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High performance quantum computing 
or how to program the future quantum computer
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Classical computers have come a long way

Antikythera mechanism 
astronomical positions 

(100 BC)

ENIAC  
(1946)

Kelvin’s harmonic analyzer 
prediction of tides 

(1878) 

analog devices 
conceptually simple 

calibration and scaling problems

digital devices 
more complex 

but general purpose  
and error correcting

天河-2 
(2013) 
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The success of digital computers and Moore’s law

CPU cores: 1024 8’192 3’120’000
Power: 1 MW 3 MW 20 MW

Amdahl’s law: 99.99993% parallel

1 MW = 1 MCHF / year
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HPC 2014 
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FROM CLOUDS AND BIG DATA TO EXASCALE AND BEYOND
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� We are not referring to 10**21 flops

� “Beyond exascale” systems as we are defining them will be 
based on new technologies that will finally result in the 
much anticipated (but unknown) phase change to truly new 
paradigms/methodologies. The session will therefore also 
include presentations on architecture advances that may be 
enabled as a consequence of technology progress.

� The focus of this session is principally on forward‐looking 
technologies that might determine future operational 
opportunities and challenges for computer systems beyond 
the exascale regime.  

What is “Beyond Exascale Computing?”

We should not compare (potential) quantum computers to 
single cores of current CPUs 

The competition are the best special purpose  
classical devices that one might build in 10-20 years
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Beyond Moore’s law: quantum devices

Quantum randomness
perfect random numbers

Quantum encryption

secure communication

Quantum annealer

solve hard optimization problems? Quantum computers?

Q

Quantum sensing

high sensitivity sensors

Analog quantum simulators

solve quantum models
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▪ Need 2N complex numbers to store the wave function of N qubits 
▪ O(2N) classical operations to perform a quantum gate on N qubits

7

Simulating quantum computers

Qubits Memory Time for one gate
10 16 kByte microseconds on a watch
20 16 MByte milliseconds on smartphone
30 16 GByte seconds on laptop
40 16 TByte seconds on supercomputer
50 16 PByte seconds on top supercomputer
60 16 EByte minutes on future supercomputer
70 16 ZByte hours on potential supercomputer?
… … …
250 size of visible universe age of the universe
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Step #0: the business case
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What are the important applications …  

… that we can solve on a quantum computer … 

… but not special purpose post-exa-scale classical 
hardware that we may build in ten years?

9

Quantum computing beyond exa-scale
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What problems will we solve on a quantum computer?

design better drugs counter climate 
change

fold proteins

optimize  
hard problems

design better 
batteries

realize artificial 
intelligence

eradicate diseases

cure cancer

fight hunger
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What problems will we solve on a quantum computer?

design 
better drugs

counter 
climate 

fold proteins

optimize  
hard problems

design 
better 

realize 
artificial 

eradicate 
diseases

cure cancer

fight hunger

This is a list for a quantum wishing well 

Which of these can actually profit from quantum 
computers?
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Step #1: find a quantum algorithm
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Can we use any of them in real-world applications?

13

Many algorithms with known quantum speedup

http://math.nist.gov/quantum/zoo/
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▪ Check whether a binary function is constant or not 

▪ Classically two function calls are needed: f(0) = f(1)? 

▪ Quantum mechanically only one function call by applying the 
function to both arguments at once

14

The Deutsch algorithm: simplest quantum speedup

f :{0,1}→ {0,1}

U f x y → x f (x)⊕ y

U f α 0 + β 1( ) 0 →α 0 f (0) + β 1 f (1)

x
y

x
f (x)⊕ y

U f
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▪ Common misconception: quantum computers are faster since 
they work on all possible inputs in parallel  

▪ If I measure the result I get either f(0) or f(1), chosen randomly! 

▪ We need to compute one global result based on all inputs and 
measure just that one result!

15

The Deutsch algorithm: simplest quantum speedup8.1.4 The Deutsch and Deutsch-Jozsa algorithms

The Deutsch algorithm and its generalization, the Deutsch-Jozsa algorithm are the
simplest quantum algorithms that show an advantage over classical algorithms, even
though the problem they solve is somehow artificial. You are given a binary function
f (function values are either 0 or 1) and know that either the function is constant, or
it is balanced, i.e. it is 0 for exactly half the inputs and 1 for the other half. The
Deutsch and Deutsch-Jozsa algorithm can decide between the two cases with exactly
one function call.3

The Deutsch algorithm

The Deutsch algorithm asks the question to decide whether a binary function of one
input variable f : {0, 1} → {0, 1} is balanced or constant. Classically one has to
obviously make two function calls and determine f(0) and f(1) to decide since we need
to check whether f(0) = f(1). Equivalently we can calculate f(0) ⊕ f(1), where ⊕
denotes binary addition modulo 2. If this value is zero, then f is constant.

If the function f is given as a quantum algorithm Uf that takes an input state |x⟩|y⟩
to a state |x⟩|f(x) ⊕ y⟩ then we can determine whether the function is constant in a
single function call with the following algorithm:

|0⟩ H
Uf

H

|1⟩ H

We thus start in a state |0⟩|1⟩ and apply a Hadamard gate to each qubit, giving the
state 1

2(|0⟩+ |1⟩)(|0⟩ − |1⟩). Applying the function f we obtain

(−1)f(0)1
2

(

|0⟩+ (−1)f(0)⊕f(1)|1⟩
)

(|0⟩ − |1⟩). (8.7)

Since the state of the second qubit is constant and the global phase irrelevant we drop
them both and focus on just the first qubit’s state 1√

2
(|0⟩+ (−1)f(0)⊕f(1)|1⟩). Applying

another Hadamard gate we end up with the final quantum state

1

2
((1 + (−1)f(0)⊕f(1))|0⟩+ (1− (−1)f(0)⊕f(1))|1⟩) (8.8)

We see that in a final measurement we get the state |0⟩ with certainty if f(0) = f(1)
and the state |1⟩ otherwise. A single function call and single measurement can thus tell
if the function is constant or nor.

The Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm generalizes the Deutsch algorithm to functions defined
not just over two values but 2N values, encoded in N bits. The question is once more
whether the function f : {0, 1}N → {0, 1} is balanced or constant. In a deterministic
classical algorithm this requires at least 2N−1+1 function calls. The quantum algorithm

3The discussion here partially follows the presentation on WIkipedia

81

U f x y → x f (x)⊕ y

U f α 0 + β 1( ) 0 →α 0 f (0) + β 1 f (1)

x
y

x
f (x)⊕ y

U f

1
2

1+ (−1) f (0)⊕ f (1)( ) 0 + 1− (−1) f (0)⊕ f (1)( ) 1⎡⎣ ⎤⎦

=
0 if f (0) = f (1)
1 if f (0) ≠ f (1)

⎧
⎨
⎪

⎩⎪
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▪ Massively parallel computers 
▪ use millions of loosely coupled CPU cores 
▪ we cannot just parallelize existing codes 

▪ Vector registers  
▪ do operations on 8-16 numbers at once 
▪ need to rethink the program and change algorithms 

▪ GPUs 
▪ very fast cores, all doing the same thing  
▪ need to rethink the program and change algorithms 

▪ One cannot just translate existing algorithms 
▪ Hardware-software co-design is needed to realize the potential 

of new architectures

16

New computer architectures require new algorithms
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▪ Factoring is hard classically: O(exp(N1/3)) time for N bit - numbers 

▪ But is polynomial time on a quantum computer 
▪ O(N3) using minimal number of 2N+3 qubits 
▪ O(N2) using O(N) qubits 
▪ O(N) using O(N2) qubits 

▪ Shor’s algorithm suddenly made quantum computing interesting

17

Shor’s algorithm for factoring

53693968364269119460795054153326005186041818389302311662023173188470613584169777981247775554355964649
04452615804209177029240538156141035272554197625377862483029051809615050127043414927261020411423649694
63096709107717143027979502211512024167962284944780565098736835024782968305430921627667450973510563924

02989775917832050621619158848593319454766098482875128834780988979751083723214381986678381350567167  
= 

43636376259314981677010612529720589301303706515881099466219525234349036065726516132873421237667900245
9135372537443549282380180405548453067960658656053548608342707327969894210413710440109013191728001673

* 
12304864190643502624350075219901117888161765815866834760391595323095097926967071762530052007668467350
6058795416957989730803763009700969113102979143329462235916722607486848670728527914505738619291595079
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▪ Shor’s algorithm can be used to crack RSA encryption 
▪ assuming 10 ns gate time and minimal number of 2N+3 qubits 
▪ much faster (seconds) when using more qubits 

▪ How does Shor’s algorithm work? 
▪ It’s not as simple as “trying all factors in parallel” 
▪ We again need to obtain a single answer combining all possible inputs

18

Shor’s algorithm and encryption

RSA cracked in CPU years Shor

453 bits 1999 10 1 hour

768 bits 2009 2000 5 hours

1024 bits 1000000 10 hours
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1. Pick a random number a < N. 

2. Compute gcd(a, N) 

3. If gcd(a, N) ≠ 1, we have found a nontrivial factor of N. 

4. Otherwise find the period r, of the function f(x) = ax mod N,  
that is the smallest r>0 for which  ax+r mod N = ax mod N 

5. If r is odd or ar/2 ≡ −1 (mod N), go back to step 1. 

6. We have found a factor: gcd(ar/2 ± 1, N)
19

A factoring algorithm

This is hard classically!

A quantum computer can try all periods and 
find the right one by a Fourier transform!
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▪ But use of quantum computers to crack RSA is limited since we can 
switch to post-quantum encryption 

▪ quantum cryptography 
▪ lattice based cryptography

20

Shor’s algorithm and encryption

RSA cracked in CPU years Shor

453 bits 1999 10 1 hour

768 bits 2009 2000 5 hours

1024 bits 1000000 10 hours
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Challenge #0: the business case
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Choose your favorite problem

design better drugs counter climate 
change

fold proteins

optimize  
hard problems

design better 
batteries

realize artificial 
intelligence

eradicate diseases

cure cancer

fight hunger
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Can we use any of them in real-world applications?

23

Find a matching quantum algorithm

http://math.nist.gov/quantum/zoo/
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And develop it into a killer-app

1. Find quantum algorithm with quantum speedup

2. Implement all oracles and subroutines

3. Check for quantum speedup

4. Optimize code until logical circuit depth < 1014

5. Add error correction and check overhead and resources

6. Embed into specific hardware and check runtime

7. Run the quantum algorithm to solve the problem
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Step #2: implement the oracles

Step #3: check the speedup
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▪ Search an unsorted database of N entries in √N time 
▪ Rare case of provable quantum speedup given an oracle 

▪ However, the oracle needs to be implemented! 

▪ N-entry database needs at least O(N) hardware  
resources to store the data 

▪ Can perform the same search classically in  
log(N) time with special purpose hardware 

▪ Grover search is only useful if the database  
can be calculated on the fly 

▪ Are there important real-world applications? Optimization 
problems?

26

Grover search: implementing the oracle
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Quantum page rank: checking the scaling

Adiabatic Quantum Algorithm for Search Engine Ranking

Silvano Garnerone,1,2,5 Paolo Zanardi,2,5 and Daniel A. Lidar2,3,4,5

1Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
2Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, USA
3Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA

4Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
5Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA

(Received 25 October 2011; published 4 June 2012)

We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the

PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We

present extensive numerical simulations which provide evidence that this algorithm can prepare the

quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web

pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling

is the out-degree distribution. The top-ranked logðnÞ entries of the quantum PageRank state can then be

estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in

‘‘q-sampling’’ protocols for testing properties of distributions, which require exponentially fewer

measurements than all classical schemes designed for the same task. This can be used to decide whether

to run a classical update of the PageRank.

DOI: 10.1103/PhysRevLett.108.230506 PACS numbers: 03.67.Ac, 03.67.Lx, 89.20.Hh

Introduction.—Quantum mechanics provides computa-
tional resources that can be used to outperfom classical
algorithms [1]. Problems for which a polynomial or expo-
nential quantum speed-up is achievable have been sought in
quantum computation since its inception, and their ranks
are swelling slowly [2]. Yet, while ranking the results
obtained in response to a user query is one of the most
difficult tasks in searching the web [3], so far no efficient
quantum algorithms have been proposed for this task [4].

Here we present an adiabatic quantum algorithm [8]
which prepares a state containing the same ranking infor-
mation as the PageRank vector. The latter is a central tool
in data mining and information retrieval, at the heart of
the success of the Google search engine [3,9–12]. The
best available classical algebraic and Markov Chain
Monte Carlo (MCMC) techniques used to evaluate the
full PageRank vector require a time which scales as OðnÞ
and O½n logðnÞ$, respectively, where n is the number of
pages, i.e., the size of the web graph. We investigate the
size of the gap of the adiabatic Hamiltonian numerically
using a wide range of web-graph sizes (n 2 f22; . . . ; 214g),
and present evidence that our quantum algorithm prepares
the PageRank state in a time which scales on average as
O½polylogðnÞ$. We argue that while extraction of the full
PageRank vector cannot in general be done more effi-
ciently than when using the aforementioned classical algo-
rithms, there are particular graph-topologies and specific
tasks of relevance in the use of search engines for which the
quantum algorithm, combined with other known quantum
protocols [13–16], may provide a polynomial, or even
exponential speed-up. We discuss the underlying graph
structure which we believe is responsible for this potential

speed-up, and provide evidence that it is the power-law
distribution of the out-degree nodes that plays the key role.
A proof of this fact would be very interesting.
Model of the web-graph.—The PageRank algorithm,

introduced by Brin & Page [9], is probably the most promi-
nent ranking measure using the query-independent hyper-
link structure of the web. The PageRank vector is the
principal eigenvector of the so-called Google matrix, which
encodes the structure of the web-graph via its adjacency
matrix. The humongous size of the World Wide Web
(WWW), with its ever growing number of pages and links,
makes the evaluation of the PageRank vector one of the
most demanding computational tasks ever [12]. In practice
PageRank is evaluated over real data providing the structure
of the actual WWW. On the other hand the use of models of
the web-graph has proved to be useful in testing new ideas
concerning structure measures and dynamical properties of
theweb [11]. To accurately capture theWWWgraph a good
candidate model network should be (i) sparse (the number
of edges is proportional to the number of nodes), (ii) small-
world (the network diameter scales logarithmically in the
size of the network), and (iii) scale-free (the in- and
out-degree probability distributions obey a power law). To
analyze the scaling properties of our algorithmwe used two
well known models of the web graph: the preferential
attachment model [17], and the copying model [18].
These models are based on two different network evolution
mechanisms, both of which yield sparse random graphs
with small-world and scale-free (power-law) features.
We implemented a version [19] of the preferential attach-

ment model that provides a scale-free network withNðdÞ /
d%3, where NðdÞ is the number of nodes of degree d.

PRL 108, 230506 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
8 JUNE 2012

0031-9007=12=108(23)=230506(6) 230506-1 ! 2012 American Physical Society
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▪ log(N) qubits are sufficient, but are not practical 
▪ N qubits allow for a straightforward unary encoding 

▪ Page rank then solved by adiabatic evolution of a spin model 

▪ Needs O(Na) time with a ≈ 0.2…1 
when implementing N2 couplings in parallel 
using O(N2) hardware resources 

▪ Classical page rank needs O(1) matrix-vector multiplications,  
each of complexity O(dN) where d is the mean number of links

28

Complexity of quantum page rank

H (s) = h
i=1

n

∑ (s)iiσ i
+σ i

− + h
i< j

n

∑ (s)ij σ i
+σ j

− +σ j
+σ i

−( ),
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▪ Quantum speedup vanishes when comparing parallel quantum hardware 
to parallel special purpose classical hardware 

▪ Classical hardware requirements increase slower classically than quantum 
29

Compare to classical hardware
Quantum 
custom hardware

Classical  
general purpose

Classical  
custom hardware

Serial time 
complexity O(N2 polylog(N)) O(dN log(N)) O(dN)

Memory required O(N) qubits O(N) bits O(N) bits

Parallel time 
complexity O(N0.2) – O(N)

O(N1/3) 
on 3D crossbar 
network

O(log(N))

Hardware 
required O(N2) O(dN) O(dN)
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▪ Solve linear system Ax=b in log(N) time  

▪ Requirements 
▪ Only log (N) bits of the answer are needed 
▪ Problem is well conditioned 
▪ Time evolution using the matrix A can be implemented efficiently

30

Solving linear systems of equations

e− iAt b

Harrow, Hassidim, Lloyd, PRL (2009)
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▪ In general we always need O(N2) gates if matrix A has N2 different entries 

▪ Lloyd, Mohseni and Rebentrost (Nature Physics 2014) propose an 
O(log(N)) implementation using QRAM to store square root of the matrix 
▪ needs O(N2) gates and qubits to implement the QRAM 
▪ needs O(N3) effort in classical preparation to calculate the square root 

▪ How does it compare to classical approaches? 
▪ Gaussian elimination solves a linear system in O(N3) time using O(N2)  memory 
▪ Using O(N2) classical hardware we can do a matrix-vector multiplication in O(log(N)) 

time and solve the problem iteratively 

▪ Furthermore, using O(N2) classical hardware we can classically emulate 
any quantum algorithms acting on 2 log N qubits. 

31

Implementing a general time evolution
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▪ Quantum speedup can only be realized if the evolution exp(-iAt) can be 
implemented using a short circuit, i.e. it does not depend on lots of data 

▪ Electromagnetic wave scattering problem (Clader et al, PRL, 2013)  
▪ finite difference discretization 
▪ represent shapes by splines 

▪ Here is a definite exponential speedup

32

Solving linear systems of equations efficiently
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and less dense when lower accuracy is su�cient. However one of the key constraints with the QLSA is that the matrix
elements must be e�ciently computable. This restricts one to semi-regular or functionally defined meshes.
As a simple toy–problem example, we will model the scattering of a plane wave o↵ an arbitrary 2D metallic

scattering region with a uniform rectangular mesh, as shown in Fig. 9. Following standard FEM techniques[18], we
write the free-space Maxwell’s equation as a functional

F (E) =

Z
V

⇥
(r⇥E) · (r⇥E)� k2E ·E

⇤
dV + ik

Z
S

Et ·EtdS, (62)

where

E(x, y) = E
0

p̂e�ik·r(x,y) (63)

is the vector electromagnetic field propagating in direction k̂ = k/k = cos ✓x̂+ sin ✓ŷ, at position r(x, y) = xx̂+ yŷ,
with magnitude E

0

, wavenumber k, and polarization p̂ = r̂ ⇥ ẑ. The label Et indicates the component tangential to
the surface S, V is the volume of the computational region, and S is the outer surface of the computational region.
By taking �F = 0, the volume term gives Maxwell’s equation for the electric field, while the surface integral is an
artificial absorbing term used to prevent reflections o↵ the artificial computational boundary. On the inner metallic
scattering surface the boundary condition

n̂⇥E = �n̂⇥Ei (64)

where Ei is the incident field, and n̂ is the unit vector normal to the surface is applied.
Within an element labelled e the electric field can be expanded in terms of edge basis vectors [19],

Ee =
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Challenge #4: check the runtime
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▪ Use one of a number of quantum programming languages 
▪ QCL, one of the first quantum computer simulators  

http://tph.tuwien.ac.at/~oemer/qcl.html  

▪ Liquid (Microsoft), quantum computer simulation  
https://github.com/msr-quarc/liquid 

▪ Quipper, quantum compilation and resource estimation  
http://www.mathstat.dal.ca/~selinger/quipper/  

▪ ScaffCC, quantum compilation and resource estimation  
https://github.com/ajavadia/ScaffCC  

▪ OpenQu (our new  project) 
▪ quantum compilation and optimization 
▪ optimized high-level and low-level quantum libraries 
▪ efficient simulation and emulation of 50+ 
▪ interface to quantum hardware to run on actual devices (during 2016)

34

Now implement the quantum algorithm

http://tph.tuwien.ac.at/~oemer/qcl.html
https://github.com/msr-quarc/liquid
http://www.mathstat.dal.ca/~selinger/quipper/
https://github.com/ajavadia/ScaffCC
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▪ Quantum speedup can only be realized if the evolution exp(-iAt) can be 
implemented using a short circuit, i.e. it does not depend on lots of data 

▪ Electromagnetic wave scattering problem (Clader et al, PRL, 2013)  
▪ finite difference discretization 
▪ represent shapes by splines 

▪ Here is a definite exponential speedup

35

Solving linear systems of equations efficiently
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FIG. 9. Two-dimensional finite element mesh with square finite elements. The scattering region is shown in grey, and can be
any arbitrary design. The incident field interacts with the metallic scatterer and scatters o↵ into all directions.

and less dense when lower accuracy is su�cient. However one of the key constraints with the QLSA is that the matrix
elements must be e�ciently computable. This restricts one to semi-regular or functionally defined meshes.
As a simple toy–problem example, we will model the scattering of a plane wave o↵ an arbitrary 2D metallic

scattering region with a uniform rectangular mesh, as shown in Fig. 9. Following standard FEM techniques[18], we
write the free-space Maxwell’s equation as a functional

F (E) =

Z
V

⇥
(r⇥E) · (r⇥E)� k2E ·E

⇤
dV + ik

Z
S

Et ·EtdS, (62)

where

E(x, y) = E
0

p̂e�ik·r(x,y) (63)

is the vector electromagnetic field propagating in direction k̂ = k/k = cos ✓x̂+ sin ✓ŷ, at position r(x, y) = xx̂+ yŷ,
with magnitude E

0

, wavenumber k, and polarization p̂ = r̂ ⇥ ẑ. The label Et indicates the component tangential to
the surface S, V is the volume of the computational region, and S is the outer surface of the computational region.
By taking �F = 0, the volume term gives Maxwell’s equation for the electric field, while the surface integral is an
artificial absorbing term used to prevent reflections o↵ the artificial computational boundary. On the inner metallic
scattering surface the boundary condition

n̂⇥E = �n̂⇥Ei (64)

where Ei is the incident field, and n̂ is the unit vector normal to the surface is applied.
Within an element labelled e the electric field can be expanded in terms of edge basis vectors [19],
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▪ Quantum speedup can only be realized if the evolution exp(-iAt) can be 
implemented using a short circuit, i.e. it does not depend on lots of data 

▪ Electromagnetic wave scattering problem (Clader et al, PRL, 2013)  
▪ finite difference discretization 
▪ represent shapes by splines 

▪ Here is a definite exponential speedup 
▪ But seems to require 1029 gate operations (see arXiv:1505.06552)?

36

Solving linear systems of equations efficiently
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FIG. 9. Two-dimensional finite element mesh with square finite elements. The scattering region is shown in grey, and can be
any arbitrary design. The incident field interacts with the metallic scatterer and scatters o↵ into all directions.

and less dense when lower accuracy is su�cient. However one of the key constraints with the QLSA is that the matrix
elements must be e�ciently computable. This restricts one to semi-regular or functionally defined meshes.
As a simple toy–problem example, we will model the scattering of a plane wave o↵ an arbitrary 2D metallic

scattering region with a uniform rectangular mesh, as shown in Fig. 9. Following standard FEM techniques[18], we
write the free-space Maxwell’s equation as a functional

F (E) =

Z
V

⇥
(r⇥E) · (r⇥E)� k2E ·E

⇤
dV + ik

Z
S

Et ·EtdS, (62)

where

E(x, y) = E
0

p̂e�ik·r(x,y) (63)

is the vector electromagnetic field propagating in direction k̂ = k/k = cos ✓x̂+ sin ✓ŷ, at position r(x, y) = xx̂+ yŷ,
with magnitude E

0

, wavenumber k, and polarization p̂ = r̂ ⇥ ẑ. The label Et indicates the component tangential to
the surface S, V is the volume of the computational region, and S is the outer surface of the computational region.
By taking �F = 0, the volume term gives Maxwell’s equation for the electric field, while the surface integral is an
artificial absorbing term used to prevent reflections o↵ the artificial computational boundary. On the inner metallic
scattering surface the boundary condition

n̂⇥E = �n̂⇥Ei (64)

where Ei is the incident field, and n̂ is the unit vector normal to the surface is applied.
Within an element labelled e the electric field can be expanded in terms of edge basis vectors [19],

Ee =
4X

i=1

N e
i e

e
i (65)

where eei is the magnitude of the electric field along edge i and
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Do we have a problem?

Ion traps Superconducting Hypothetical target

Gate time 10 µs 10 ns 1 ns

Time for 1025 gates 3x1012 a 3x109 a 3x108 a

Gates in two 
weeks runtime 1011 1014 1015

A quantum algorithm should not just be of polynomial complexity  
It needs to solve an interesting problem in less than 1015 operations 

This means details of the gate set also matter
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▪ Massively parallel computers 
▪ use millions of loosely coupled CPU cores 
▪ we cannot just translate existing codes, they will not scale 

▪ Vector registers  
▪ do operations on 8-16 numbers at once 
▪ need to rethink the program and change algorithms 

▪ GPUs 
▪ very fast cores, all doing the same thing, on limited local memory 
▪ need to rethink the program and change algorithms to use those cores 

▪ One cannot just translate existing algorithms but hardware-
software co-design is needed to realize the potential of new 
architectures

38

New computer architectures require new algorithms
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▪ Polynomial scaling is not sufficient 

▪ Hardware-software co-design 
▪ We need to develop quantum software in parallel to quantum 

hardware, similar to classical supercomputers 

▪ Optimized algorithms 
▪ Develop faster quantum algorithms 
▪ Rethink the solution of problems on quantum computers 

▪ Optimized libraries 
▪ develop highly optimized quantum libraries for common operations 

instead of machine-translating classical codes 

▪ We have routinely accelerated classical codes by factors of more 
than  106 and and now need to do the same for quantum codes

39

Quantum software engineering
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High performance quantum computing 
or how to program the quantum computer

Matthias Troyer

40
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What are the important applications …  

… that we can solve on a quantum computer … 

… but not special purpose post-exa-scale classical 
hardware that we may build in ten years?

41

Quantum computing beyond exa-scale
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And develop it into a killer-app

1. Find quantum algorithm with quantum speedup

2. Implement all oracles and subroutines

3. Check for quantum speedup

4. Optimize code until logical circuit depth < 1014

5. Add error correction and check overhead and resources

6. Embed into specific hardware and check runtime

7. Run the quantum algorithm to solve the problem
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Domain area Code name Institution # of cores Performance Notes

Materials DCA++ ORNL 213,120 1.9 PF 2008 Gordon Bell 
Prize Winner

Materials WL-LSMS ORNL/ETH 223,232 1.8 PF 2009 Gordon Bell 
Prize Winner

Chemistry NWChem PNNL/ORNL 224,196 1.4 PF 2008 Gordon Bell 
Prize Finalist

Materials DRC ETH/UTK 186,624 1.3 PF 2010 Gordon Bell 
Prize Hon. Mention

Nanoscience OMEN Duke 222,720 > 1 PF 2010 Gordon Bell 
Prize Finalist

Biomedical MoBo GaTech 196,608 780 TF 2010 Gordon Bell 
Prize Winner

Chemistry MADNESS UT/ORNL 140,000 550 TF

Materials LS3DF LBL 147,456 442 TF 2008 Gordon Bell 
Prize Winner

Seismology SPECFEM3D USA (multiple) 149,784 165 TF 2008 Gordon Bell 
Prize Finalist

Combustion S3D SNL 147,456 83 TF

Weather WRF USA (multiple) 150,000 50 TF

1.9 PF

1.8 PF

Thursday, July 21, 2011 DFT and Beyond: Hands-on Tutorial Workshop – Berlin, Germany

Applications running at scale on Jaguar @ ORNL (Spring 2011)

Source: T. Schulthess 43

First applications reaching a petaflop
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Feynman invented quantum 
computers to simulate 
quantum physics 

We can surpass the best 
classical computers with only 
a little more than 50 qubits!

44

Simulating quantum systems
International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 

Simulating Physics with Computers 
Richard P. Feynman 

Department of Physics, California Institute of Technology, Pasadena, California 91107 

Received May 7, 1981 

1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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▪ A killer-app for quantum computing is solving quantum problems 

▪ Design a room-temperature superconductor 

▪ Develop a catalyst for carbon sequestration 

▪ Develop better catalysts for nitrogen fixation (fertilizer) 

▪ These problem need better accuracy than we get by using 
approximate classical algorithms 

▪ exponentially hard classically 
▪ polynomial complexity on quantum hardware

45

Solving quantum chemistry on a quantum computer
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▪ On a classical computer 
▪ Imaginary time projection 
▪ Power method or other iterative eigensolver 

▪ On a quantum computer 
▪ Imaginary time evolution 
▪ Power method 
▪ Unitary operations + measurements: 

1. adiabatically prepare trial state 
2. projectively measure energy 
3. obtain the ground state if  

the ground state energy was measured

46

Preparing the ground state

ΨGS = lim
τ→∞

e−τH ΨT

ΨGS = lim
n→∞
(H − Λ)n ΨT

ΨT

ΨT → φn  with H φn = En φn

φn  picked with propability φn ΨT
2

Chapter 2: Setup 12

Figure 2.1: The fridge, without vacuum cans (left). The right picture shows an overview of the
cooling stages, condensing (green) and pre-cool (red), figure taken from [7].

cools the 3He even further which allows it to condense. The condensed 3He is then mixed with 4He

in the mixing chamber, where it will separate into two phases. One phase which is almost pure 3He

and another (diluted) phase containing 4He mixed with approximately 6% 3He, see figure 2.2. The
diluted phase is connected to the still chamber where 3He is selectively removed by a weak heater
and low pressure. This selective removal allows for continuous operation of the cooling cycle. The
low pressure is produced by a turbo pump mounted on top of the fridge. To restore equilibrium in
the mixing chamber 3He has to jump through the phase boundary, this process costs energy which
is taken from the mixing chamber plate[10].

Figure 2.2: Diluton process in the mixing chamber, on the top is the 3He rich phase and in the
bottom is the diluted phase.

2.2 Heat Sinks

In order to electrically measure the sample you need wiring that runs from the sample to room
temperature. This can potentially introduce a big heat load on the sample, because the wires
apart from being good electrical conductors also are excellent thermal conductors. This is true
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▪ Energy can be measured by measuring the phase of a wave function after 
unitary evolution  

▪ We can only measure relative phases, thus compare to the original phase by 
doing a controlled evolution 

▪ Measure the ancilla phase qubit to obtain  
▪ 0 if the phase is 0 mod 2π 
▪ 1 if the phase is π mod 2π 

▪ Repeat the procedure to measure the 
phase and energy more accurately

47

Quantum phase estimation

U φn ≡ e− iHt φn = e− iEnt φn = e− iφ φn

0 φn → 1
2
0 + 1( ) φn → 1

2
0 φn +U 1 φn( ) = 1

2
0 + e− iφ 1( ) φn → 1

2
(1+ e− iφ ) 0 + (1− e− iφ ) 1( ) φn
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1. Select a finite (generally non-orthogonal) basis set 

2. Perform a Hartree-Fock calculation to  
▪ get an approximate solution 
▪ get an orthogonal basis set 

3. Find the true ground state of the Hamiltonian in this new basis set 

 exact classical approach: full-configuration interaction  
 exponential complexity!  

48

Solving quantum chemistry on a quantum computer

H = t pq
pq
∑ cp

†cq + Vpqrs
pqrs
∑ cp

†cq
†crcr

Whitfield, Biamonte, Aspuru-Guzik 
Molecular Physics (2011) 
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1. Select a finite (generally non-orthogonal) basis set 

2. Perform a Hartree-Fock calculation to  
▪ get an approximate solution 
▪ get an orthogonal basis set 

3. Find the true ground state of the Hamiltonian in this new basis set 

4. Prepare a good guess for the ground state 

5. Perform quantum phase estimation to  
▪ get the ground state wave function 
▪ get the ground state energy

49

Solving quantum chemistry on a quantum computer

H = t pq
pq
∑ cp

†cq + Vpqrs
pqrs
∑ cp

†cq
†crcr

Whitfield, Biamonte, Aspuru-Guzik 
Molecular Physics (2011) 
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▪ Key ingredient: evolve the wave function under the Coulomb Hamiltonian 

▪ Use Trotter breakup to implement time evolution  
Whitfield, Biamonte, Aspuru-Guzik, Molecular Physics (2011)  

▪ Efficient circuits available for each of the M=N4 terms

50

Time evolution under the Coulomb Hamiltonian

H = t pq
pq
∑ cp

†cq + Vpqrs
pqrs
∑ cp

†cq
†crcr ≡ Hm

m=1

M

∑

e−ΔtH ≈
m=1

M

∏e−ΔτHm

M =O(N 4 ) terms



||Matthias Troyer

▪ Map the occupation of each spin-orbital to the states of one qubit 

▪ Density operators get mapped to Pauli matrices 

▪ Hopping terms get mapped to spin flips with Jordan-Wigner strings 

▪ Time evolution gets mapped to circuits built from unitary gates

51

Representing fermion terms by quantum circuits

0 = ↑ 1 = ↓

ni =
1
2
1−σ i

z( )

cp
†cq =σ p

−

i=p+1

q−1

∏σ i
zσ p

+

e− iθ cp
†cq+cq

†cp( ) =
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Phys. Rev. A 90, 022305 (2014) 

Can a classically-intractable problem be solved  
on a small quantum computer? 

Can a classically-intractable problem be solved on  
a huge quantum computer? 

Can a classically-intractable problem be solved on  
the largest imaginable quantum computer?

52

http://link.aps.org/doi/10.1103/PhysRevA.90.022305


||Matthias Troyer

▪ How many spin-orbitals do we need for an interesting problem? 

▪ What accuracy do we need?

53

Solving a small non-trivial problem

Cuprate high-Tc superconductor O(10000)

Active space of interesting reactions  200-400

Classically tractable by DMRG ≈ 70

Classically tractable by full-CI ≈ 50

Wish of my chemistry colleague 0.1mHa - 1µHa

Modest goal 1mHa

Note that the total energies are of the order of 1kHa 
We thus need at least six digits of precision
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▪ Second order Trotter formula for m terms needs m3/2 Trotter steps per 
time interval  

▪ Naïve scaling with number of spin-orbitals 

▪ Estimates for an example molecule: Fe2S2

54

Our initial outlook in January 2014

Gate count 1018

Parallel circuit depth 1017

Run time @ 10ns gate time 30 years

52k m2 H t
m H t
ε

⎛
⎝⎜

⎞
⎠⎟
1/2k
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▪ Estimates for an example molecule: Fe2S2 with 118 spin-orbitals  

▪ Attempting to reduce the horrendous runtime estimates we achieved  
Wecker et al., PRA (2014), Hastings et al., QIC (2015), Poulin et al., QIC (2015) 

▪ Cancelling of Jordan-Wigner strings:       O(N) reduction in gates 
▪ Nesting of terms:                                      O(N) reduction in circuit depth 
▪ Optimizing circuits:                                   4x reduction in gates 
▪ Smart interleaving of terms:                     10x reduction in Trotter steps 
▪ Multi-resolution Trotter:                            10x reduction in gates 
▪ Better quantum phase estimation:            4x reduction in rotation gates 

55

Improvements to the quantum algorithms:

Gate count 1018

Parallel circuit depth 1017

Run time @ 10ns gate time 30 years

New gate count 1011

Parallel circuit depth 1010

Run time @ 10ns gate time 2 minutes



||Matthias Troyer

▪ Rearrange the circuits and use an optimized ordering of terms to cancel 
most of the Jordan-Wigner strings between terms 

▪ Reduces the cost of Jordan-Wigner strings from O(N) to amortized O(1)

56

Optimization 1: reducing Jordan-Wigner strings

Phase

P H H

Q H H

R H H

H H

S Z H �✓Z0/8 H Z

Z H �✓Z0/8 H Z

Phase

P H H H H

Q H H H H

R H H

H H

S Z H �✓Z0/8 H Z

Z H �✓Z0/8 H Z

M.B. Hastings et al., QIC (2015)
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▪ Interleave terms that seem to interfere at first sight due to overlapping 
Jordan-Wigner strings 

▪ Can do O(N) terms in parallel for another power reduction

57

Optimization 2: Nesting of terms

6

5

4

3

2

1

= =

14
13
12
11
10
9
8
7
6
5
4
3
2
1

=

M.B. Hastings et al., QIC (2015)
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▪ Standard phase estimation 
▪ propagates by time t 
▪ controlled rotation gates to implement evolution  

(need two normal rotations) 

▪ Improved phase estimation 
▪ propagates by time t/2 
▪ no controlled rotations are needed 
▪ 2x fewer gates, 4x fewer rotations

58

Optimization 3: faster phase estimation

1
2
0 + 1( ) φn → 1

2
0 φn + 1 e− iHt φn( ) = 1

2
0 + e− iφ 1( ) φn

1
2
0 + 1( ) φn → 1

2
0 e+ iHt /2 φn + 1 e− iHt /2 φn( ) = 1

2
e+ iφ /2 0 + e− iφ /2 1( ) φn
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▪ Reorder the terms in the Trotter-Suzuki decomposition 
▪ Multi-resolution Trotter scheme: longer time steps fort smaller terms 
▪ Estimate tighter error bounds
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Optimization4: Reducing Trotter-Suzuki errors
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▪ Estimates for an example molecule: Fe2S2 with 118 spin-orbitals  

▪ Attempting to reduce the horrendous runtime estimates we achieved  
Wecker et al., PRA (2014), Hastings et al., QIC (2015), Poulin et al., QIC (2015) 

▪ Cancelling of Jordan-Wigner strings:       O(N) reduction in gates 
▪ Nesting of terms:                                      O(N) reduction in circuit depth 
▪ Optimizing circuits:                                   4x reduction in gates 
▪ Smart interleaving of terms:                     10x reduction in Trotter steps 
▪ Multi-resolution Trotter:                            10x reduction in gates 
▪ Better quantum phase estimation:            4x reduction in rotation gates 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Improvements to the quantum algorithms:

Gate count 1018

Parallel circuit depth 1017

Run time @ 10ns gate time 30 years

New gate count 1011

Parallel circuit depth 1010

Run time @ 10ns gate time 2 minutes
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▪ Ultimate problem: 
▪ Find catalyst to convert nitrogen to ammonia  

at room temperature 
▪ Reduce energy for conversion of air to fertilizer 

▪ Current solution: Haber process (1909) 
▪ Requires high pressures and temperatures 
▪ Cost: 3-5% of the worlds natural gas  

production (1-2% of the world’s annual energy) 

▪ Quantum solution: 
▪ ~ 200 -400 qubits 
▪ Design a catalyst to enable inexpensive fertilizer production 

61

Nitrogen fixation: a potential killer-app
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What about a room temperature superconductor?

Full material
Bands per unit cell ≈ 50
Unit cells needed  20x20
Number of spin-orbitals N ≈ 80’000
Number of interaction terms N4

Cirucit depth scaling O(N5.5)
Estimated runtime @ 10ns gate time age of the universe
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Reduce it to an effective model

Go  

Simplify to an effective model capturing the relevant physics 

63

3D crystal structure

single 2D layer

simplified effective model

Can we efficiently solve such effective models on a quantum computer?
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▪ A simple effective model with only O(N) terms 

▪ Advantages 
▪ O(N) terms instead of O(N4) terms 
▪ Can apply all terms in parallel => O(log N) circuit depth for one step 
▪ Much smaller energy range => shorter phase estimation times 
▪ Total scaling for adiabatic state preparation about O(N) 

▪ Preparation and measurement need to be optimized 
▪ gaps to excitations 
▪ superconducting pair correlation functions (N4 terms) 
▪ dynamic correlation functions 

64

The Hubbard model

64

H = �t
�

⇤i,j⌅,�

(c†i,�cj,� + c†j,�ci,�) + U
�

i

ni,�ni,⇥

U

t
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What about a room temperature superconductor?

3D crystal structure Hubbard model

Full material Hubbard model
Bands per unit cell ≈ 50 1
Unit cells needed  20x20 20x20
Number of spin-orbitals N ≈ 80’000 N ≈ 800
Number of interaction terms N4 O(N)
Cirucit depth scaling O(N5.5) O(1)
Estimated runtime @ 10ns gate time age of the universe seconds
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▪ Abrams and Lloyd, PRL (1997) suggested to use quantum 
computers for the time evolution under the Hubbard Hamiltonian 

▪ Ortiz et al, PRA (2001) provided details on how to map fermions to 
qubits and how to measure some observables 

▪ Open questions after these seminal papers:  

▪ preparing good trial wave functions 
▪ mapping the time evolution onto actual quantum gates 
▪ estimating the circuit depth (gate count)

66

Previous work on the Hubbard model
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▪ After preparing the ground state we can measure any desired quantity U 
which we can implement as an efficient circuit 

▪ However, every measurement only gives a single bit! 

▪ Solution: perform a quantum amplitude estimation to get the value  
(Knill, Somma, Ortiz, PRA (2007)) 

▪ This still destroys the state and we have to (expensively) re-prepare it
67

Direct measurements

ΔO = VarO
M

⇒ M =O 1
ε2

⎛
⎝⎜

⎞
⎠⎟ measurements are needed

17

A. Local observables and equal-time correlations

1. Measuring the density, double occupancy and spin and
density correlations

The densities ni,� are trivially measured by measuring
the value of the qubit corresponding to the spin-orbital
(i,�). Similarly double occupancies ni,"ni,# can be deter-
mined by measuring two qubits, while density correlation
functions

ninj = (ni," + ni,#)(nj," + nj,#) (26)

and spin correlation functions

Sz
i S

z
j =

1

4
(ni," � ni,#)(nj," � nj,#) (27)

can be determined directly by measuring the values of
four qubits.

By simultaneously measuring all qubits in the compu-
tational basis (eigenvectors of the Pauli-Z operator) we
can determine density, double occupancy and all spin and
density correlations. As an example, suppose we have
recorded this sequence of meaurement outcomes over sev-
eral runs (for each run, for every qubit we measure the
Pauli-Z operator and we record the measurement out-
comes). Given this data, suppose we now wish to esti-
mate a correlation function such as

h 0|ni,"nj,"| 0i
for a pair of sites i 6= j. This is equal to the expectation
value of

Zi," + 1

2

Zj," + 1

2
.

Given the outcomes of the measurements of Zi,", Zj,",
we simply add 1 to each measurement, multiply the re-
sults, and divide by four. We then average this over runs.
For example, if we consider a two-site Hubbard model at
half-filling and U = 0, we will find that the two measure-
ment outcomes Zi," and Zj," are perfectly anti-correlated
(since there is only one electron with spin up which has
equal probability to be on either of the two sites) and so
the average of the product will not equal the product of
the averages.

2. General strategy for other observables

Next, we note that there is a general strategy used
to measure the expectation value of any unitary oper-
ator U , assuming that we can build a circuit that im-
plements a controlled version of this unitary, controlled
by some ancilla. Namely, we apply a one-bit phase es-
timation using the phase estimation circuit of Fig. 12.
This is a standard trick; see for example Fig. 9 in Ref.
15. Since we have circuits that implement unitary evo-
lution under various Hamiltonian terms, this enables us

|0i H Z(✓) H
U

FIG. 12. General phase estimation circuit to compute the
expectation value of any unitary which can be given as a
controlled black box. The Z(✓) produces a rotation about
the Z axis by angle ✓; by varying this, real and imaginary
parts of the expectation value can be measured.

to meaure these terms. For example, to measure a term
c†p,�cq,�, we measure the expectation value of the unitary

exp[�i✓(c†p,�cq,�+h.c.)]. Since the operator c†p,�cq,�+h.c.
has eigenvalues �1, 0,+1, the most e�cient results are
obtained from the phase estimation when we choose
✓ = ⇡ (which perfectly distinguishes in a single mea-
surement between eigenvalue 0 and eigenvalues ±1) or
✓ = ⇡/2 (which perfectly distinguishes the case of eigen-
value +1 from the case of eigenvalue �1).

However, for the observables we consider, there in fact
are much simpler ways of measuring the correlation func-
tions. We give two di↵erent strategies. The first strat-
egy involves replacing rotations in some of our unitary
gates with measurements and we call it the “stabilizer
strategy”; the second introduces a new gate called an
“FSWAP”.

3. The Stabilizer Strategy

The stabilizer strategy is a method for measuring ob-
servables of the form exp[�i✓(O1+O2+...)] or of the form
O1+O2+ ..., where each Oi is a product of some number
of Pauli operators, and [Oi, Oj ] = 0. This form includes
many operators of interest to us, including terms in the
Hamiltonian such as the kinetic energy as well as other
terms such as pair correlation. We call this the stabilizer
strategy because of our use of products of Paulis which
commute with each other; no assumption is made that
any state is a stabilizer state.

If we can measure each Oi, then we succeed in measur-
ing the desired operator. Since they commute, we may
measure them in any order without needing to recreate
the state after measurement. As each Oi is a product of
Paulis, there is some unitary in the Cli↵ord group which
maps it onto a Pauli Z operator on some given qubit.
Hence, we can measure that Oi by applying that Cli↵ord
unitary, then doing a Z-basis measurement, and finally
undoing the Cli↵ord unitary. Applying this procedure to
terms in the Hamiltonian, for which we have previously
given circuits to implement exp[�i✓(O1+O2+ ...)] using
sequences of controlled Z-basis rotations conjugated by
Cli↵ord gates, the measurement circuit amounts to re-
placing each controlled Z-basis rotation in the evolution

t =O 1
ε

⎛

⎝
⎜
⎞

⎠
⎟ measurement time is needed
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▪ Make use of the fact that the ground state is an eigenstate of the 
Hamiltonian to perform non-destructive measurements 

▪ Measurements using Hellman-Feynman theorem 

▪ Add the observable to be measured as a perturbation 

▪ Adiabatically evolve the wave function 

▪ Measure the energy and calculate the difference 

▪ Non-destructive and only                  measurements are needed
68

Nondestructive measurements (approach I)

dEGS (λ)
dλ

= ΨGS (λ)
dH (λ)
dλ

ΨGS (λ)

H (λ) = H + λO

ΨGS (0) → ΨGS (ε) → ΨGS (−ε)

ΨGS O ΨGS ≈ EGS (ε)− EGS (−ε)
2ε

O logε
ε

⎛
⎝⎜

⎞
⎠⎟

Wecker et al, PRA (2015)



||Matthias Troyer

▪ Recover the ground state (GS) after a destructive measurement

69

Nondestructive measurements (approach II)
Wecker et al, PRA (2015)

Efficient if we measure only a single bit 
requires time                if performed coherently O 1/ ε( )

Check for ground state 
energy with QPE

Energy 
correct

Measure !"#$
and store result

Measure !"#$
and discard result

Prepare 
ground state

Yes No Incorrect 
for % >

'(’th time

Yes

No
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From the Hubbard model to materials

Full material Hubbard model
Bands per unit cell ≈ 50 1
Unit cells needed  20x20 20x20
Number of spin-orbitals N ≈ 80’000 N ≈ 800
Number of interaction terms N4 O(N)
Cirucit depth scaling O(N5.5) O(1)
Estimated runtime @ 10ns gate time age of the universe seconds

▪ The Hubbard model teaches us fundamental mechanisms but not the 
properties of a real material. 

▪ We gain valuable insights but not quantitative predictive power 

▪ Full ab-initio simulation of a correlated material is too complex even on 
quantum hardware
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Solution: a hybrid approach to materials simulation

Material

Initial DFT solution
!DFT

Select orbitals
%&', )&'

DMFT

Impurity model 
with bath 

parameters *+&, %&
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Green’s function
, - /0

Repeat DFT using 
density !DMFT

Compute DMFT
Hamiltonian

Compute electron 
density !DMFT

Classical computation Quantum computation

▪ Use classical algorithms on peta-scale hardware to derive realistic effective 
realistic models of the important bands in a material 

▪ Use quantum algorithms to solve these models on a quantum computer 
▪ Iterate by using the results to improve the effective models
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And develop it into a killer-app

1. Find quantum algorithm with quantum speedup

2. Implement all oracles and subroutines

3. Check for quantum speedup

4. Optimize code until logical circuit depth < 1014

5. Add error correction and check overhead and resources

6. Embed into specific hardware and check runtime

7. Run the quantum algorithm to solve the problem
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▪ Identifying killer-apps for quantum computing is challenging 
▪ the problem has to be hard enough that it cannot be solved on an exascale machine 
▪ the problem has to be amenable to quantum acceleration 
▪ the crossover scale has to be short enough to make it useful 

▪ Potential applications 
▪ factoring and code breaking (relatively easy but limited use) 
▪ quantum lattice models (straightforward!) 
▪ quantum chemistry and material simulations (challenging but enormous potential) 
▪ solving linear systems (can’t we solve them well enough already?) 
▪ others??? machine learning??? 

▪ It is imperative to do realistic resource estimates  
▪ Asymptotic scaling is not enough!  
▪ It is time to view quantum algorithms from an applications perspective!

73

Quantum computing as post-exa-scale technology
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There is much more!

Blind quantum computing and search  
(Broadbent, Fitzsimons, Kashefi) 

Cloud providers cannot know what the user does

Quantum money  
(Aaronson, Farhi et al)
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Quantum annealing

Matthias Troyer

75
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Analog and digital quantum devices

76

Quantum random numbers
perfect randomness

Quantum encryption 
secure communication

Quantum simulators

solve quantum models

Quantum annealer

solve hard optimization problems?

Quantum computers?

solve quantum models (R. Feynman) 

factor integers (P. Shor) 

...





||Matthias Troyer 78

B Y  N I C O L A  J O N E S

“I ’ve been doing combative stuff since 
I was born,” says Geordie Rose, 
leaning back in a chair in his small, 
windowless office in Burnaby, 
Canada, as he describes how he 
has spent most of his life making 
things difficult for himself. Until his 

early 20s, that meant an obsession with wres-
tling — the sport that, he claims, provides the 
least reward for the most work. More recently, 
says Rose, now 41, “that’s been D-Wave in a nut-
shell: an unbearable amount of pain and very 
little recognition”.

The problem of lack of recognition is fast 
disappearing for D-Wave, the world’s first and 
so far only company making quantum com-
puters. After initial disbelief and ridicule from 
the research community, Rose and his firm are 
now being taken more seriously — not least 
by aerospace giant Lockheed Martin, which 
bought one of D-Wave’s computers in 2011 for 
about US$10 million, and Internet behemoth 
Google, which acquired one in May. 

But the pain has been real — much of it, critics  
would argue, brought on by Rose himself. In 
2007, his company announced its first working 
computer with a showy public demonstration 
at the Computer History Museum in Mountain 
View, California. By the current standards of 
quantum computing — which in theory offers 
huge advances in computing power — the 
device’s performance was astonishing. Here was 
a prototype searching a database for molecules 
similar to a given drug and solving a sudoku 
puzzle, while the best machines built using 
standard quantum approaches could at most 
break down the number 21 into its factors1. 

Sceptics bristled at the ‘science by press 

conference’ tone of the introduction, and  
wondered whether the D-Wave device wasn’t 
just a classical computer disguised as a quan-
tum one. “This company from Canada popped 
out of nowhere and announced it had quantum 
chips,” says Colin Williams, who published 
one of the first texts on quantum computing 
in 1999, and who joined D-Wave last year as 
business-development director. “The aca-
demic world thought they must be crazy.” 

Today, those criticisms have been quietened 
to some degree by the release of more details 
about D-Wave’s technology. But they have 
been replaced by subtler questions: even if 
the D-Wave computer is harnessing quantum 

D-Wave is 
pioneering a 
novel way of 
making quantum 
computers — but 
it is also courting 
controversy. 
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It’s in a quantum superposition!

5/29/13 5:37 AMQuantum computing: Faster, slower—or both at once? | The Economist

Page 1 of 3http://www.economist.com/news/science-and-technology/21578027-fi…rld-contests-between-quantum-computers-and-standard-ones-faster
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Quantum computing

Faster, slower—or both at once?
The first real-world contests between quantum computers and standard ones

CHIPMAKERS dislike quantum mechanics.
Half a century of Moore’s law means their
products have shrunk to the point where
they are subject to the famous weirdness of
the quantum world. That makes designing
them difficult. Happily, those same
quantum oddities can be turned into
features rather than bugs. For many years
researchers have been working on
computers that would rely on the strange
laws of quantum mechanics to do useful
calculations. They would do this by using
binary digits which, instead of having a
value of either “one” or “zero”, had both at
the same time. That might allow them to do
some calculations much faster than non-quantum, “classical” computers can manage.

Progress has been slow, but steady. And now it may be possible to see how a certain
type of quantum computer performs in the real world. On May 15th, at a computing
conference in Ischia in Italy, Catherine McGeoch, a computer scientist at Amherst
College in Massachusetts, presented a paper describing the performance of a quantum
computer manufactured by a Canadian firm called D-Wave.

D-Wave has a colourful history. To much fanfare and press
attention (including in The Economist), it announced a
working quantum computer in 2007. Sporting a
superconducting chip cooled to within a fraction of a degree
of absolute zero, this certainly sounded high-tech. But the
firm provided little concrete information, and given how far
ahead it seemed to be compared with academic laboratories
working on the same problem, many computer scientists
were sceptical of its claim to have created a truly quantum
machine. Following the publication of a paper in Nature in
2011, however, it is now generally accepted that the firm
has built a working version of a specific type of machine
called an adiabatic quantum computer.

Unlike a “standard” quantum computer, which (if one is ever
built) could answer the same sorts of question that a
classical computer can, an adiabatic computer is limited to a
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20/10/13 17:36Google D-Wave quantum computing could solve global warming | Mail Online

Page 1 of 16http://www.dailymail.co.uk/sciencetech/article-2461133/Google-D-Wave-quantum-computing-solve-global-warming.html

show ad

Google tries to save the world: Internet giant
explains how its move into quantum computing
could solve global warming

Google's D-Wave computer is 3,600 times faster than a normal computer
It uses qubits to perform calculations and solve optimisation problems
In the video, Google and Nasa explain the basics of quantum computing
They discuss multi-verse theory and give an example of optimisation 
Faster speeds mean it can tackle complex problems such as disease, climate
change and genetics
Google hopes it will help develop sophisticated artificial life, and find aliens 

By Victoria Woollaston

PUBLISHED: 15:32 GMT, 15 October 2013 | UPDATED: 07:07 GMT, 16 October 2013

67 shares

56

View 
comments

Not content with being the largest search engine in the world, designing the most popular mobile operating
system, creating a healthcare company and helping to develop lab-grown meat, Google has now explained
how it plans to solve societies biggest problems - through quantum computing.  

Earlier this year Google bought a quantum computer called D-Wave Two, which can perform tasks 3,600
times faster than normal computers. 

The company is hoping to use it to find cures for diseases, fix climate problems and help robots better
understand human speech, for example. 

In the first of a series of videos explaining a bit more about this computer and the company's work with
quantum computing, Google has teamed up with Nasa to explain the basics behind the D-Wave and why it is
so important 

Scroll down for video

D-Wave computers run on a 512-qubit processor.  
As a comparison, PCs found in homes run on 32-bit or 64-bit processors. 

Google hopes it will help develop sophisticated artificial life, and find aliens 
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Quantum annealing of Ising spin glasses
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Find the configurations which minimize the energy 

This problem is (nondeterministic polynomially) NP-hard, meaning that many 
interesting hard problems can be mapped onto it 

▪ traveling salesman problem 
▪ portfolio optimization 
▪ factorization of integers 
▪ graph isomorphisms 
▪ and many more …

82

A device to solve Ising spin glass problems

H = Jij
ij
∑ sis j + hi

i
∑ si + const. with si = ±1

Can a quantum device solve these problems faster than a classical one?
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Image credit ANFF NSW node, University of New South Wales

Annealing  
A 7000 year old neolithic technology 

Slowly cool metal or glass 
to improve its properties

83

Annealing and simulated annealing

Simulated annealing 
Kirkpatrick, Gelatt and Vecchi, Science (1983) 

A 30 year old optimization technique 

Slowly cool a model in a Monte Carlo simulation  
to find the solution to an optimization problem

We don’t always find the global minimum and have to try many times
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Quantum adiabatic algorithm 
Farhi, Goldstone, Gutmann and Sipser (2000)

Quantum adiabatic theorem: if we slowly change the Hamilton a quantum 
system remains in the ground state of the instantaneous Hamiltonian

Turning on the potential the wave function concentrates  
around the minima of the potential

have to evolve 
sufficiently slowly!

V (x)

Ψ(x) 2

http://arxiv.org/find/quant-ph/1/au:+Farhi_E/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Goldstone_J/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Gutmann_S/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Sipser_M/0/1/0/all/0/1
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Add a transverse magnetic field to induce quantum fluctuations 

Initial time t=0: all spins aligned with the transverse field 

Final time t=tf: ground state of the Ising spin glass 

Ground state version: quantum adiabatic algorithm of Farhi et al, (2000) 

Finite temperature version: quantum annealing by  Brooke et al, (1999) 

Simulated quantum annealing: same idea in a QMC simulation, Santoro et al, (2002)
85

Quantum annealing for the Ising spin glass

H (t) = B(t) Jijσ i
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Quantum annealing in experiments 
Brooke, Bitko, Rosenbaum, Aeppli, Science (1999)

Anneal at very low temperatures by changing a quantum control parameter

86

Cool a spin glass by sweeping a  
magnetic field at low temperatures
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1. Does adiabatic quantum computing for the Ising spin glass 
have any speedup over classical algorithms? 

2. Does finite-temperature quantum annealing have any  
speedup over classical algorithms? 

3. Does the implementation in the D-Wave devices have any 
speedup over classical algorithms?

87

Three open questions about quantum annealing 
for typical (not worst case) problems
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The D-Wave device
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Implement Ising spins by flux quanta through superconducting rings 
Programmable inductive couplings between flux qubits

89

The D-Wave device: superconducting flux qubits

CCJJ Flux Qubit 

maximum antiferromagnetic !AFM" coupling, Mij!!co,ij
x "

=MAFM. Define this energy scale as JAFM!t"#MAFM$Iq
p!t"$2.

Rearranging Hamiltonian !5" yields

H0!t"
JAFM!t"

= − %
i

hi"z
!i" + %

i,j#i
Kij"z

!i""z
!j" − $!t"%

i
"x

!i",

!6a"

hi =
$Iq

p!t"$!!i
x!t" − !i

0"
MAFM$Iq

p!t"$2
=

!i
x!t" − !i

0

MAFM$Iq
p!t"$

, !6b"

Kij =
Mij!t"$Iq

p!t"$2

MAFM$Iq
p!t"$2

=
Mij!t"
MAFM

, !6c"

$!t" =
%q!t"

2JAFM!t"
. !6d"

In order to solve a particular optimization problem, hi and
Kij must be time independent. According to Eq. !6c", one
must hold all Mij constant during operation. This is conve-
nient as it obviates the application of individually tailored
time-dependent flux bias signals to each interqubit coupler.
Rather, one need only apply a static control signal !co,ij

x to
each coupler, as depicted in Fig. 1, that can be provided by
PMM. On the other hand, according to Eq. !6b", one must
apply time-dependent qubit-flux biases of the form

!i
x!t" = !i

0 + hi & MAFM$Iq
p!t"$ !7"

to render hi time independent. Thus, it is necessary to pro-
vide a custom-tailored time-dependent control signal plus a
static offset to every qubit. The static component !i

0 can be
provided by PMM. As for the time-dependent component,
providing these signals with one external bias per qubit
would not constitute a scalable approach for building a mul-

tiqubit processor. Rather, one can take advantage of the fact
that, according to Eq. !7", all qubits must receive a control
signal with the same time-dependent shape but with custom-
tailored time-independent scale factors 'hi. A scalable archi-
tecture for providing these signals is depicted in Fig. 1 and
has been further expounded upon in Ref. 31. Here, a single
global current bias Ig!t"=($Iq

p!t"$, where ( is a convenient
scale factor, is coupled to multiple qubits via in situ tunable
mutual inductances of magnitude Mi#hiMAFM /(. The very
same type of device that is used to provide in situ tunable
interqubit coupling29 can be retooled to provide coupling be-
tween flux qubits and a global bias line. Moreover, each Mi
can be controlled with a static flux bias !Ip,i

x provided by
PMM. We will refer to this architecture as persistent current
!$Iq

p$" compensation, as it is a means of compensating for
changing $Iq

p!t"$ such that the ISG problem specified by hi
and Kij remains on target throughout annealing.

To summarize up to this point, a prescription for imple-
menting AQO to solve ISG problems using a network of
inductively coupled CCJJ rf-SQUID flux qubits has been
presented. A problem specified by a set of hi and Kij can be
embedded in the hardware using time-independent interqubit
couplings controlled by PMM and time-dependent qubit-flux
and CCJJ biases. The qubit-flux bias signals can be supplied
using a combination of static flux offsets provided by PMM
and a single global signal Ig!t" that is applied to each qubit
through in situ tunable couplers that are also controlled by
PMM. The CCJJ bias can, in principle, also be provided to
all qubits simultaneously using a single global control signal.

III. DEVICE ARCHITECTURE AND CALIBRATION

With the mapping of the AQO algorithm onto hardware
completed, we turn to a high-level description of a supercon-
ducting chip whose architecture embodies that algorithm. All
of the principal components of the processor, namely, the
qubits,28 couplers,29 readout,30 and PMM !Ref. 31" have been
described in detail in other publications. As such, we will
only provide brief summaries of the important points as per-
taining to the functioning of the collective system herein.

As stated previously, we have incorporated CCJJ rf-
SQUID flux qubits in our design.28 A schematic of an iso-
lated flux qubit with the two external bias controls relevant
for this study is shown in Fig. 2!a". This particular qubit is
robust against fabrication variations in the Josephson-
junction critical currents and facilitates the homogenization
of the net critical current among a population of such qubits.
This device also contains an inductance !L" tuner that can be
used to compensate for variations in qubit inductance due to
fabrication and from tuning the interqubit couplers.29 To each
qubit we have added an $Iq

p$ compensator, as introduced in
Sec. II. We have provided PMM to flux bias the two minor
lobes of each CCJJ,28 the L tuner, the $Iq

p$ compensator, and
the qubit body !!i

0" for all qubits on the chip.31

The chip that was used for this study was composed of 16
eight-qubit unit cells that were tiled on a 4&4 square grid.
To limit the scope of this paper, we focus upon a single unit
cell near the center of the chip. A discussion of the complete
processor, with multiple unit cells acting in concert, will be
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FIG. 1. !Color online" Mapping of ISG problems, specified by a
set of values denoted as hi and Kij, onto superconducting hardware.
Two qubits, two $Iq

p$ compensators, and one interqubit coupler are
shown. A global current bias Iccjj!t" provides the fluxes !ccjj

x !t" that
drive the annealing process to multiple CCJJ rf-SQUID flux qubits.
Interqubit coupling is mediated by tunable mutual inductances
Mij 'Kij that are controlled by static fluxes !co,ij

x . Qubit bodies are
subjected to the sum of static flux biases !i

0 and time-dependent
flux biases driven by a global current bias Ig!t". The latter signals
are mediated to each qubit via tunable mutual inductances Mi'hi
that are controlled by static fluxes !Ip,i

x .

EXPERIMENTAL INVESTIGATION OF AN EIGHT-QUBIT… PHYSICAL REVIEW B 82, 024511 !2010"

024511-3

100’000 Josephson junctions  
4’000 digital to analog converters
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Arrange four qubits horizontally and four vertically 
Obtain a bipartite fully connected graph of 8 spins

90

A unit cell of the device

Eight Qubit Unit Cell Eight Qubit Unit Cell 
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Tiling of Eight-Qubit Unit Cells 
Couple horizontal qubits horizontally to the neighbors 
Couple vertical qubits vertically to the neighbors 
108 of 128 qubits worked

91

Eight Qubit Unit Cell 

The full chimera graph: 4x4 unit cells = 128 qubits
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D-Wave Two: 8x8 unit cells with 512 qubits
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What does it do?
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§ Hypothesis 1: D-Wave is a classical annealer  
§ Decoherence is so strong that quantum effects are irrelevant and it is just thermal.  
§ Experimental test: compare to a simulated classical annealer 

§ Hypothesis 2: D-Wave performs classical (mean field) spin dynamics 
§ The qubits are just classical spins precessing in the magnetic field.  
§ Experimental test: compare to a simulated classical annealer 

§ Hypothesis 3: D-Wave is an incoherent quantum annealer  
§ Decoherence is weak enough to allow a quantum model to be realized,  

but quantum coherence is unimportant for the  annealing. 
§ Experimental test: compare to a simulated quantum annealer 

§ Hypothesis 4: D-Wave is a quantum annealer with quantum speedup 
§ Quantum coherence provides advantages in tunneling through barriers 
§ Experimental test: scaling with problem size is better than that of a simulated annealer

94

Perform experiments to answer these questions

94
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Find hard test problems for the machine to solve 

random ±1 couplings on all bonds of the chimera graph

95

Our experiments

hundred million experiments 
on D-Wave One

one billion simulations 
classical and quantum Monte Carlo

1000 choices of couplings for each problem size 
1000 repetitions of the annealing 

vary the annealing time and schedule
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1. Pick a specific instance of the couplings Jij and fields hi 

2. Perform N = 1000 or more annealing runs and measure the final energy 
▪ count the number of times S that we find a ground state 
▪ calculate the success probability s = S/N of finding a ground state in 

one run 

3. Repeat for many instances  
of the couplings Jij and fields hi 

4. Make a histogram of the  
success probabilities s

96

Success probability histograms

N
um

be
r o

f i
ns

ta
nc

es
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N
um

be
r o

f i
ns

ta
nc

es

▪ Bimodal histogram for D-Wave One and the simulated quantum annealer 
▪ D-Wave One is inconsistent with a classical annealer 
▪ D-Wave One is consistent with a simulated quantum annealer 
▪ D-Wave One does not look too similar to mean field spin dynamics

97

Comparing the histograms

Simulated 
classical annealer

Simulated  
quantum annealerD-Wave One

Mean field 
spin dynamics

N
um

be
r o
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ns

ta
nc

es
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D-Wave One, gauge transformed

D
-W

av
e 

O
ne

98

Correlations

The correlation between a simulated quantum annealer and D-Wave  
is as good as the correlation of D-Wave with itself

98

Simulated quantum annealer

but 5% outliers: 

calibration problems?

excellent correlations

H = Jij
i, j
∑ σ iσ j

σ i ← aiσ i with ai = ±1
Jij ← aiajJij

Investigate calibration issues by  
using a gauge transformation

si = +1 si = -1

si = +1si = -1

or

D
-W

av
e 

O
ne
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The same instances are hard and easy  
on D-Wave and the simulated quantum annealer  

but not on D-Wave and mean-field spin dynamics or classical annealing
99

Correlations

D-Wave

classical annealer
classical 

spin dynamics

simulated 
quantum annealer
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▪ …the simulated quantum annealer has a mean-field version  
Shin, Smolin, Smith and Vazirani, arXiv:1401.7087 

▪  A quantum annealer at the temperatures where D-Wave operates might 
not profit much from quantum effects ???

S
im

ul
at

ed
 q

ua
nt

um
 a

nn
ea

le
r

mean-field quantum annealer

100

D-Wave performs like a quantum annealer, but …
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▪ There is evidence for entanglement  
Lanting et al, PRX (2014) 

▪ There is evidence for collective tunneling  
Boixo et al, arXiv:1411.4036 

▪ Performance on spin glasses is consistent with quantum annealing  
Boixo et al, Nature Physics (2014) 

▪ But there is also a semi-classical mean-field model that describes the 
performance well for spin glass instances  
Shin et al,  arXiv:1401.7087  

▪ What about quantum speedup?

101

Lessons learned from the D-Wave devices
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The ultimate question: how does it scale?
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Find test problems for the machine to solve 

random ±1 couplings on all bonds of the chimera graph

103

Our experiments
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Quantum annealing 
on D-Wave Two

Simulated annealing 
on Intel CPU

Codes are on  
arXiv:1401.1084
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▪ Time to find the ground state with 99% probability  
D-Wave compared to a simulated annealer on a CPU 

▪ Programming overhead dominates for small problems
104

Scaling of wall-clock times
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To extrapolate to larger sizes focus just on annealing time  
to get the intrinsic scaling

105

Scaling of pure annealing times

D-Wave

CPU
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      …. a non-trivial endeavor

Detecting and defining quantum speedup
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Quantum speedup exists if  
 
 
 
 
grows with the problem size N 

107

Defining quantum speedup

S(N ) = TC (N )
TQ (N )

Seems easy and trivial to define, but … 

    one can easily get fooled into believing there is speedup 
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▪ Provable quantum speedup 
▪ when we can prove a separation between TQ and TC 
▪ example: Grover search 

▪ Strong quantum speedup (Traub et al, 2013) 
▪ speedup compared to bound for best classical algorithm,  

whether that algorithm is known or not 

▪ Quantum speedup 
▪ speedup compared to best known classical algorithm 
▪ example: Shor’s algorithm 

▪ Potential (quantum) speedup 
▪ speedup compared to a (selection of) classical algorithms  

▪ Limited quantum speedup 
▪ speedup compared to a “classical version” of the quantum algorithm

108

Five types of quantum speedup
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▪ Suboptimal performance at smaller sizes look like speedup 

▪ Parallel speedup can be mistaken for quantum speedup 

▪ …

109

One can easily get fooled …
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▪ Initially too flat slope when running at a fixed annealing time 
▪ To determine asymptotic scaling we have to find the optimal annealing 

time for each problem size

110

Performance at fixed annealing time
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▪ Compare simulated quantum annealing at fixed (suboptimal) 
annealing time to classical annealing at optimal annealing time.  

▪ What is a slowdown suddenly looks like speedup

111

“Fake” speedup due to suboptimal performance
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▪ On DW2 the optimal annealing time is much shorter than 20 µs.  
▪ The annealing times are far longer than is needed 
▪ The machine could be much faster 
▪ We cannot demonstrate quantum speedup without doubt 

112

Optimizing the total effort
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▪ D-Wave Two is a parallel machine acting on all spins simultaneously 

▪ We need to compare to a parallel classical  
machine with the same hardware layout  

▪ One can easily build such a classical machine  
in an FPGA or special purpose chip (ASIC)

113

Parallel versus quantum speedup
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Is there quantum speedup?

Compare scaling of D-Wave with simulated annealing

Same performance 
if we want to solve 
half of the problems

Slowdown if we  
want to solve more
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▪ Is it due to the 5% calibration errors and we simply solve the wrong 
problem instance? 

▪ Are spin glasses the wrong problem for quantum annealers and we need  
other problems to see quantum speedup? 

▪ Is it due to limited coherence and non-zero temperature? 

▪ Why did previous QMC simulations [Santoro et al, Science (2002)] give 
evidence for quantum annealing outperforming classical annealing?

115

Why is there no quantum speedup?
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Towards a better understanding
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▪ Early evidence for superiority of QA came from QMC simulations 
▪ Lower residual energies in simulated quantum annealing compared to  

simulated thermal annealing, but not for all models

117

Simulated classical versus quantum annealing

Santoro et al, Science (2002) 

similar results by 

Matsuda, Nishimori, Katzgraber (2009) 

this is inconsistent with what we saw on D-Wave!
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▪ Simulated annealing performs a Monte Carlo simulation 
▪ Sample random configurations according to their Boltzmann weights
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From classical to quantum Monte Carlo

Z = exp
s1,…,sN
∑ (−β Jij

i< j
∑ sis j )
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▪ Simulated quantum annealing performs a quantum Monte Carlo simulation 
▪ Sample random configurations according to their Boltzmann weights???
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From classical to quantum Monte Carlo

Z = Tr exp(−βH ) ≠ exp
c
∑ (−βEc )
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▪ Simulated quantum annealing performs a quantum Monte Carlo simulation 
▪ Map quantum system to classical path integral 
▪ Sample random configurations according to their weights
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From classical to quantum Monte Carlo

Z = Tr exp(−βH ) ≠ exp
c
∑ (−βEc ) Z = Tr exp(−βH ) = Tr exp[(−ΔτH )

M ]

≈ exp
(si ,τ )
∑ −Δτ Jijsi,τ s j ,τ

τ
∑

i< j
∑ −Δτ J 'si,τ

τ
∑

i
∑ si,τ+1

⎛

⎝⎜
⎞

⎠⎟
+O(Δτ

2 )
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▪ Simulated quantum annealing performs a quantum Monte Carlo simulation 
▪ Map quantum system to classical path integral 
▪ Sample random configurations according to their weights
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From classical to quantum Monte Carlo

Z = Tr exp(−βH ) = Tr exp[(−ΔτH )
M ]

≈ exp
(si ,τ )
∑ −Δτ Jijsi,τ s j ,τ

τ
∑

i< j
∑ −Δτ J 'si,τ

τ
∑

i
∑ si,τ+1

⎛

⎝⎜
⎞

⎠⎟
+O(Δτ

2 )
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▪ The behavior of a simulated quantum annealer depends strongly on 
discretization of imaginary time path integrals
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Time step dependence Heim et al, Science (2015)
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▪ Use a large time step to get best performance
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Performance as a classical optimizer Heim et al, Science (2015)
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▪ Faster than classical annealer for short times 
▪ The advantage vanishes for long times 
▪ One should use infinitesimal time steps to make predictions for devices
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Performance in the “physical” limit Heim et al, Science (2015)



||Matthias Troyer 125

But does QMC tell us anything about the real 
performance of a quantum annealer?
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▪ Quantum adiabatic theorem  
  

▪ Open systems tunneling through a barrier  

▪ How does QMC scale compared to that?
126

Scaling of annealing times in quantum annealing

t ∝ 1
Δmin
2

t ∝ε2 ∝ 1
Δmin
2

O(1)

Γ

∆Γ∼ 1

N2/3

O
(

1

N1/3

)

Γc

Γmin ∼ 1
N

∆Etunn ∼ e−cΓn
3/4N3/4

O
(

1

N1/4

)

Γ1Γ2Γ3
0

∆E

S. Knysh, arXiv:1506.08608 
similar results Farhi et al (2012)
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Tunneling between two states of a ferromagnet

+

-

energy splitting   

V (x) �! 1 |x| �! 0

E
0
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Roman Martoňák,1,2 Giuseppe Santoro,3 Erio Tosatti,3,4 Roberto Car5

1 Swiss Centre for Scientific Computing, Manno, and ETH-Zürich, Physical Chemistry, Zürich, Switzerland
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We include here, for the reader’s convenience, a few technical details on the Path Integral representa-
tion [1] of the Ising Spin Glass used to perform Quantum Annealing (QA).

The Edwards-Anderson Hamiltonian of the Ising spin glass reads

HEA = Ä
X

hiji

Jijõ
z
i õz

j . (1)

The spins occupy sites of a D-dimensional cubic lattice and õx
i ,õy

i ,õz
i are Pauli matrices corresponding

to a spin on lattice site i. Jij are the random (positive and negative) couplings between nearest
neighbours drawn from some prescribed distribution. The Hamiltonian (1) represents a frustrated
and extremely complex system and finding its ground state is a very hard computational problem.
Adding a transverse field Ä, which induces transitions between states " and # of a single spin, we
obtain the Hamiltonian of the Ising spin glass in transverse field

H = Ä
X

hiji

Jijõ
z
i õz

j Ä Ä
X

i

õx
i (2)

which is directly relevant to the experimental system of Brooke et al. [2]

In order to derive a path-integral representation of the the quantum spin glass model (2) we apply
to its canonical partition function the standard path integral methodology [1]. We write

H = U + K

U = Ä
X

hiji

Jijõ
z
i õz

j , K = ÄÄ
X

i

õx
i ,

where the terms U (potential energy) and K (kinetic energy) do not commute [K,U ] 6= 0. The
partition function Z at a temperature T (setting the Boltzmann constant kB = 1) can be written as

Z = Tr eÄH/T = Tr(eÄH/PT )P = Tr(eÄ(K+U)/PT )P

=
X

s1

. . .
X

sP

hs1|eÄ(K+U)/PT |s2ihs2|eÄ(K+U)/PT . . . |sP ihsP |eÄ(K+U)/PT |s1i .

Here sk = {sk
i } denotes a configuration of all the spins in k-th intermediate state, called Trotter

slice, and the last equality follows from insertions of the identity operator 1 =
P

sk

|skihsk|. So far
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H = U + K
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X

hiji

Jijõ
z
i õz

j , K = ÄÄ
X

i

õx
i ,

where the terms U (potential energy) and K (kinetic energy) do not commute [K,U ] 6= 0. The
partition function Z at a temperature T (setting the Boltzmann constant kB = 1) can be written as

Z = Tr eÄH/T = Tr(eÄH/PT )P = Tr(eÄ(K+U)/PT )P

=
X

s1
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X

sP

hs1|eÄ(K+U)/PT |s2ihs2|eÄ(K+U)/PT . . . |sP ihsP |eÄ(K+U)/PT |s1i .

Here sk = {sk
i } denotes a configuration of all the spins in k-th intermediate state, called Trotter

slice, and the last equality follows from insertions of the identity operator 1 =
P

sk

|skihsk|. So far

1

everything is exact. Now we apply the Trotter break-up formula eÄ(K+U)/PT ô eÄK/PT eÄU/PT which
neglects commutators of K and U [1], obtaining

Z ô ZP =
X

s1

. . .
X

sP

hs1|eÄK/PT eÄU/PT |s2ihs2| . . . eÄK/PT eÄU/PT |sP ihsP |eÄK/PT eÄU/PT |s1i ,

with an error proportional to the square of the Trotter break-up time, O(1/(PT )2) [1]. We need to
evaluate the expression hsk|eÄK/PT eÄU/PT |sk+1i, which is simply expressed as:

hsk|eÄK/PT eÄU/PT |sk+1i = hsk|eÄK/PT |sk+1ieÄU(sk+1)/PT (3)

since the potential energy U is diagonal in the chosen spin basis. The only non trivial term is therefore
the average of the kinetic term between two Trotter slices, hsk|eÄK/PT |sk+1i. Since spin operators
corresponding to diãerent sites commute [3], we can rewrite such a term as:

hsk|eÄK/PT |sk+1i = hsk| exp(
Ä

PT

NX

i=1

õx
i )|sk+1i =

NY

i=1

hsk
i | exp(

Ä
PT

õx
i )|sk+1

i i ,

where N is the number of lattice sites. From simple spin-1/2 algebra, [3] it’s easy to show that

h" |eaõ
x | "i = h# |eaõ

x | #i = cosh a

h" |eaõ
x | #i = h# |eaõ

x | "i = sinh a

which can be written as an Ising-like interaction (s, s0 now mean single spins)

hs|eaõ
x |s0i = CeBss0

with B = Ä 1
2 ln tanh a, and C2 = 1

2 sinh 2a. Collecting all pieces together, we get

hsk|eÄK/PT eÄU/PT |sk+1i = CNe(J?/PT )
P

i

sk

i

sk+1
i e

(1/PT )
P

hiji
J

ij

sk

i

sk

j

where

J? = ÄPT

2
ln tanh

Ä
PT

> 0 (4)

C2 =
1
2

sinh
2Ä
PT

.

The J? term can be seen as a ferromagnetic Ising-like coupling between the Trotter replicas of the
same spin which are nearest neighbours (k and k + 1) along the Trotter dimension.

For the full partition function we thus finally get

Z ô ZP = CNP
X

s1

. . .
X

sP

eÄH
D+1/PT (5)

HD+1 = Ä
PX

k=1

0

@
X

hiji

Jijs
k
i sk

j + J?
X

i

sk
i sk+1

i

1

A , (6)

2
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Tunneling determined from 
the time QMC needs to 
create an instanton.
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Scaling with system size 
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TFIM on 1d chain, J = 1, T = 0.0625

QMC: Γ = 0.7
exp=0.816(27)

ED: Γ = 0.7
QMC: Γ = 0.75
exp=0.682(24)

ED: Γ = 0.75
QMC: Γ = 0.8
exp=0.552(26)

ED: Γ = 0.8

Tunneling rate given by QMC scale with  ~ 
as in physical dynamics 

T = J/16



-m +m



-m +m



Periodic boundary conditions in imaginary time 
require an istanton + anti-istanton pair

-m +m

Z = Tr e-βH



-m +m -m +m

Z = Tr e-βH K(x0;xM ) = 〈x0 | e
−βH | xM 〉
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Scaling with system size L
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By cutting open the trace in imaginary time we have a new algorithm, with a better scaling.

Γ=0.8
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▪ D-Wave has built a quantum annealer 
▪ It performs as we expect from a quantum annealer 
▪ but the quantum annealer may have an effective  

semi-classical description (Shin et al.) 

▪ No evidence of quantum speedup 
▪ Do other classes of problems have speedup? 
▪ It is an analog device: is this due to calibration problems? 
▪ Do we need non-stoquastic quantum annealing?  
▪ Or is there simply no speedup in quantum annealing? 

▪ Simulated quantum annealing 
▪ Scales just like true quantum annealing for tunneling through a barrier  
▪ Is there any advantage for a physical quantum annealer?
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We understand quantum annealing much better
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