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the Standard Model…”
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 O(λt, λr) = λ−ΔO(t, r)
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Frustration + relevant perturbation                   emergent symmetry                    emergent order

We are going to contradict this conventional wisdom on emergence… in a classical many-body system
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 H = − J1 ∑
⟨ij⟩

cos(θi − θj) + J2 ∑
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cos(θi − θj)
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 …. with even  θ = 2nπ
q

; n = 0,1,…, q − 1 q ≥ 6

Note: Even the Ising (Gangat, PRB 2024,  
Chatelain, PRE 2025),  
and XY (Song et. al., PRB 2025) limits  
are still debated and under active considerations

Frustration @ IIT Madras campus
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These results were hypothesized in two decades old CMC study: Loison et. al., PRB 2000 
Only confirmed rigorously using TN: Song et. al., PRB 2025 

At higher  … QLRO  NM phase directly goes 
paramagnetic phase via BKT

J2/J1 > 1/2 ⊕ ℤ2 Simultaneous destruction of   NM order and 
QLRO is still not understood
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 H = − J1 ∑
⟨ij⟩

cos(θi − θj) + J2 ∑
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cos(θi − θj)

 -  Model… In the XY limitJ1 J2
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  brokenℤq

QLRO 
Emergent O(2) symmetry Paramagnetic
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BKT  T(2)

BKT

Unfrustrated regime: 
 J2 < J1/2

Our notation 
    effective (coarse grained) clock angles are 

even multiples of  ,  
i.e.,  … just like the microscopic theory
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Six fold degeneracy  
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With increasing  … O(2) symmetry emerges… 
that cannot hold AFM order…. QLRO 
 
Nematic   remains broken… 
 
altogether… QLRO  NM…  
like the low-  phase of XY model…
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Again like XY model… QLRO  NM goes to (via BKT) 
another Nematic phase… with no QLRO….   
 
This   NM phase… then goes to paramagnetic phase… via Ising transition…
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Another ordered phase… with 12-fold degeneracy…
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Not allowed in the microscopic theory 
 
Comes from an emergent   symmetry 
different from the microscopic theory
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  …   
is still a residual symmetry 
Two vacua remain invariant

ℛ : θi → − θi ∀i   …   
not a residual symmetry
ℛ : θi → − θi ∀i
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Let us first discuss this from field theoretic arguments
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freedom of the other, whose condensation drives the transition
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Summary

Vishnu Pulloor  
Kuttanikkad

Rajesh Narayanan

Abhishodh Prakash

1. For the first time, we map out the phase diagram of 2D frustrated 
classical  -  clock model. 

2. We show a unique form of emergence, where coarse-grained degrees of 
freedom are not allowed by microscopic theory, and realized not by an 
RG irrelevant operator… but by frustration and an RG relevant 
operator. 

3. We show the classical analogue of deconfined transitions… between 
two symmetry-broken phase with incompatible symmetries… with being 
the emergent one…

J1 J2

To appear in PRL…



That would be the end…

Please visit us @ IIT Madras

Thank you !!! … 
questions??
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