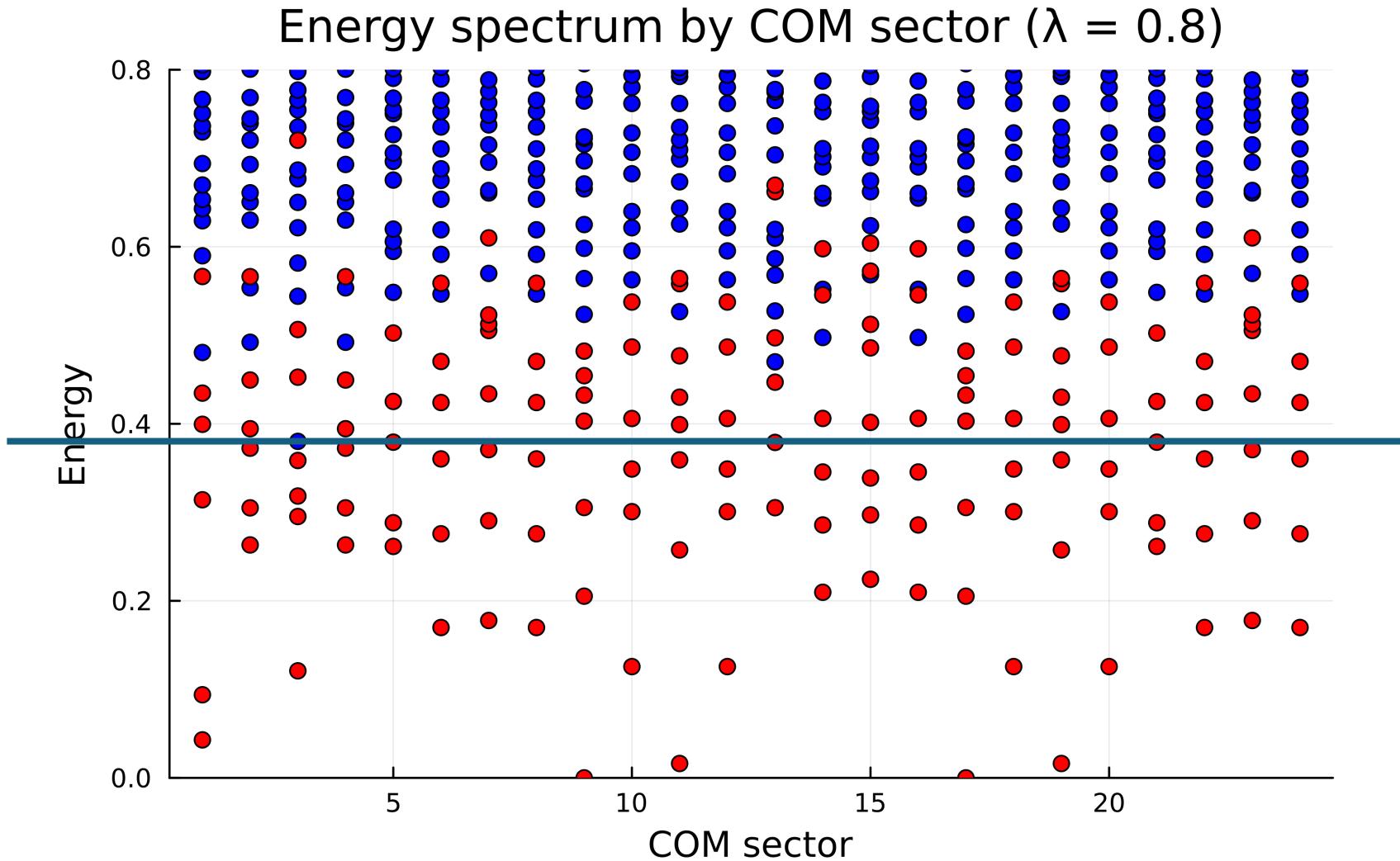
$$H = \lambda \cdot H_K + V$$

Parton particle-hole gap



6x4 exact diagonalization

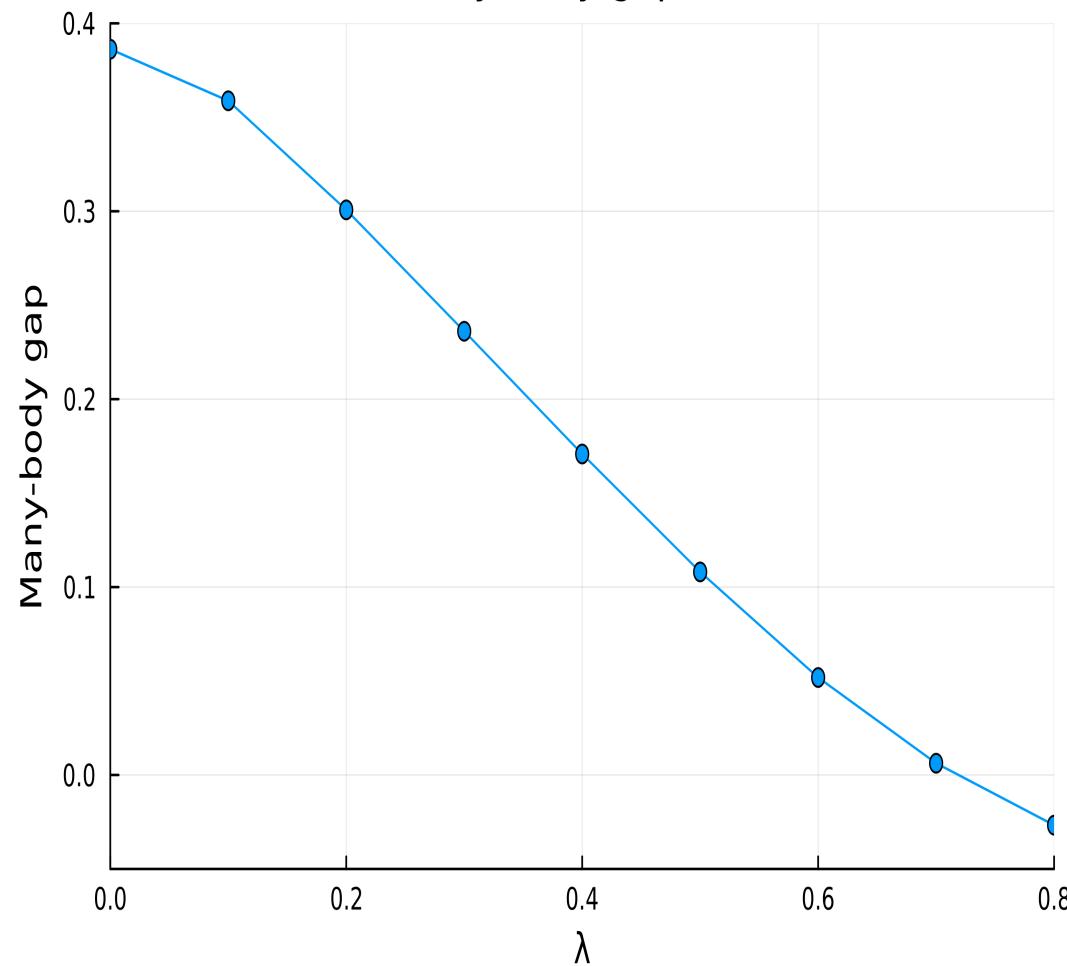
Magneton condense



Haldane $V=1$ pseudopotential

$$H = \lambda \cdot H_K + V$$

Many-body gap vs λ

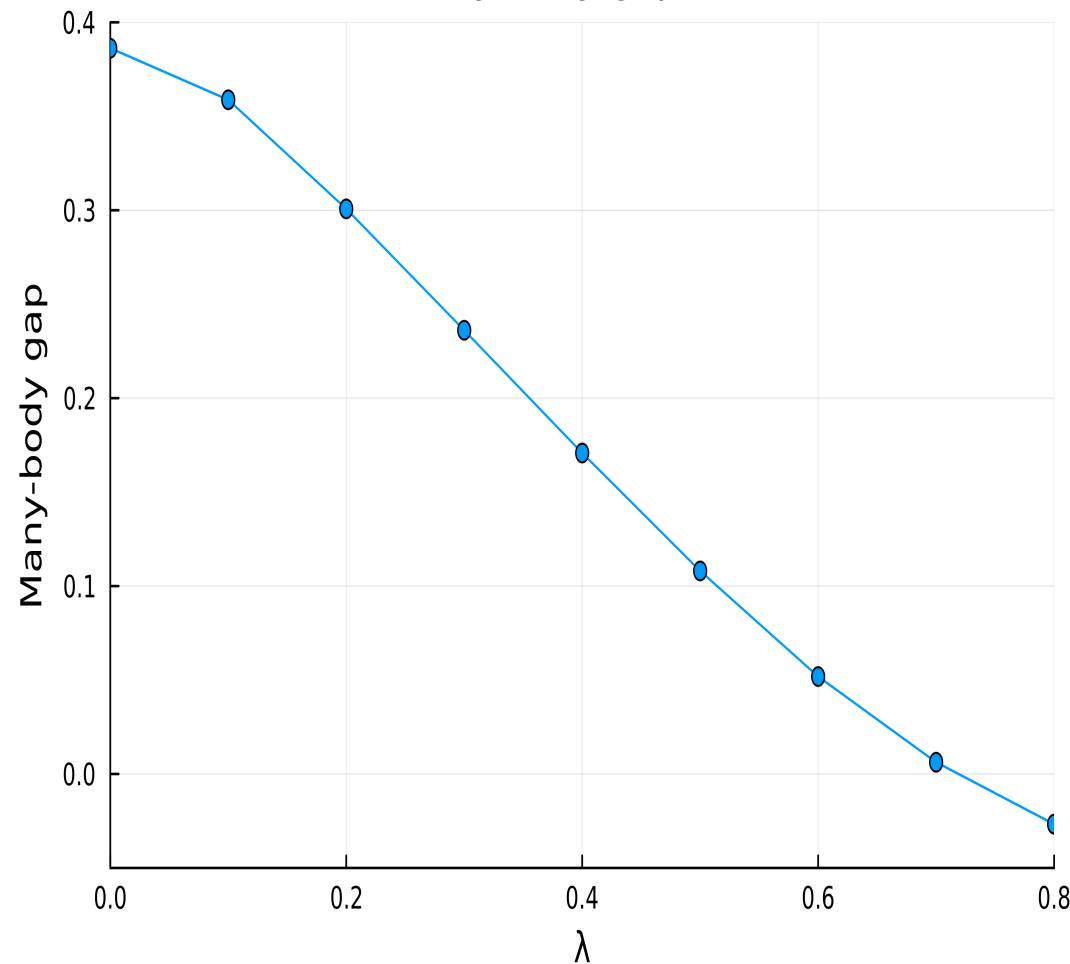
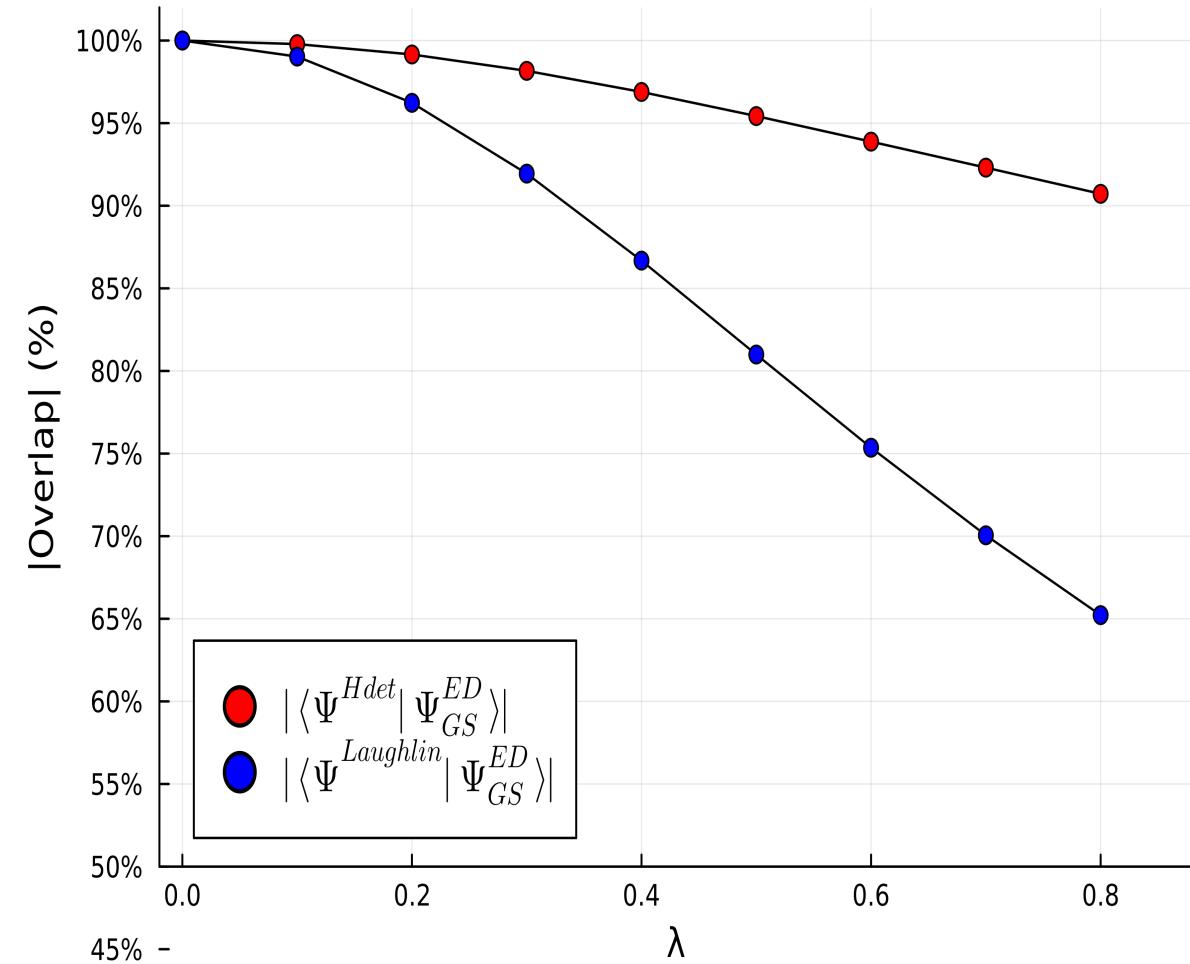


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

0th-order-optimized Hdet already performs well

Many-body gap vs λ

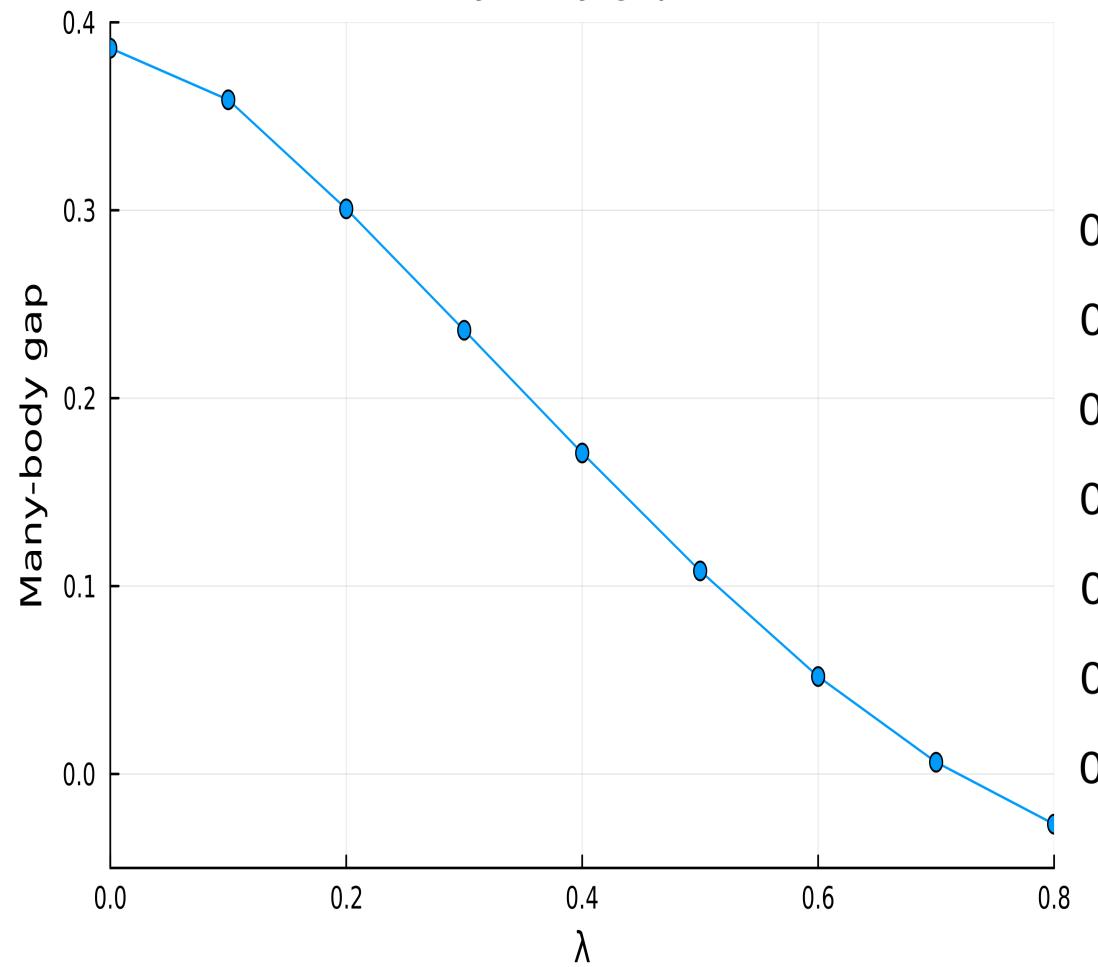
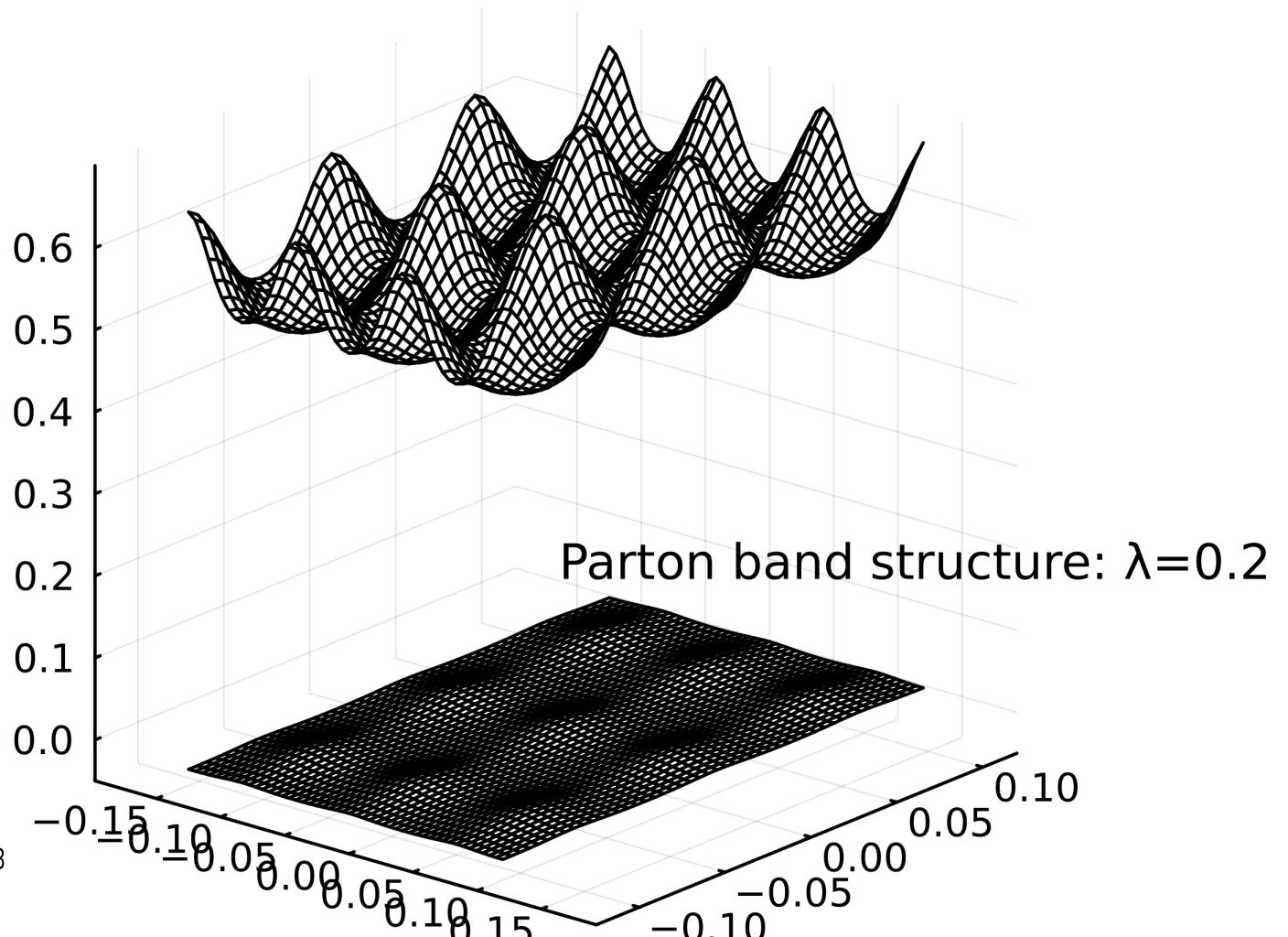


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

0th-order-optimized Hdet already performs well
Also provide parton's bandstructure!

Many-body gap vs λ

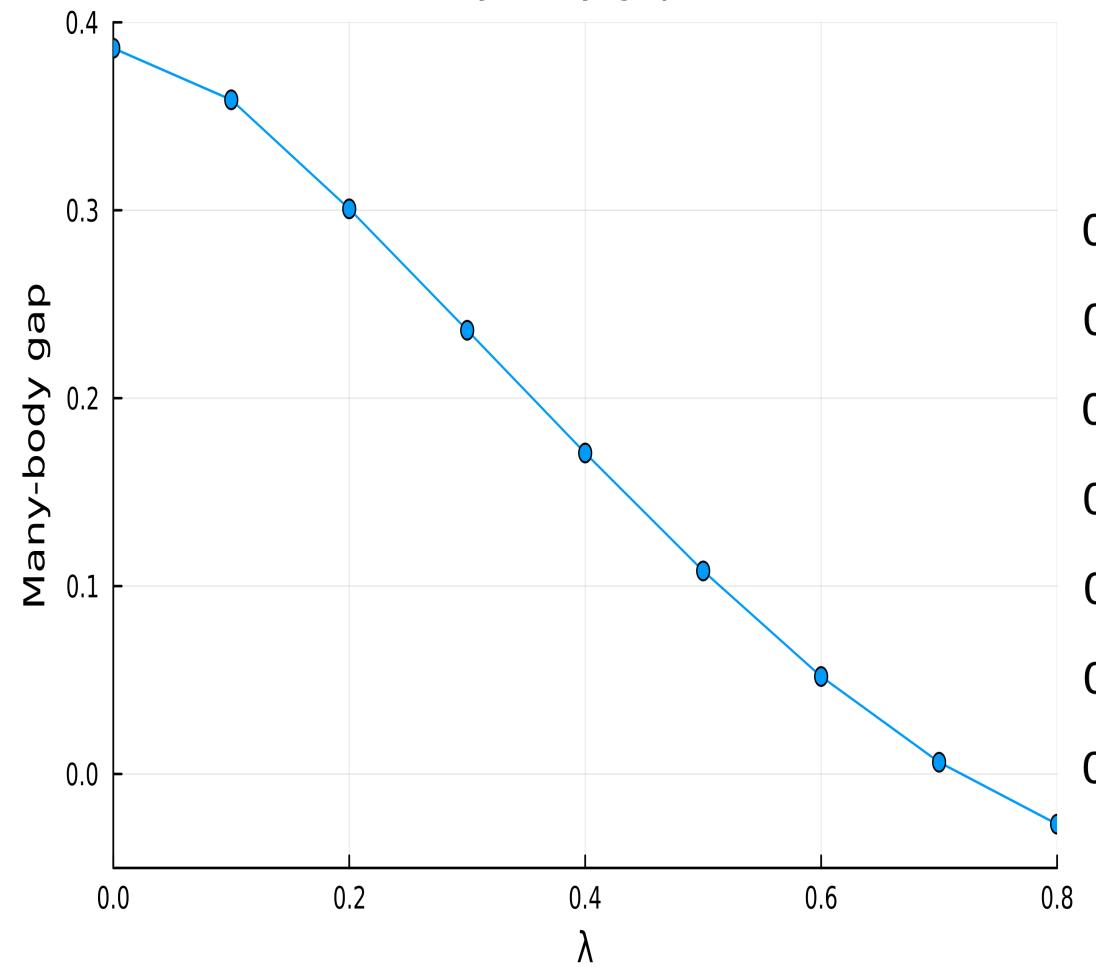
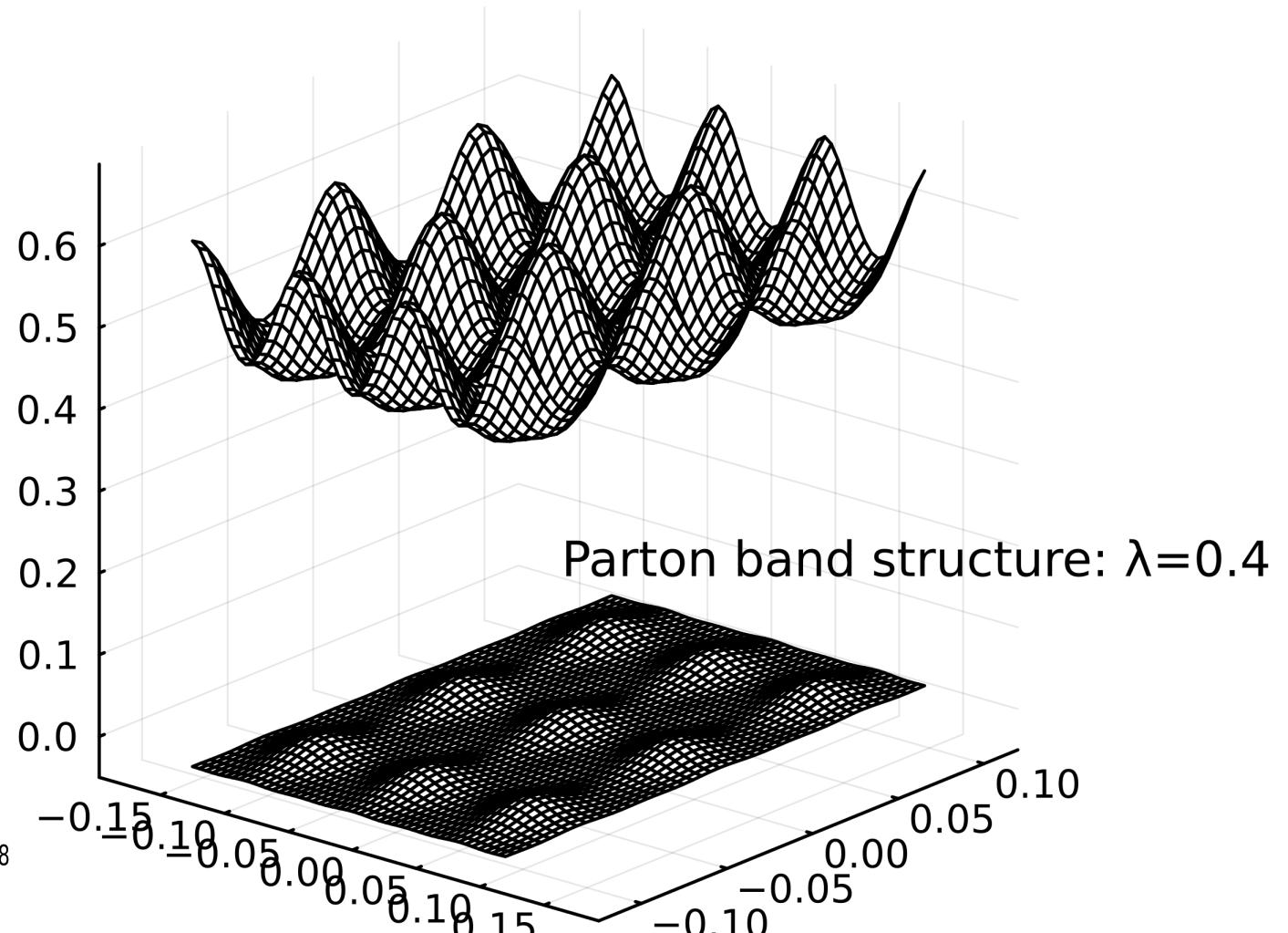


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

0th-order-optimized Hdet already performs well
Also provide parton's bandstructure!

Many-body gap vs λ

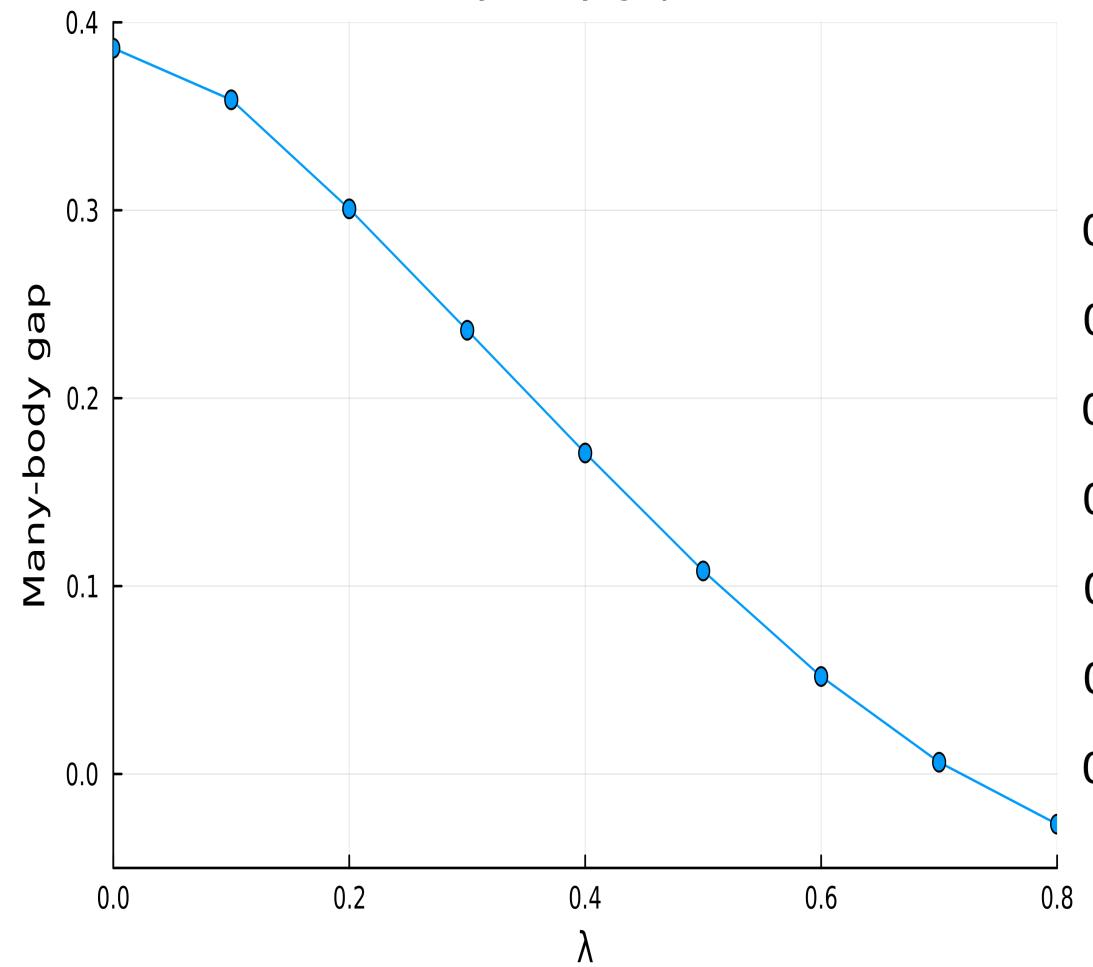
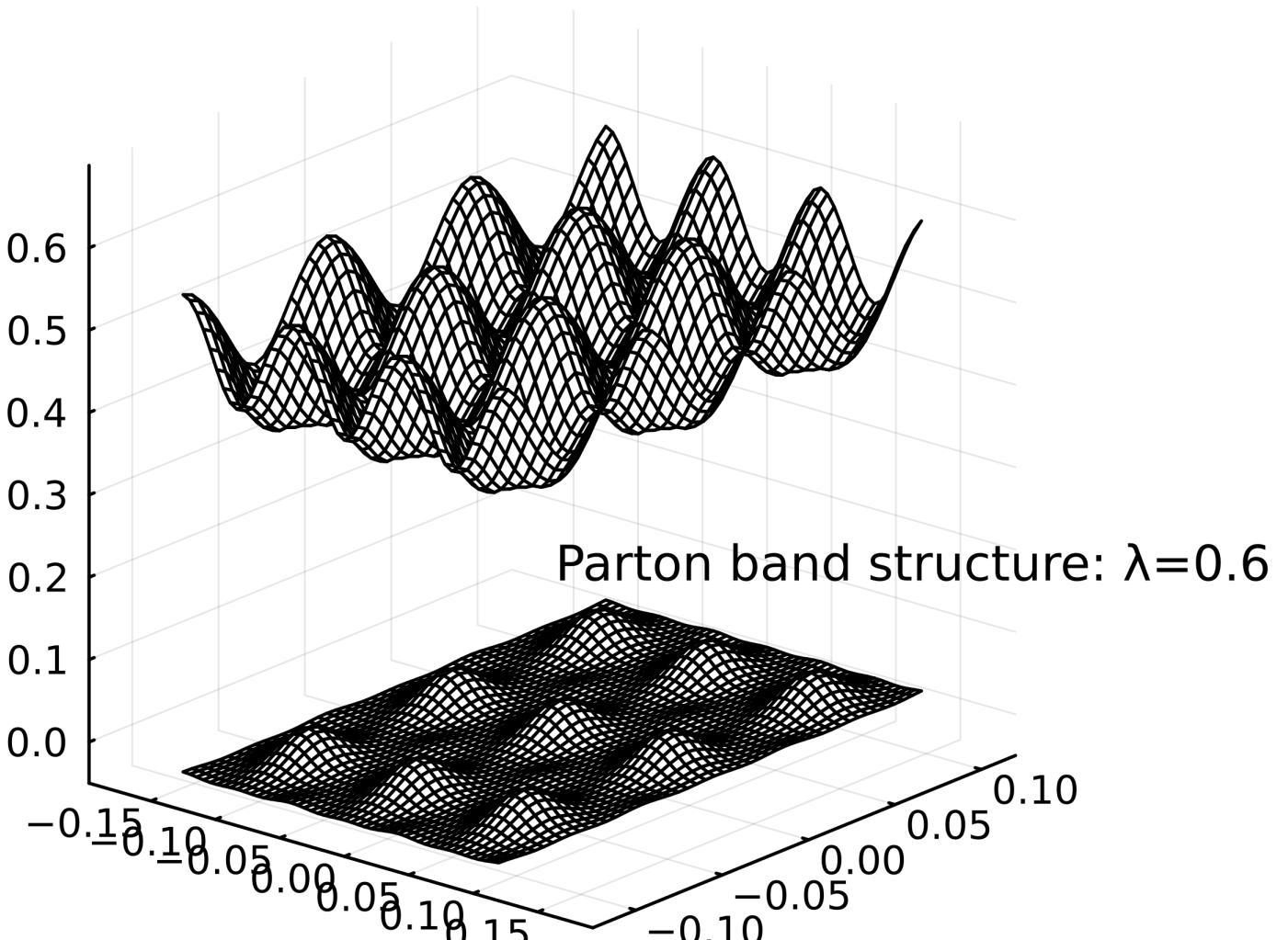


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

0th-order-optimized Hdet already performs well
Also provide parton's bandstructure!

Many-body gap vs λ

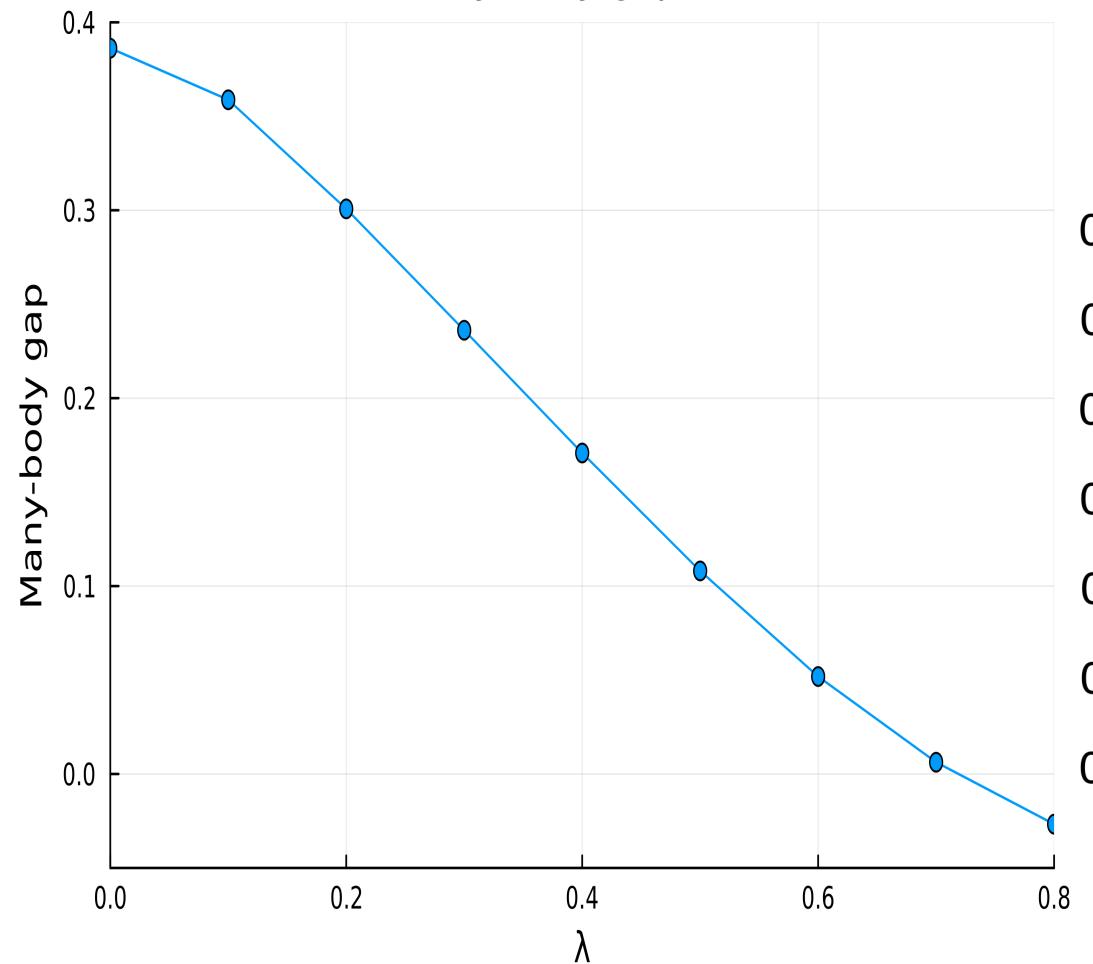
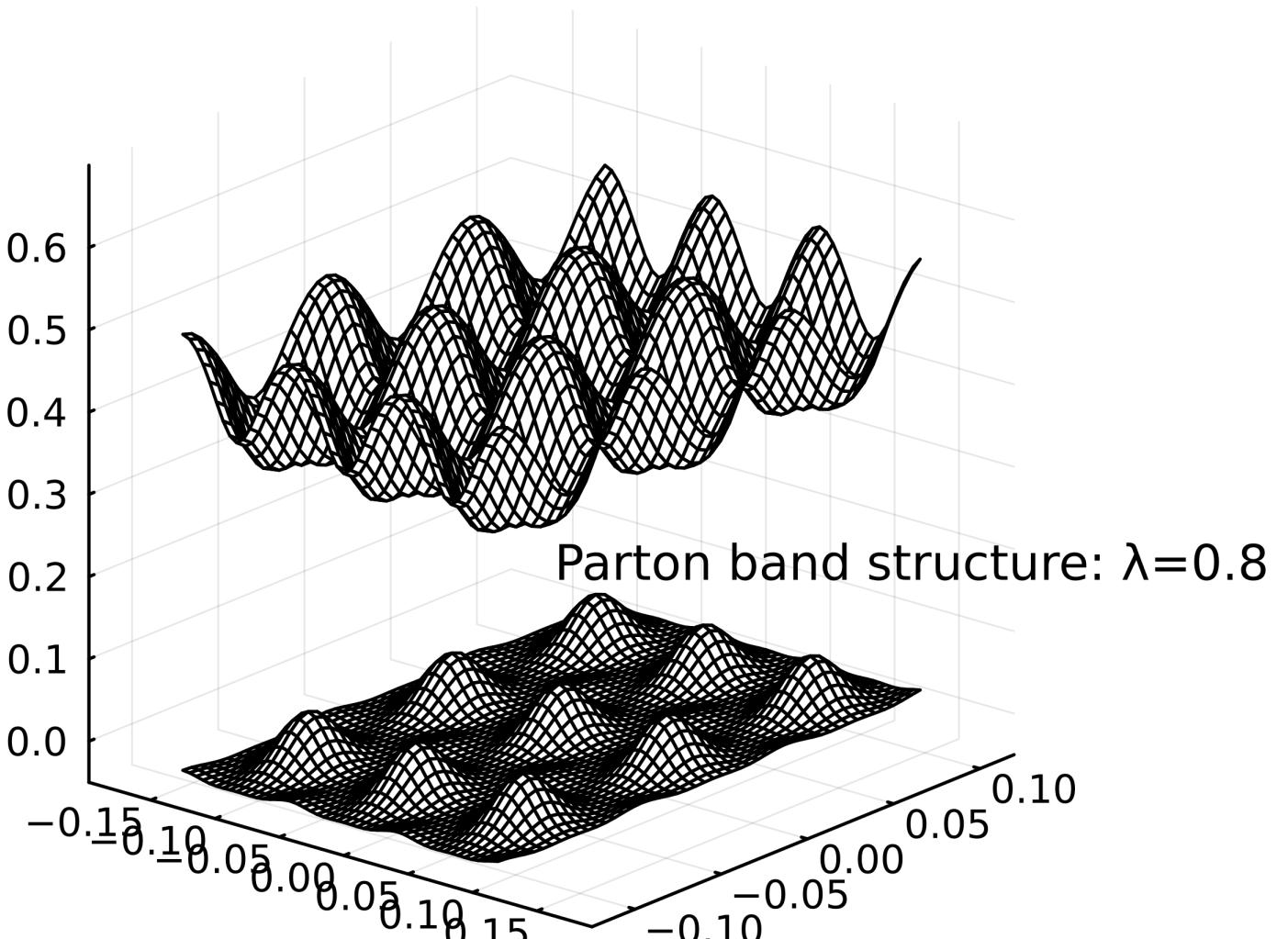


Haldane V1=1 pseudopotential

$$H = \lambda \cdot H_K + V$$

0th-order-optimized Hdet already performs well
Also provide parton's bandstructure!

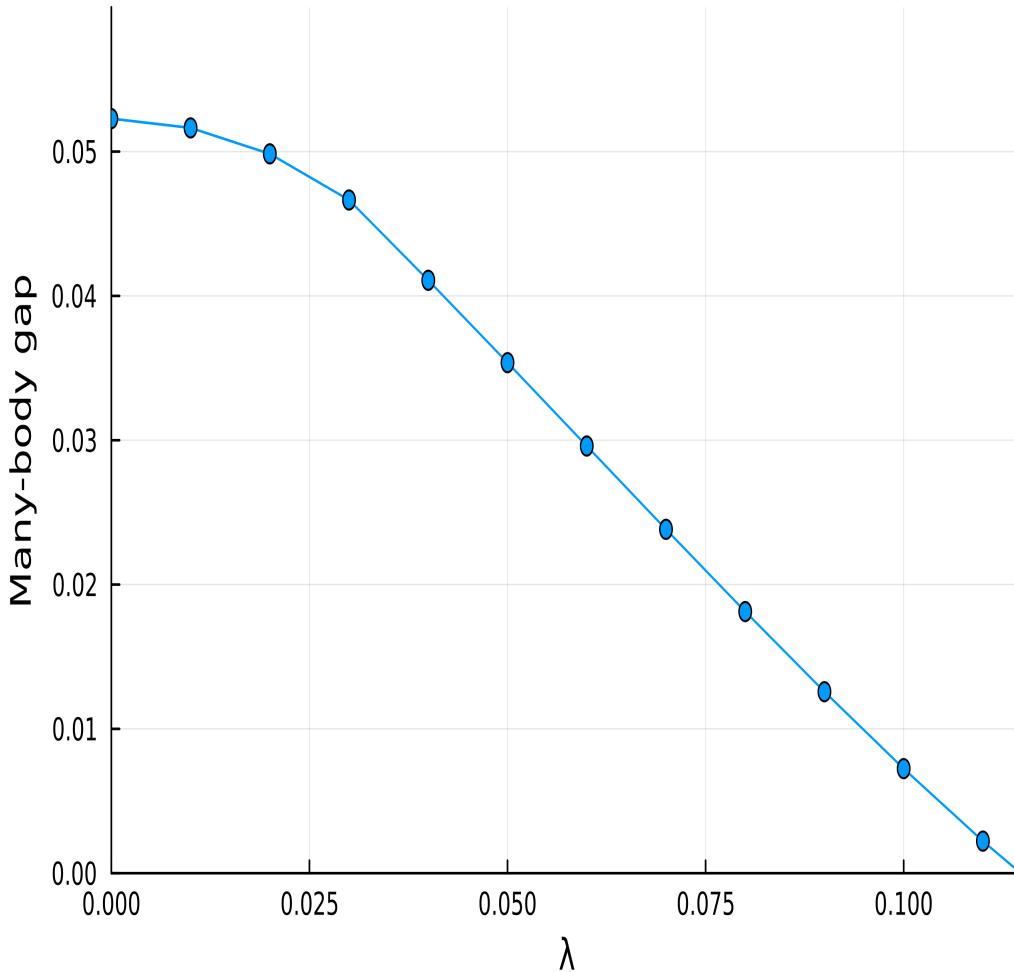
Many-body gap vs λ



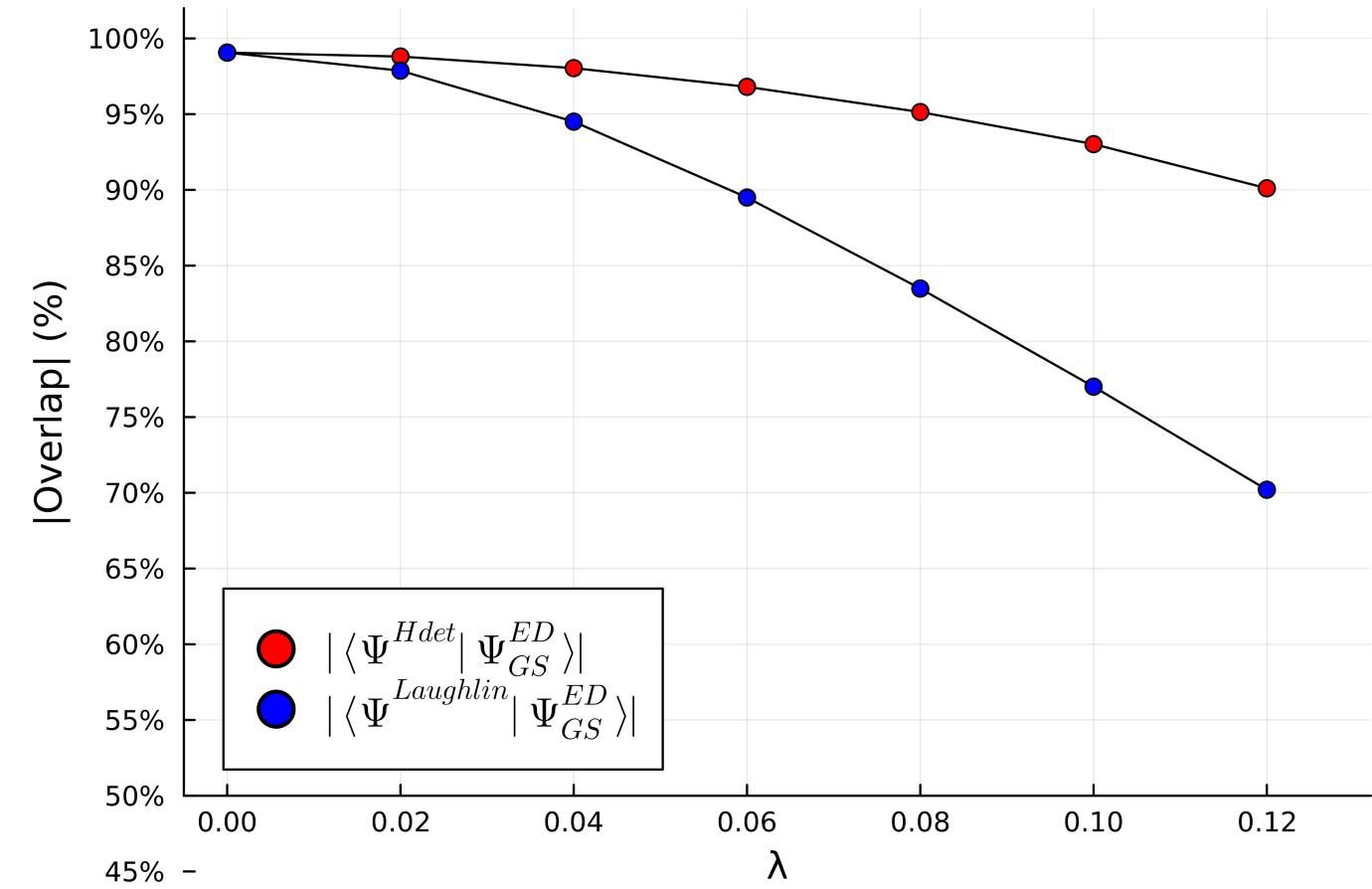
Bare Coulomb interaction

$$H = \lambda \cdot H_K + V$$

Many-body gap vs λ

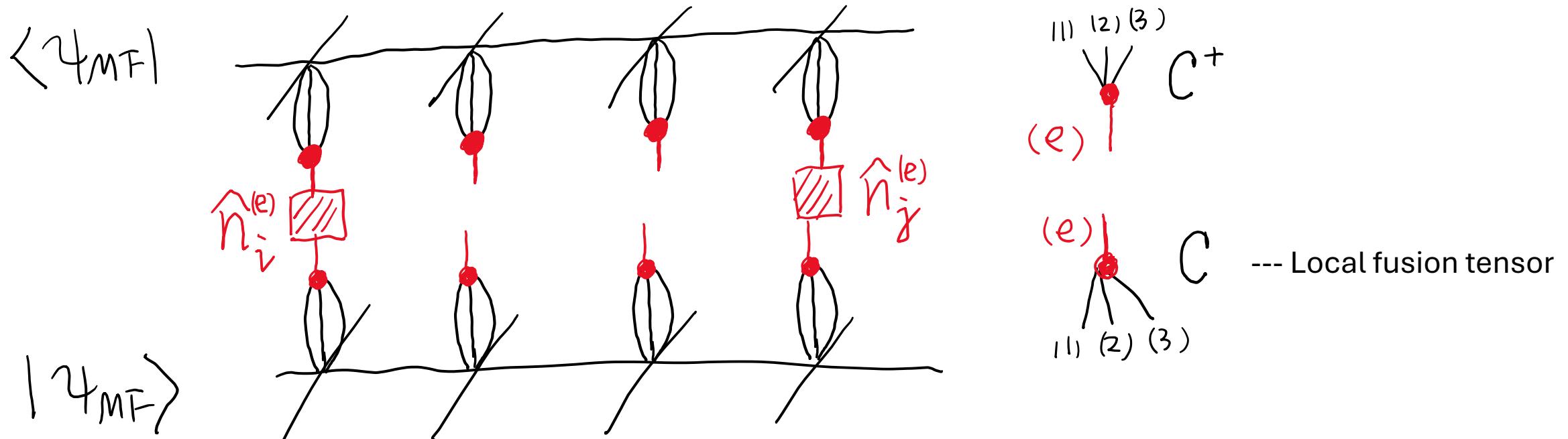


0th-order-optimized Hdet already performs well
Also provide parton's bandstructure!



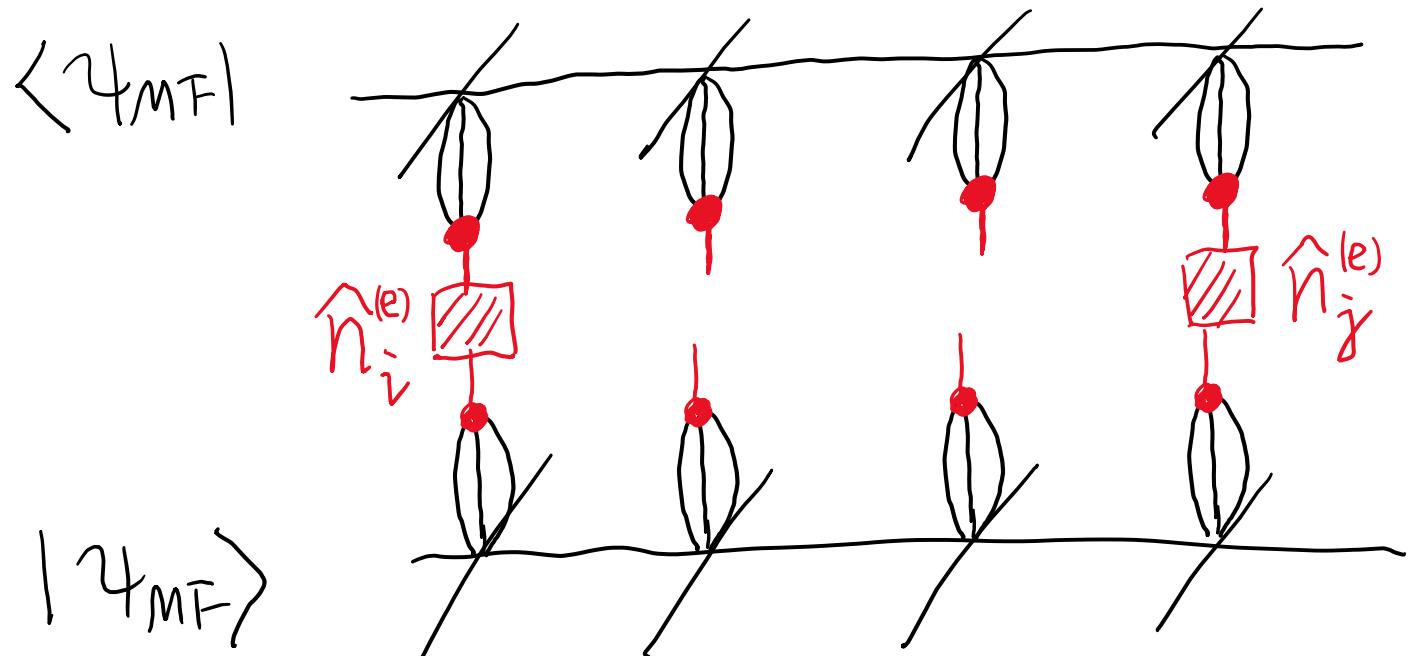
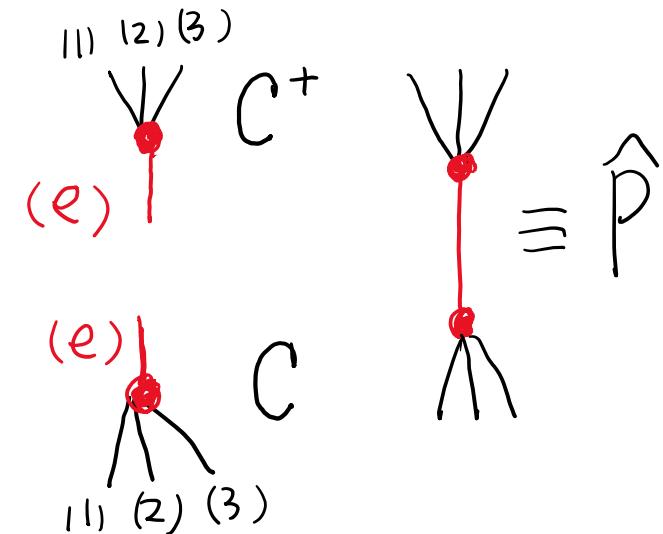
Projective expansion: How it works

- The tensor T in H_{det} has a local structure. Consequently, the H_{det} wavefunction can be viewed as a (grassmann) tensor-network



Projective expansion: How it works

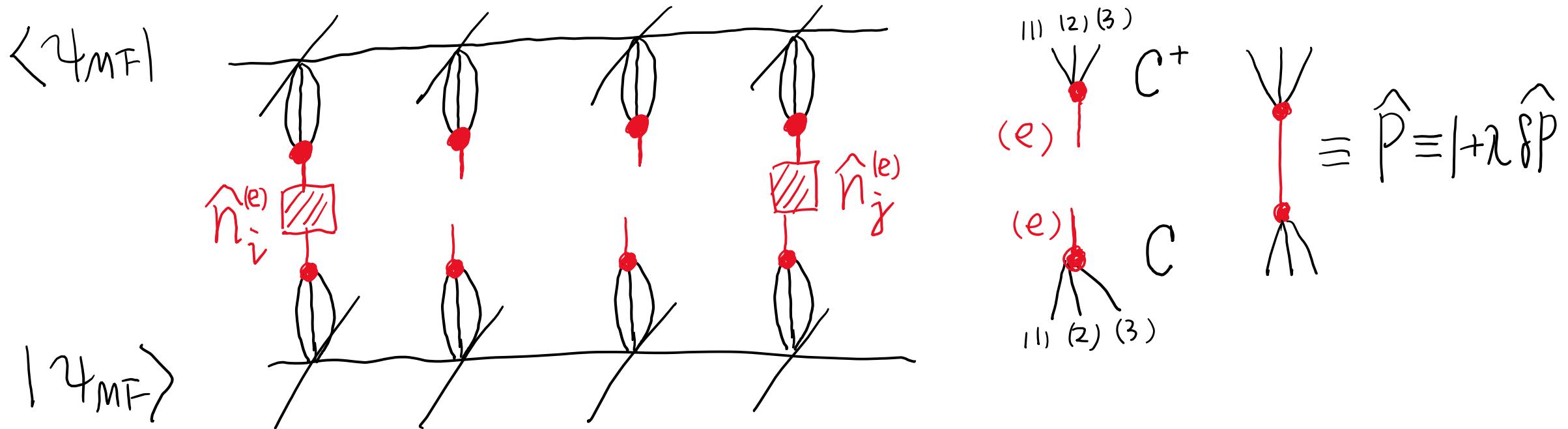
- The tensor T in H_{det} has a local structure. Consequently, the H_{det} wavefunction can be viewed as a (grassmann) tensor-network



$$\langle \hat{O} \rangle = \frac{\langle \psi_{MF} | \hat{O} \cdot \prod_i \hat{P}_i | \psi_{MF} \rangle}{\langle \psi_{MF} | \prod_i \hat{P}_i | \psi_{MF} \rangle}$$

Projective expansion: How it works

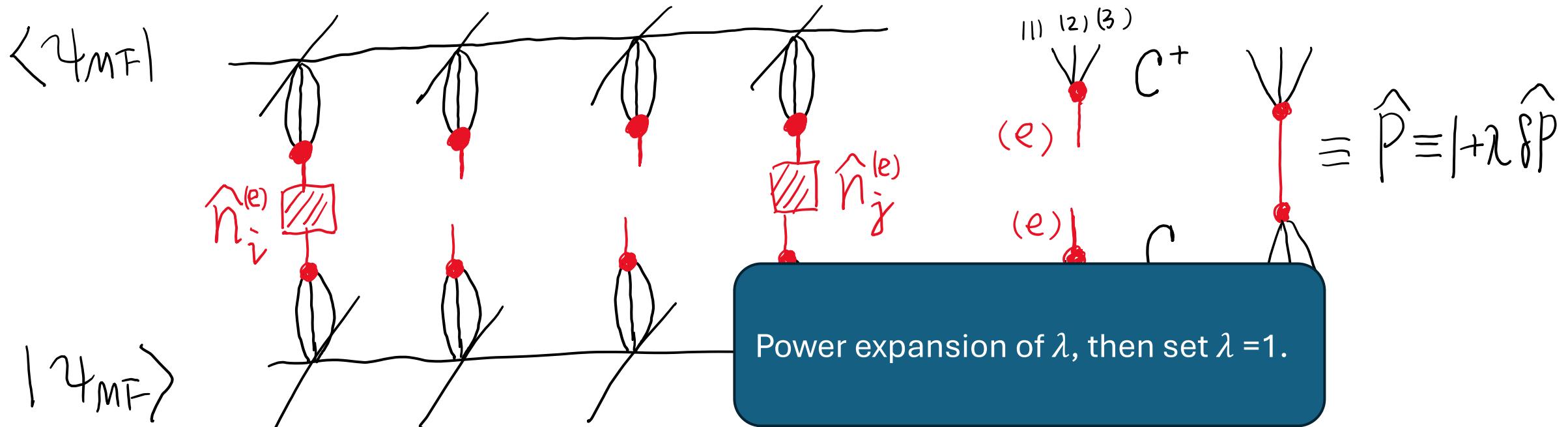
- The tensor T in H_{det} has a local structure. Consequently, the H_{det} wavefunction can be viewed as a (grassmann) tensor-network



$$\langle \hat{O} \rangle = \frac{\langle \psi_{MF} | \hat{O} \cdot \prod_i \hat{P}_i | \psi_{MF} \rangle}{\langle \psi_{MF} | \prod_i \hat{P}_i | \psi_{MF} \rangle} = \frac{\langle \psi_{MF} | \hat{O} \cdot \prod_i (1 + \lambda \delta \hat{P}_i) | \psi_{MF} \rangle}{\langle \psi_{MF} | \prod_i (1 + \lambda \delta \hat{P}_i) | \psi_{MF} \rangle}$$

Projective expansion: How it works

- The tensor T in H_{det} has a local structure. Consequently, the H_{det} wavefunction can be viewed as a (grassmann) tensor-network



$$\langle \hat{O} \rangle = \frac{\langle \psi_{MF} | \hat{O} \cdot \prod_i \hat{P}_i | \psi_{MF} \rangle}{\langle \psi_{MF} | \prod_i \hat{P}_i | \psi_{MF} \rangle} = \frac{\langle \psi_{MF} | \hat{O} \cdot \prod_i (1 + \lambda \delta \hat{P}_i) | \psi_{MF} \rangle}{\langle \psi_{MF} | \prod_i (1 + \lambda \delta \hat{P}_i) | \psi_{MF} \rangle}$$

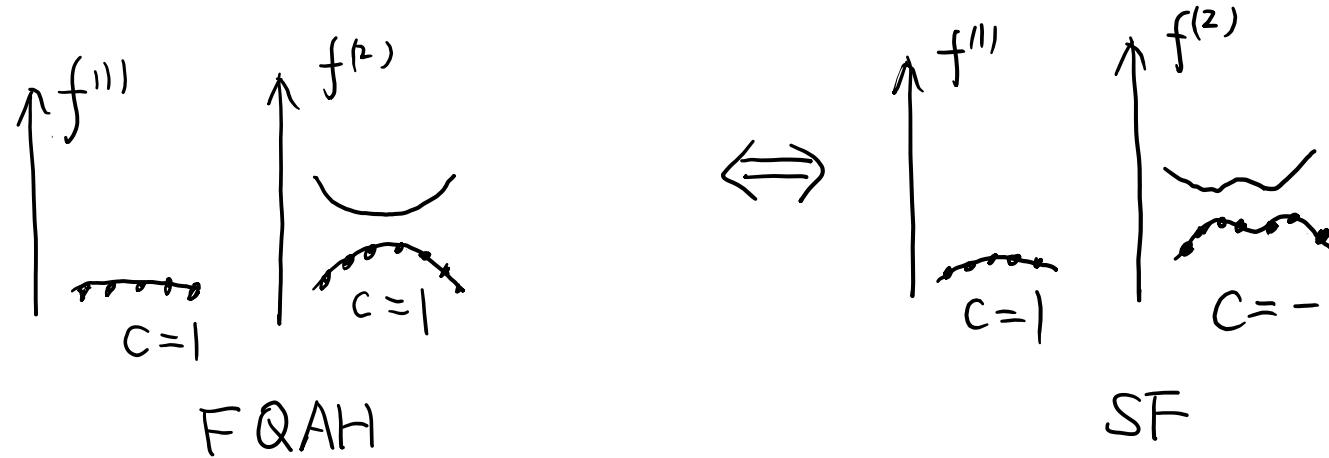
Ongoing/Future directions: Explore FQAH phase diagram

- Parton band inversion \rightarrow quantum phase transition
e.g. Bosonic $1/2$ -filled FQAH \Leftrightarrow Superfluid (Barkeshli-McGreevy 2011)

Ongoing/Future directions: Explore FQAH phase diagram

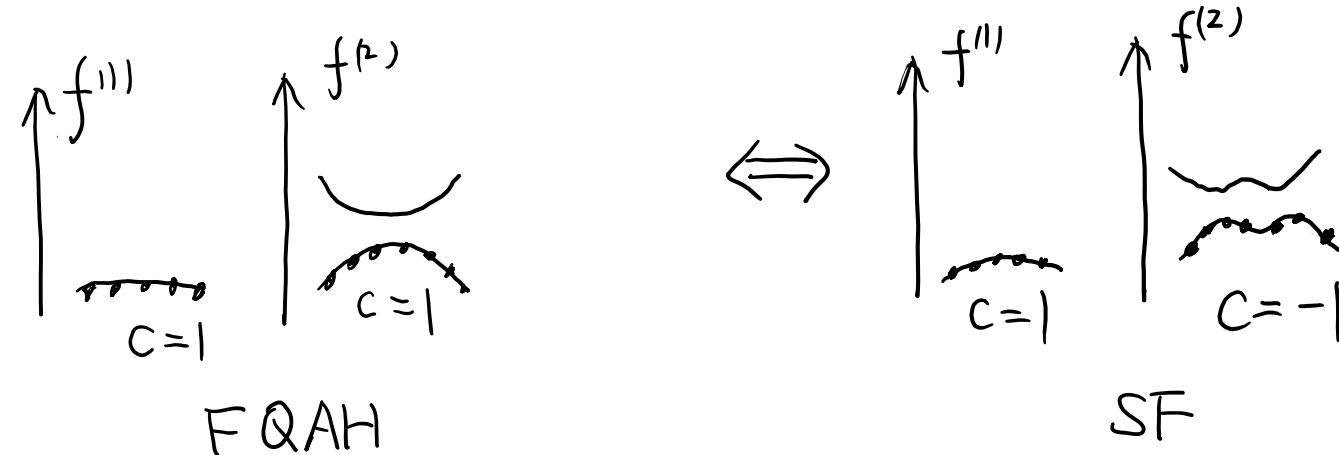
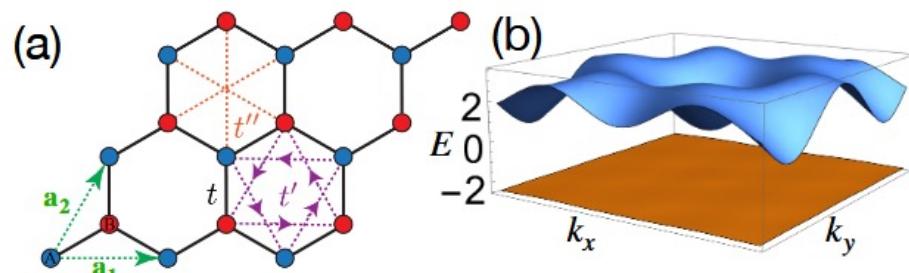
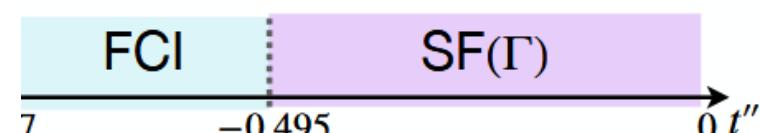
- Parton band inversion \rightarrow quantum phase transition

e.g. Bosonic $\frac{1}{2}$ -filled FQAH \Leftrightarrow Superfluid (Barkeshli-McGreevy 2011)



Ongoing/Future directions: Explore FQAH phase diagram

- Parton band inversion \rightarrow quantum phase transition
e.g. Bosonic $\frac{1}{2}$ -filled FQAH \leftrightarrow Superfluid (Barkeshli-McGreevy 2011)



Recent **DMRG** sees the continuous phase transition
But has **no access to parton bandstructure**

Continuous Transition between Bosonic Fractional Chern Insulator and Superfluid

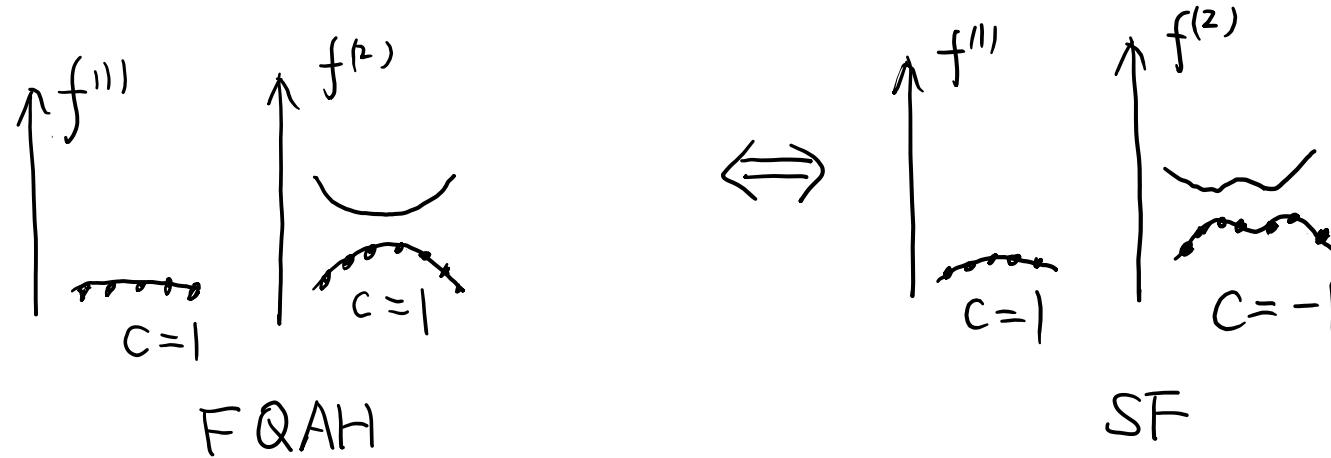
Hongyu Lu ¹, Han-Qing Wu ², Bin-Bin Chen ^{1,*}, and Zi Yang Meng ^{1,†}

Show more

Ongoing/Future directions: Explore FQAH phase diagram

- Parton band inversion \rightarrow quantum phase transition

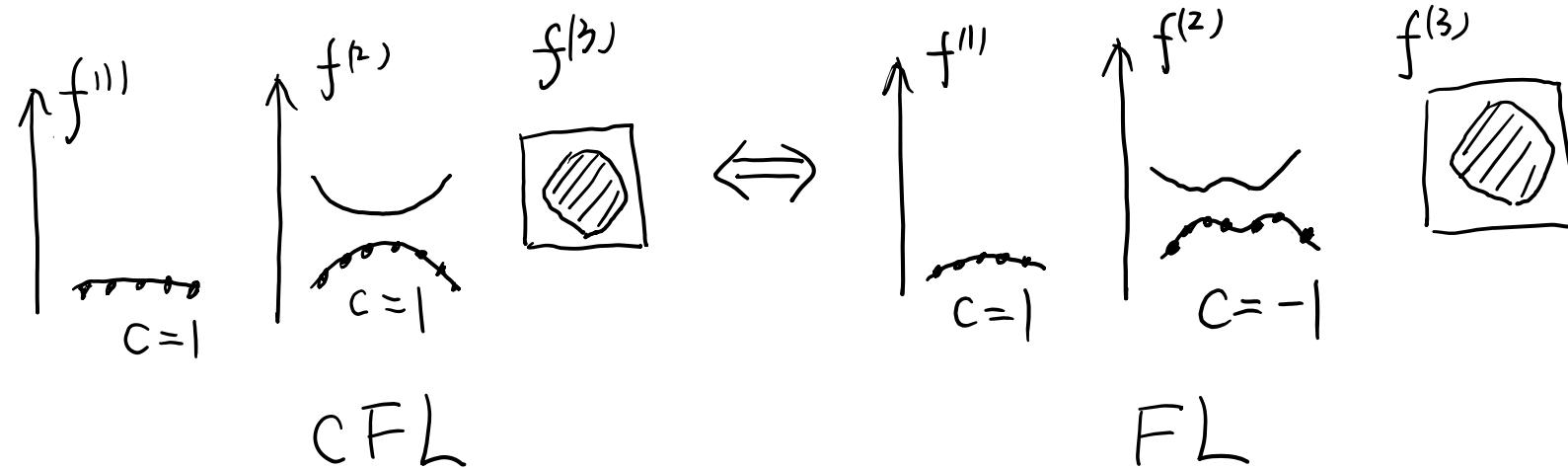
e.g. Bosonic $\frac{1}{2}$ -filled FQAH \Leftrightarrow Superfluid (Barkeshli-McGreevy 2011)



Ongoing/Future directions: Explore FQAH phase diagram

- Parton band inversion \rightarrow quantum phase transition

e.g. Composite Fermi liquid \Leftrightarrow Fermi liquid (Barkeshli-McGreevy)



Ongoing/Future directions: Explore FQAH phase diagram

- Parton band inversion \rightarrow quantum phase transition
 - e.g. Bosonic $\frac{1}{2}$ -filled FQAH \Leftrightarrow Superfluid
 - Fermionic $\frac{1}{2}$ -filled CFL \Leftrightarrow Fermi liquid

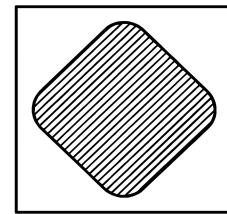
Ongoing/Future directions: Explore FQAH phase diagram

- Parton band inversion \rightarrow quantum phase transition

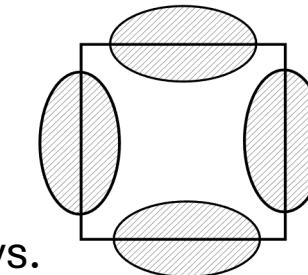
e.g. Bosonic $\frac{1}{2}$ -filled FQAH \Leftrightarrow Superfluid

Fermionic $\frac{1}{2}$ -filled CFL \Leftrightarrow Fermi liquid

- Composite Fermi liquids



vs.



- Pairing and nonabelian states

Ongoing/Future directions: Dynamical Hdet

- Based on the Projective expansion, one can compute the time-evolution of Hdet wavefunctions. Namely, we can really write down:

$$S = \int dt \langle \text{Hdet}[T(t)] | i\partial_t - \hat{H} | \text{Hdet}[T(t)] \rangle$$

- This calculation will reveal the collective modes

Magnetoroton (Girvn-McDonald-Platzman 1986, Haldane 2011)

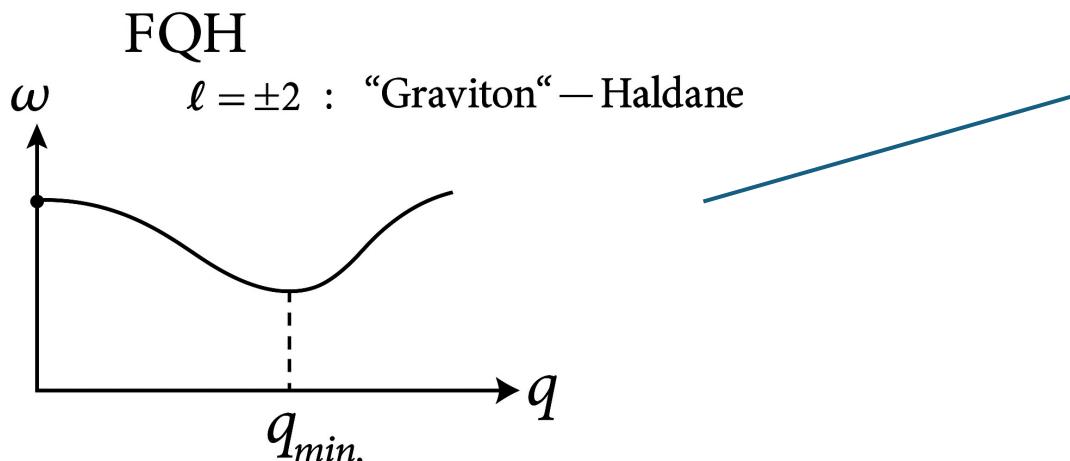
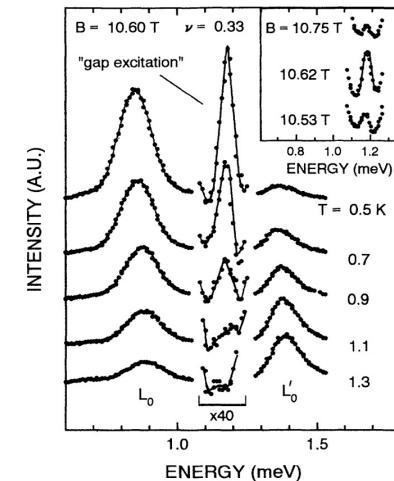


FIG. 1. Temperature dependence of inelastic light scattering spectra of a low-lying excitation of the FQHE at $\nu = \frac{1}{3}$. The single quantum well has density $n = 8.5 \times 10^{10} \text{ cm}^{-2}$. The inset shows the B dependence of the 0.5 K spectra. The light scattering peak, labeled "gap excitation," is interpreted as a $q = 0$ collective gap excitation. The bands labeled L_0 and L'_0 comprise the characteristic doublets of intrinsic photoluminescence. The temperature dependence of the L_0 and L'_0 intensities is due to the optical anomaly at $\nu = \frac{1}{3}$.

Pinczuk et.al, PRL 1993

Thank you!