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Textbook examples Classical Many-Body Systems

Example: 2D Ising model Example: 2D XY model
(ij) (if)
=—J Z cos(0;—0) 0=0,n XY spins
W oo S0@): G~ 6+a
Ising spins symmetry: R O0—>—0 l

——

s, —> s . In 2D... continuous symmetry cannot be broken (Mermin-Wagner theorem)
Z 5 symmetry: 0. 5 0+ Vi | -
i i Tt But... still has a phase transition...

Berezinskii-Kosterlitz-Thouless (BKT) Transition

Ferromagnetic T

) ‘ Ikt
—i_zz broken Paramagnetic > Quasi-long range order (QLRO) Paramagnetic
T
1 1 T

(cos(6; — O,5)) ~ 1/R" (cos(0; — O,,p)) ~ exp(—R/&)

1
<E > eXp(iQJ-)> =0
J
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Example: 2D g-state clock model... somewhere between Ising and XY

H = —JZ cos(6; — 6) 2””
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Ferromagnetic

Z,: 6. — 0.4
D, symmetry:

R 0 - —0.

Interesting scenario happens for g > 5

at intermediate 7...
there is an emergent O(2) symmetry
that cannot be broken... gives a QLRO phase

QLRO

VA " broken
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Paramagnetic

(2)
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Example: 2D g-state clock model... somewhere between Ising and XY 7 050 2mnm
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q - l :
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H=-J ) cos(@d —0. = — — —
Z ( ) 0 n 0,1,...,q 1 P - 91'_)_91’
(i)
Interesting scenario happens for g > 5
Y i A at intermediate 7...
there is an emergent O(2) symmetry
that cannot be broken... gives a QLRO phase
Ising spins XY spins 6-state clock spins
Ferromagnetic QLRO

VA " broken

Paramagnetic

(cos(@:— 0., p)) ~ L/R"  |{cos(6;— O,z)) ~exp(—R/E) T

1 .
E 2 exp(zé}) #* 0 T(l) T(z)

Emergent O(2) symmetry

j BKT BKT
Polar plot of complex order parameter: ' - 1 — 1
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Example: 2D g-state clock model...

H——JZCOS(H 6’) 9:%-

(ij)
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D, symmetry:
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at intermediate 7...
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Example: 2D g-state clock model... somewhere between Ising and XY 7 0.0 2mnm
. . —> . 4
q° VI ] :
YN D, symmetry: q ...Vi
H=—J<E“> cos(Hi—é’j) 9:7; n=0,1,..,q9—1 R0 —>—0
i

Interesting scenario happens for g > 5

at intermediate 7...
there is an emergent O(2) symmetry

* v that cannot be broken... gives a QLRO phase
XY spins 6-state clock spins

——

Ising spins

Ferromagnetic QLRO
Z, broken Emergent O(2) symmetry

Paramagnetic

(cos(0;,—O,)) ~ 1/R" | {cos(0,— 0, g)) ~ exp(—R/E)

1 .
E 2 exp(zé’j) #* 0 T(l) T(z)

i BKT BKT

T

Soften the ‘clock’ restriction
by putting energy penalty
RG relevant

1.., h; — oo at infrared

Hyp=—J) cos(0,—0) —h ) cos(gd) 0<06<2mh >0

(i) i
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Example: 2D g-state clock model...

H=—1J) cos6—0) gz_-
(i)

somewhere between Ising and XY

Z,: 6. — 0.4
D, symmetry:

R .0 ——0,

Interesting scenario happens for g > 5

at intermediate 7...
there is an emergent O(2) symmetry

that cannot be broken... gives a QLRO phase
Ising spins XY spins 6-state clock spins
Ferromagnetic QLRO
Z, broken Emergent O(2) symmetry Paramagnetic

1
— exp(i6,) 750

J

Soften the ‘clock’ restriction
by putting energy penalty
RG relevant

1.., h; — oo at infrared

Hyp=—J ) cos(t;— 6)) - hIZcos(qe) 0<6 <27 h >0

(ij)

(cos(6; — O, 5)) ~ 1/R"

Becomes RG irrelevant
1.e., iy = 0 at infrared
Description becomes XY model

(cos(6; — 0, 5) ) ~ exp(—R/E)

(2)
TBKT
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Frustrated Classical Many-Body Systems

H=-J, Z cos(0; — 0,) + J, Z cos(0; — 0)
(ij) (i)

Nearest-neighbor
ferromagnetic interaction

Next-nearest neighbor
anti-ferromagnetic interaction



Frustrated Classical Many-Body Systems

H = —lecos(é’i—é’j)+J2 Z cos(6; — 6)) 0=——:; n=0,l,.,9—1....witheveng > 6

(&) UM,

Note: Even the Ising (Gangat, PRB 2024,
Chatelain, PRE 2025),

and XY (Song et. al., PRB 2025) limits
are still debated and under active considerations

Nearest-neighbor
ferromagnetic interaction

Next-nearest neighbor
anti-ferromagnetic interaction
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Corner transfer matrices
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Boundary MPS tensors

MPS: Matrix Product states
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“Classical-Quantum correspondence in action” Boundary (infinite) MPS
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CTMRG I

»
__J
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P o . .
Partition function Z = e PHUsYH — Tr|{ 30 &
Z '

S ' TN

e Efficient, elegant, deterministic
* Calculation of observables, correlation functions.. as easy as 1t can get.. exactly similar to MPS methods for 1D quantum systems
e von Neumann Entanglement Entropy (EE) ‘for a classical system’... (almost) no extra computational cost...

 Calabrese-Cardy scaling of EE to get the central charge and the universality class... without much trouble...
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Option 1: Traditional Classical Monte Carlo (CMC)... CMC still a powerful and useful tool

Frustration = Single spin-flip updates = large autocorrelation time / critical slowing down

Option 2: Tensor Network methods...
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J,-J, Model... In the XY limit

H=-/J Z cos(0; — 0,) + J, Z cos(0; — 0)
(ij) (i)

Paramagnetic

T/J,

7, NM

QLRO ' QLRO @ Z, NM

00\ 02 04 06 08 1.0
Jo/ Jh

Quasi-long-range-order phase
as U(1) symmetry cannot break

<cos(0i — «9i+R)> ~ 1/R"

Loison et. al., PRB 2000
Song et. al., PRB 2025
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H=-J, Z cos(0; — 0,) + J, Z cos(0; — 0,) At T = 0... the energy 1s independent of the relative angle between
(f) (7)) two \/5 X \/5 sub-lattices...
) A /y,
Paramagnetic O——@&—0O0—0—0
g CI: /:1\ :;}\ - S /I)
| Z2 NM //v\\ ,/V\\ N ,/'{\ i
o U
\,\/ \A, ,, R
QLRO : QLRO & Z, NM L7 e RN 'S %
00\ 02 04 06 08 1O S MR IDCI
Jo/ Ty @ MG M S &
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H=-J, Z cos(f; — Hj) +J, Z cos(f; — 6’J-) At T = 0... the energy 1s independent of the relative angle between
(f) (7)) two \/5 X \/5 sub-lattices...
Giving U(1) X U(1) degeneracy
] A /y,
Paramagnetic O—Q&—O0—O0—
S ——p 5 —D
| Z2 NM //v\\ ,/V\\ N ,/'{\ i
o U
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J,-J, Model... In the XY limit

H=-J, Z cos(f; — Hj) +J, Z cos(f; — 6’J-) At T = 0... the energy 1s independent of the relative angle between
(f) (7)) two \/5 X \/5 sub-lattices...
Giving U(1) X U(1) degeneracy
J 4 /y,
Paramagnetic @ —O O——
_ But at finite T “order-by-disorder” kicks in ... O IS DT 7
< locking the relative angle to either O or z o M U & W
~ symmetry reduces to U(1) X Z, N I S RV
Z, NM forming a Z,-broken Nematic (Z, NM) order... [." “<1." "1/ ~ .7~ !
O % o ; ) \__)\ )
\,\/ \A, ,, R
QLRO : QLRO & 7, NM 03 v
00\ 02 04 06 08 1.0 S| 0| el X
Jo/ Ji o L M. SRR A
Quasi-long-range-order phase Two /2 X1/2 sub-latticgs\("
as U(1) symmetry cannot break = red and blue sub-lattices

<cos(0i — «9i+R)> ~ 1/R"

Loison et. al., PRB 2000
Song et. al., PRB 2025
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UM,

Paramagnetic

| Jo/Ji

Quasi-long-range-order phase

as U(1) symmetry cannot break

<cos(0i — «9i+R)> ~ 1/R"

J,-J, Model... In the XY limit

H=-J, Z cos(0; — 0,) + J, Z cos(0; — 0)

At T = 0... the energy 1s independent of the relative angle between
two \/5 X \/5 sub-lattices. ..

Giving U(1) X U(1) degeneracy

But at finite T “order-by-disorder” kicks in ...
locking the relative angle to either O or &
symmetry reduces to U(1) X Z,

forming a Z,-broken Nematic (Z, NM) order...

Spins within each sublatice tries to order

anti-ferromagnetically...
fails due to Mermin-Wagner... QLRO

(cos(6; — O,5)) ~ 1/R"

Nematic order parameter k ~ % 1

— cos (0; — bit5) — cos (Biys — Oirayy)).
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J,-J, Model... In the XY limit

H=-/J Z cos(0; — 0,) + J, Z cos(0; — 0)
(ij) (i)

Paramagnetic

T/J,

7, NM

QLRO ' QLRO @ Z, NM
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J,-J, Model... In the XY limit

H=-/J Z cos(0; — 0,) + J, Z cos(0; — 0)

T/J,

{ij) (i) At small J,/J, > 1/2... after BKT transition...
QLRO & Z, NM phase goes to a phase... with no QLRO...
) Paramagnetic

BKT

BKT but non-zero nematic order x #= 0...

_ /7, NM phase... two-fold degeneracy

Ising
7, NM
This Z, NM phase 1s connected to the paramagnetic phase by Ising transition

QLRO : QLRO & Z, NM

0.0 02 04 06 08 1.0
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J,-J, Model... In the XY limit

H=-J, Z cos(f; — Hj) +J, Z cos(f; — 9j)

{ij) (i) At small J,/J, > 1/2... after BKT transition...
QLRO & Z, NM phase goes to a phase... with no QLRO...
) Paramagnetic
BKT
| BKT but non-zero nematic order x #= O...
=) . /7, NM phase... two-fold degeneracy
~ Ising
7, NM
‘ This Z, NM phase 1s connected to the paramagnetic phase by Ising transition
QLRO : QLRO & Z, NM
0.0 02 04 06 08 10
Jo/ Jq
At higher J,/J; > 1/2... QLRO @ Z, NM phase directly goes Simultaneous destruction of Z, NM order and
paramagnetic phase via BKT QLRO 1s still not understood

These results were hypothesized in two decades old CMC study: Loison et. al., PRB 2000
Only confirmed rigorously using TN: Song et. al., PRB 2025
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J,-J, Clock Model

2
H=—J Y cos@—0)+J, ¥ cos@,—6) 0=""; n=0],.,q9-1
(i) (i) 9

[ will show results for g = 6... 1.00
but results remain valid for any even g > 6

" 7+ AFM @ Z, NM

0.0 0.2 0.4 0.6 0.3
Jo/Jq




H=-J, Z cos(0; — 0) + J, 2 cos(0; — 0)
(if) (i)

I will show results forg = 6...
but results remain valid for any even g > 6

J,-J, Clock Model
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H=-J, Z cos(0; — 0) + J, 2 cos(0; — 0)
(if) (i)

I will show results forg = 6...
but results remain valid for any even g > 6

J,-J, Clock Model
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J,-J, Clock Model

2nrw

H=—1J ) cos(0,—0)+J, ) cos(,—0) O=—: n=0]l..g-1
(il (i) 7
[ will show results for g = 6... 1.00
but results remain valid for any even g > 6
0.80 -
—< 0.60 -
~_
0.
0.20 -
Unfrustrated regime: 0'010.()

Jy < Jy/2

Ferromagnetic QLRO

7 g broken Emergent 0(2) symmetry Paramagnetic Our notation

Six fold degeneracy 0 2 even multiples of /g,
from Z, breaking 7, Tggr ' ' ' ' '
6 & ~BKT 1.€., 2nn/q... just like the microscopic theory

(e) # 0



H=-J, Z cos(f; — Hj) +J, 2 cos(f; — (9]-)
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J,-J, Clock Model
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J,-J, Clock Model

2nrw

H=—1J ) cos(0,—0)+J, ) cos(,—0) O=—: n=0]l..g-1
(il (i) 7
At T = 0... the energy 1s independent of the relative 1.00
angle between two \/5 X \/5 sub-lattices... 0.80 - FM
Giving Z¢ X Z degeneracy _ )
= 0.60
~
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J,-J, Clock Model

H=-J, Z cos(0; — 0) + J, 2 cos(0; — 0)
(if) (i)

At T = 0... the energy 1s independent of the relative
angle between two \/5 X \/5 sub-lattices...

Giving Z¢ X Z degeneracy

But at finite 7" “order-by-disorder” kicks 1n ...
locking the relative angle to either O or
symmetry reduces to Zg X Z,

forming a Z,-broken Nematic (Z, NM) order...

0

2nrw

q
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1.00
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—< 0.60 -
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J,-J, Clock Model

2nrw

H=-J, Z cos(0; — 0) + J, 2 cos(0; — 0)
(if) (i)

At T = 0... the energy 1s independent of the relative
angle between two \/5 X \/5 sub-lattices...

Giving Z¢ X Z degeneracy

But at finite 7" “order-by-disorder” kicks 1n ...
locking the relative angle to either O or
symmetry reduces to Zg X Z,

forming a Z,-broken Nematic (Z, NM) order...

On the other hand spins within each sublatice tries
to order anti-ferromagnetically... success

- 1 i iy -
m = L2/2 Z(—l) T exp(zﬂ(im,iy)), 00{6
Yayly 00
2.
1 ?@,'
K= Z<COS (6 — Oi+2) + cos (Oi+y — Gitity) 0
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J,-J, Clock Model

H=—lecos(9i—(9j)+122cos(Hi—Hj) 0 =

(&) UM,

At T = 0... the energy 1s independent of the relative
angle between two \/5 X \/5 sub-lattices...

Giving Z¢ X Z degeneracy

But at finite 7" “order-by-disorder” kicks 1n ...
locking the relative angle to either O or
symmetry reduces to Zg X Z,

forming a Z,-broken Nematic (Z, NM) order...

On the other hand spins within each sublatice tries
to order anti-ferromagnetically... success

3 1 ity -
m = 2/ Z(—l) T exp(zf)(im,iy)), 00{6
Ba by 00
4.
1 <6,
K = Z<COS (Hi — 9i+:i‘:) -+ COS (9i+g — 9i+5c+y) 0
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J,-J, Clock Model

2nrw

H=—1J ) cos(0,—0)+J, ) cos(,—0) O=—: n=0]l..g-1
(i (i) 1
At T = 0... the energy 1s independent of the relative 1.00
angle between two \/5 X \/5 sub-lattices... 0.80 - M
. &
Giving Z X Z degeneracy ~0.60- {'?O
But at finite 7 “order-by-disorder” kicks 1n ... E 0.40 -
locking the relative angle to either O or ‘
symmetry reduces to Zg X Z, 0.90 -
forming a Z,-broken Nematic (Z, NM) order... ‘ L
001 Z FM \Z+ AFM @ Z, N\M
On the other hand spins within each sublatice tries 0.0 I Classical 0 L 70
to order anti-ferromagnetically... success Monte Carlo . .
5
P 1)i=tiv exp(if 7 8 |
T I/ Z_Z(_ ) exp(i,.i,)); 0{6,} —>— = 00§
x iy 0 =
, o?e 12 fold degeneracy € —0.5
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J,-J, Clock Model

2nrw

H=—1J ) cos(0,—0)+J, ) cos(,—0) O=—: n=0]l..g-1
(i) (i) 9

1.00
0.80-
< 0.00 -
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H=-/J Z cos(0; — 0) + J, 2 cos(0; — 0)
ij) (i)

The J,-J, XY physics

With increasing 7'... O(2) symmetry emerges...

that cannot hold AFM order.... QLRO

Nematic Z, remains broken...

altogether... QLRO & Z, NM...
like the low-T phase of XY model...

J,-J, Clock Model
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J,-J, Clock Model

2
H=—J Y cos@—0)+J, ¥ cos@,—6) 0=""; n=0],.,q9-1
(il (i) 7
1.00
The J;-J, XY physics 0.80 -
With increasing 7... O(2) symmetry emerges. .. —< 0.60 -
that cannot hold AFM order.... QLRO E
0.40 -
Nematic Z, remains broken...
0.20 -
altogether... QLRO @ Z, NM... ' ZF AFM @ Z,NM
like the low-T phase of XY model... 0.01 - — - -
0.0 0.2 0.4 0.6 0.8 1.0
Jo/Jq

Again like XY model... QLRO & Z, NM goes to (via BKT)
another Nematic phase... with no QLRO....

This Z, NM phase... then goes to paramagnetic phase... via Ising transition...



J,-J, Clock Model
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J,-J, Clock Model

2nrw

H=—1J ) cos(0,—0)+J, ) cos(,—0) O=—: n=0]l..g-1
(i) (i) 1
Another ordered phase... with 12-fold degeneracy... 1.00
~ 1 ) 7 . . 7]
m = 2/ 2Z;(—l) =ty exp(i0(;,,i ), 6)0{6 0.30
: “oy,, = 0.60-
e
1 6. ~—
o = Z<COS (0i — bitz) + cos (bitg — Oitaty) 0 ~ 0.40 -
— 08 (6 — i19) — c05 (Bhss — Brsa19)).
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Just like the low-T ... Z;’ AFM @ Z, NM phase.... i Z} AFM @ Z, NM
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J,-J, Clock Model

2nrw

H=—1J ) cos(0,—0)+J, ) cos(,—0) O=—: n=0]l..g-1
(i) (i) 1
Another ordered phase... with 12-fold degeneracy... 1.00
. 1 i . : 3}
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e
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Just like the low-T ... Zg’ AFM @ Z, NM phase....
But...
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J,-J, Clock Model
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H=—J, Y cos@—0)+J, ¥ cos@;—6) =" n=0l,..qg-1
(i (i) 1
Another ordered phase... with 12-fold degeneracy... 1.00
. 1 i . : 3}
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e
1 6. ~—
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Just like the low-T ... Zg’ AFM @ Z, NM phase....
But...
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New emergent degrees-of-freedom

Not allowed 1n the microscopic theory

Comes from an emergent Z  symmetry
different from the microscopic theory
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J,-J, Clock Model
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J,-J, Clock Model
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J,-J, Clock Model
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J,-J, Clock Model

2nrw

H=—1J ) cos(0,—0)+J, ) cos(,—0) O=—: n=0]l..g-1
(i) (i) 1
1.0 1.0 N
0.5 30 0.5 20
EO.O , o0 | Transition ?? go.o
—0.9 10 —0.9
—1.0 0 —1.0 0
—1.0-0.5 0.0 0.5 1.0 —1.0—-0.5 0.0 0.5 1.0
o o
q 2mrw . q
Breaks Z,: 0, — 0,1 ... Vi
q

i1s still a residual symmetry
Two vacua remain invariant

not a residual symmetry



H=-J, Z cos(f; — 9]-) +J, 2 cos(f; — (9]-)
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H=-J, Z cos(f; — 9]-) +J, 2 cos(f; — (9]-)
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Breaks Zq :

1s still a residual symmetry
Two vacua remain mvariant

Transition ??

e e

J,-J, Clock Model

2nrw

0=——:; n=0l1,...,9g—1

q

—1.0-0.5 0.0 0.5

1.0 -
0.5 - 20
€ 0.0
E 10
—0.5
~1.0 0

1.0
=
2mr q

.. Vi

0. — 0.1

q

not a residual symmetry

The Z;—” phases breaks incompatible Z  symmetries

Incompatible in the sense of Landau paradigm...
Two orders cannot coexist. ..

According to Landau paradigm....
these two phases can be separated either by...

(a) a first-order direct transition (present in our case)
or, by
(b) a third intervening phase (also present)



H=-J, Z cos(f; — Hj) +J, 2 cos(f; — HJ-)
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J,-J, Clock Model
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not a residual symmetry

The Z;—” phases breaks incompatible Z  symmetries

Incompatible in the sense of Landau paradigm...
Two orders cannot coexist. ..

According to Landau paradigm....
these two phases can be separated either by...

(a) a first-order direct transition (present in our case)
or, by
(b) a third intervening phase (also present)

Any direct continuous transition between these two phases... 1s therefore... Landau-incompatible. ..

Classical analogue of Deconfined Quantum Criticality...
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Any direct continuous transition
between these two phases... 1s therefore. ..
Landau-incompatible...

See also...

Classical Origins of Landau-Incompatible Transitions,
Abhishodh Prakash and Nick G. Jones, PRL (2025)
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Any direct continuous transition
between these two phases... 1s therefore. ..
Landau-incompatible...

See also...

Classical Origins of Landau-Incompatible Transitions,
Abhishodh Prakash and Nick G. Jones, PRL (2025)
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topological defects of one order trap the charged degrees of
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enlarged symmetry (will come back to this)... and...
topological defects of one order trap the charged degrees of
freedom of the other, whose condensation drives the transition

Do we also see this here ??
Let us first discuss this from field theoretic arguments
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Phenomenological Field Theory

Postulated field theory atop the Z, NM order
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Phenomenological Field Theory

Postulated field theory atop the Z, NM order Relevant when K < 2
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Phenomenological Field Theory

Postulated field theory atop the Z, NM order Relevant when K < 2
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Phenomenological Field Theory

Postulated field theory atop the Z, NM order Relevant when K < 2
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Phenomenological Field Theory

Postulated field theory atop the Z, NM order Relevant when K < 2
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Landau-incompatible deconfined transition

A critical O(2) symmetric Gaussian field theory Responsible for emergent Zq symmetry and order

continuous transition as y changes sign



Phenomenological Field Theory

Postulated field theory atop the Z, NM order
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Relevant when K < 2
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Phenomenological Field Theory
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Phenomenological Field Theory
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1. For the first time, we map out the phase diagram of 2D frustrated )

classical J;-J, clock model.

2. We show a unique form of emergence, where coarse-grained degrees of |
freedom are not allowed by microscopic theory, and realized not by an

RG irrelevant operator... but by frustration and an RG relevant Vishnu Pulloor
operator. Kuttanikkad

3. We show the classical analogue of deconfined transitions... between
two symmetry-broken phase with incompatible symmetries... with being
the emergent one...

Phases L, symm. |is critical|Z, symm. Abhishodh Prakash
7 (spatial)
+ S
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Zq— AFM @ ZZ NM Broken (|) NO Broken Vishnu Pulloor Kuttanikkad, Abhishodh Prakash, Rajesh Narayanan, Titas Chanda

PM Unbroken No Unbroken To appear in PRL...




That would be the end...

Please visit us @ IlIT Madras

Thank you !l ...
questions??
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