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Classical computers have come a long way

digital devices

more complex
but general purpose
and error correcting

Antikythera mechanism

astronomical positions

(100 BC) Kelvin’s harmonic analyzer

prediction of tides
(1878)

ENIAC

analog devices (1946) Kin-2
conceptually simple (2013)
calibration and scaling problems

D PHYS Matthias Troyer | | 2



The success of digital computers and Moore’s law

Projected Performance Development

10EFlops
1 EFlops -
100PFlops - 2
10 PFlops 4 #500
- Sum
1 PFlops - — #1 Trend
b Line
(X
S 100 TFlops - 76.534F /s — #500 Trend
..E. 5 2 Line
© 10 TFlops - 25 — Sum Trend
[ » Line
Q. o
1 TFlops > i
100 GFlops 48 F
10 GFlops - < »
1 GFlops 4>
100 MFIOpS 1 1 1 1 I 1 1 1 | 1 1 1 1 1 1 1 | | 1 Ll Ll 1 1 1 1 1 |
s W) O~ 00 MO0 NS WO RO DO~ N ) O~ O0mo
g e e i R R e R APPSR
— v v v v v v (NN NN NN NN O OO OO OO NN OO N
Lists
CPU cores: 1024 8192 3’120°'000 Amdahl’s law: 99.99993% parallel
Power: 1 MW 3 MW 20 MW 1 MW =1 MCHF / year
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HPC 2014

HIGH PERFORMANCE COMPUTING

FROM CLOUDS AND BIG DATA TO EXASCALE AND BEYOND

Enabling technologies for beyond exascale
computing

Paul Messina

Director of Science

Argonne Leadership Computing Facility
Argonne National Laboratory

July 9, 2014
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What is “Beyond Exascale Computing?”

= We are not referring to 10**21 flops

= “Beyond exascale” systems as we are defining them will be
based on new technologies that will finally result in the

much anticipated (but unknown) phase change to truly new
paradigms/methodologies.

We should not compare (potential) quantum computers to
single cores of current CPUs

The competition are the best special purpose
classical devices that one might build in 10-20 years

D P HYS Matthias Troyer | 5



Beyond Moore’s law: quantum devices

G@Bo |

Quantum Random
Number Generator

Made in Switzerland
! www.ldquantique.com

US Patert No. 7,519,641

Quantis
Serial n®. 0902099A210

Model n*:

Quantum randomness Quantum encryption Quantum sensing
perfect random numbers secure communication high sensitivity sensors

Y

_

s )

y

),

Analog quantum simulators

Quantum annealer

L ?
solve quantum models solve hard optimization problems? Quantum computers”
DPHYS Matthias Troyer | | 6



Simulating quantum computers

= Need 2N complex numbers to store the wave function of N qubits
=  O(2N) classical operations to perform a quantum gate on N qubits

10 16 kByte microseconds on a watch

20 16 MByte milliseconds on smartphone

30 16 GByte seconds on laptop

50 16 PByte seconds on top supercomputer

60 16 EByte minutes on future supercomputer
70 16 ZByte hours on potential supercomputer?
250 size of visible universe age of the universe

D PHYS Matthias Troyer | | 7



Step #0: the business case




Quantum computing beyond exa-scale

What are the important applications ...
.. that we can solve on a quantum computer ...

.. but not special purpose post-exa-scale classical
hardware that we may build in ten years?

B= Microsoft

Google

A
NOKIA ( ) 2 o
LOCKHEEb MARTIN
DPHYS Matthias Troyer | | 9



What problems will we solve on a quantum computer?

@n better @ counter chmD
change
cure cancer

Qld proteiD Qght hunger>
Gt?;gtreﬁggb Optimize>
hard problems
eradicate diseases
< ealize artificial
intelligence

D PHYS Matthias Troyer | | 10




What problems will we solve on a quantum computer?

counter
< ) climate
optimize
d sssssss realize
artificial

This is a list for a quantum wishing well

\/

Which of these can actually profit from quantum
computers?

DPHYS



Step #1: find a quantum algorithm




Many algorithms with known quantum speedup

Can we use any of them in real-world applications?

DPHYS

{ il 0 =

math.nist.gov
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Quantum Algorithm Zoo

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please
email me at stephen.jordan@nist.gov. Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring

Speedup: Superpolynomial

Description: 5_5_iven an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor
solves this in O (n3) time [82,125]. The fastest known classical algorithm for integer factorization is

the general number field sieve, which is believed to run in time 20‘"m). The best rigorously proven

upper bound on the classical complexity of factoring is O(2™3*°()) [252]. Shor's factoring algorithm
breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms
break the DSA and ECDSA digital signature schemes and the Diffie-Heliman key-exchange protocol.
There are proposed classical public-key cryptosystems not believed to be broken by quantum
algorithms, cf. [248]. At the core of Shor's factoring algorithm is order finding, which can be reduced to
the Abelian hidden subgroup problem, which is solved using the quantum Fourier transform. A number
of other problems are known to reduce to integer factorization including the membership problem for
matrix groups over fields of odd order [253], and certain diophantine problems relevant to the
synthesis of quantum circuits [254].

http://math.nist.gov/quantum/zoo/

Navigation

Algebraic & Number Theoretic
Oracular

Approximation and Simulation
Acknowledgments
References

Other Surveys

For overviews of quantum algorithms |
recommend:

Nielsen and Chuang
Childs

Preskill

Mosca

Childs and van Dam
van Dam an ki

Matthias Troyer |
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The Deutsch algorithm: simplest quantum speedup

= Check whether a binary function is constant or not

f:{0,1} = {0,1}

= Classically two function calls are needed: f(0) = f(1)?

= Quantum mechanically only one function call by applying the
function to both arguments at once

x)

y) —

U

f

DPHYS

x)
f(x)®y)

Uf|x>
U, (o

y)=|x)| f(x)@y)
0)+ B|1))|0) = |0)| £(0))+ BI1)| F(D))



The Deutsch algorithm: simplest quantum speedup

= Common misconception: quantum computers are faster since
they work on all possible inputs in parallel

My B U0y =) fo@y)
)L L r@ey) v (efo)+ B1))0) - a]0) £©))+ 1] 1)

= |f | measure the result | get either f(0) or (1), chosen randomly!

= We need to compute one global result based on all inputs and
measure just that one result!

Oi g » A %[(1_'_(_l)f(O)@f(l))|O>+(1_(_1)f(0)@f(1))|1>:|
1) — H —

0} iff(©)=f(1)
DPHYS |1> if £(0)# f(1) Matthias Troyer | 15




New computer architectures require new algorithms

= Massively parallel computers
= use millions of loosely coupled CPU cores
= we cannot just parallelize existing codes

= Vector registers
= do operations on 8-16 numbers at once
= need to rethink the program and change algorithms

= GPUs

= very fast cores, all doing the same thing
= need to rethink the program and change algorithms

= One cannot just translate existing algorithms

= Hardware-software co-design is needed to realize the potential
of new architectures

D P H YS Matthias Troyer | 16



Shor’s algorithm for factoring

= Factoring is hard classically: O(exp(N'3)) time for N bit - numbers

53693968364269119460795054153326005186041818389302311662023173188470613584169777981247775554355964649

04452615804209177029240538156141035272554197625377862483029051809615050127043414927261020411423649694

63096709107717143027979502211512024167962284944780565098736835024782968305430921627667450973510563924
02989775917832050621619158848593319454766098482875128834780988979751083723214381986678381350567167

43636376259314981677010612529720589301303706515881099466219525234349036065726516132873421237667900245
9135372537443549282380180405548453067960658656053548608342707327969894210413710440109013191728001673

12304864190643502624350075219901117888161765815866834760391595323095097926967071762530052007668467350
6058795416957989730803763009700969113102979143329462235916722607486848670728527914505738619291595079

= But is polynomial time on a quantum computer
= O(NB) using minimal number of 2N+3 qubits
= O(N?) using O(N) qubits
=  O(N) using O(N?) qubits

= Shor’s algorithm suddenly made quantum computing interesting

D PHYS Matthias Troyer | | 17



Shor’s algorithm and encryption

= Shor’s algorithm can be used to crack RSA encryption
= assuming 10 ns gate time and minimal number of 2N+3 qubits
= much faster (seconds) when using more qubits

TN
m 1999 1 hour

2009 2000 5 hours
m 1000000 10 hours

= How does Shor’s algorithm work?
= It's not as simple as “trying all factors in parallel”
= We again need to obtain a single answer combining all possible inputs

D P HYS Matthias Troyer | 18



A factoring algorithm

This is hard classically!

A quantum computer can try all periods and
find the right one by a Fourier transform!

D PHYS Matthias Troyer | 19



Shor’s algorithm and encryption

TN TN
PETT 1999 1 hour
2009 2000 5 hours
m 1000000 10 hours

= But use of quantum computers to crack RSA is limited since we can
switch to post-quantum encryption

= quantum cryptography
= lattice based cryptography

D PHYS Matthias Troyer | 20



Challenge #0: the business case




Choose your favorite problem

@n better @ counter chm@
change
cure cancer

Qld proteiD Qght hunger>
Gt?;gtreﬁggb 0ptimize>
hard problems
eradicate diseases
< ealize artificial
intelligence

D PHYS Matthias Troyer | | 22




Find a matching quantum algorithm

DPHYS
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Quantum Algorithm Zoo

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please
email me at stephen.jordan@nist.gov. Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring

Speedup: Superpolynomial

Description: _(§_iven an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor
solves thisin O (n3) time [82,125]. The fastest known classical algorithm for integer factorization is

the general number field sieve, which is believed to run in time 22®")  The best rigorously proven

upper bound on the classical complexity of factoring is O(2™3*°()) [252]. Shor's factoring algorithm
breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms
break the DSA and ECDSA digital signature schemes and the Diffie-Hellman key-exchange protocol.
There are proposed classical public-key cryptosystems not believed to be broken by quantum
algorithms, cf. [248). At the core of Shor's factoring algorithm is order finding, which can be reduced to
the Abelian hidden subgroup problem, which is solved using the quantum Fourier transform. A number
of other problems are known to reduce to integer factorization including the membership problem for
matrix groups over fields of odd order [253], and certain diophantine problems relevant to the
synthesis of quantum circuits [254].

http://math.nist.gov/quantum/zoo/

Navigation

Algebraic & Number Theoretic
Oracular

Approximation and Simulation
Acknowledgments
References

Other Surveys

For overviews of quantum algorithms |
recommend:

Nieisen and Chuang
Childs

Preskill

Mosca

Childs and van Dam
van Dam an Ki

Matthias Troyer |

23



And develop it into a killer-app

/. Run the quantum algorithm to solve the problem

6. Embed into specific hardware and check runtime

5. Add error correction and check overhead and resources

4. Optimize code until logical circuit depth < 1014

3. Check for qguantum speedup

2. Implement all oracles and subroutines

1. Find quantum algorithm with quantum speedup

D PHYS Matthias Troyer | | 24



Step #2: implement the oracles

Step #3: check the speedup




Grover search: implementing the oracle

= Search an unsorted database of N entries in YN time
= Rare case of provable quantum speedup given an oracle

= However, the oracle needs to be implemented!

= N-entry database needs at least O(N) hardware
resources to store the data

= Can perform the same search classically in
log(N) time with special purpose hardware

= Grover search is only useful if the database
can be calculated on the fly

= Are there important real-world applications? Optimization
problems?

D PHYS Matthias Troyer | 26



Quantum page rank: checking the scaling

week ending

PRL 108, 230506 (2012) PHYSICAL REVIEW LETTERS 8 JUNE 2012

5%

Adiabatic Quantum Algorithm for Search Engine Ranking

: 1,2 ) : .1 0234
Silvano Garnerone,*> Paolo Zanardi,> and Daniel A. Lidar®>>*°

Ynstitute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
“Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, USA
3Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA

4Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA

>Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA
(Received 25 October 2011; published 4 June 2012)

We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the
PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We
present extensive numerical simulations which provide evidence that this algorithm can prepare the
quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web
pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling
is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be
estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in
“g-sampling” protocols for testing properties of distributions, which require exponentially fewer
measurements than all classical schemes designed for the same task. This can be used to decide whether
to run a classical update of the PageRank.

D PHYS Matthias Troyer | | 27



Complexity of quantum page rank

= log(N) qubits are sufficient, but are not practical
= N qubits allow for a straightforward unary encoding

= Page rank then solved by adiabatic evolution of a spin model

H(S):zn‘h(s)iigjgi_ +ih(s)lj (O-;FG;_I_G;GZ'_)’
i=1

i<j

= Needs O(N?) time witha=0.2...1
when implementing N? couplings in parallel
using O(N?) hardware resources

= Classical page rank needs O(1) matrix-vector multiplications,
each of complexity O(dN) where d is the mean number of links

D PHYS Matthias Troyer | 28



Compare to classical hardware

Quantum Classical Classical
custom hardware general purpose |custom hardware

Serial time 5
complexity O(N? polylog(N)) ~ O(aN log(N)) O(dN)
Memory required EOJ{A)Ke[i]o]iES O(N) bits O(N) bits

Parallel time O(N)
: O(NO92) — O(N) on 3D crossbar O(log(N))
complexity network

Hardware 5

= Quantum speedup vanishes when comparing parallel quantum hardware
to parallel special purpose classical hardware

= (Classical hardware requirements increase slower classically than quantum

D PHYS Matthias Troyer | | 29



Solving linear systems of equations
Harrow, Hassidim, Lloyd, PRL (2009)

= Solve linear system Ax=b in log(N) time

= Requirements
= Only log (N) bits of the answer are needed
= Problem is well conditioned
= Time evolution using the matrix A can be implemented efficiently

e—iAt ‘ b>

D PHYS Matthias Troyer | 30



Implementing a general time evolution

= In general we always need O(N?) gates if matrix A has N? different entries

= Lloyd, Mohseni and Rebentrost (Nature Physics 2014) propose an
O(log(N)) implementation using QRAM to store square root of the matrix

= needs O(N?) gates and qubits to implement the QRAM
= needs O(N?) effort in classical preparation to calculate the square root

= How does it compare to classical approaches?
= Gaussian elimination solves a linear system in O(N°) time using O(N?) memory

= Using O(N?) classical hardware we can do a matrix-vector multiplication in O(log(N))
time and solve the problem iteratively

= Furthermore, using O(N?) classical hardware we can classically emulate
any quantum algorithms acting on 2 log N qubits.

D PHYS Matthias Troyer | | 31



Solving linear systems of equations efficiently

=  Quantum speedup can only be realized if the evolution exp(-iAt) can be
Implemented using a short circuit, i.e. it does not depend on lots of data

= Electromagnetic wave scattering problerln (Clader et al, PRL, 2013)

= finite difference discretization e B
= represent shapes by splines T NN ST

——————————————————————————————————————————————————————————————————————————————

= Here is a definite exponential speedup

D PHYS Matthias Troyer | | 32



Challenge #4: check the runtime




Now implement the quantum algorithm

= Use one of a number of quantum programming languages

= QCL, one of the first guantum computer simulators
http://tph.tuwien.ac.at/~oemer/gcl.html

= Liquid (Microsoft), quantum computer simulation
https://github.com/msr-quarc/liquid

=  Quipper, quantum compilation and resource estimation
http://www.mathstat.dal.ca/~selinger/quipper/

= ScaffCC, quantum compilation and resource estimation
https://qgithub.com/ajavadia/ScaffCC

= OpenQu (our new project)
= quantum compilation and optimization
= optimized high-level and low-level quantum libraries
= efficient simulation and emulation of 50+
= interface to quantum hardware to run on actual devices (during 2016)

D PHYS Matthias Troyer | | 34


http://tph.tuwien.ac.at/~oemer/qcl.html
https://github.com/msr-quarc/liquid
http://www.mathstat.dal.ca/~selinger/quipper/
https://github.com/ajavadia/ScaffCC

Solving linear systems of equations efficiently

=  Quantum speedup can only be realized if the evolution exp(-iAt) can be
Implemented using a short circuit, i.e. it does not depend on lots of data

= Electromagnetic wave scattering problerln (Clader et al, PRL, 2013)

= finite difference discretization e B
= represent shapes by splines T NN ST

——————————————————————————————————————————————————————————————————————————————

= Here is a definite exponential speedup

D PHYS Matthias Troyer | | 35



Solving linear systems of equations efficiently

=  Quantum speedup can only be realized if the evolution exp(-iAt) can be
Implemented using a short circuit, i.e. it does not depend on lots of data

= Electromagnetic wave scattering problerln (Clader et al, PRL, 2013)

= finite difference discretization r___r__X_T ________
= represent shapes by splines TN TN TSN T
R G G S T N S e e
L\ _______________________________________________________________________
T W S AU N S S |
I W -
E—-\-‘ci- -------------------------- -

——————————————————————————————————————————————————————————————————————————————

= Here is a definite exponential speedup

= But seems to require 102° gate operations (see arXiv:1505.06552)7
DPHYS Matthias Troyer | | 36



Do we have a problem?

Superconducting |Hypothetical target

10 us 10 ns 1ns
Time for 10%° gates 3x107% a 3x10% a 3x108 a
Gates in two 10M 1014 1015

weeks runtime

A quantum algorithm should not just be of polynomial complexity
It needs to solve an interesting problem in less than 10'> operations
This means details of the gate set also matter

D PHYS Matthias Troyer | | 37



New computer architectures require new algorithms

= Massively parallel computers
= use millions of loosely coupled CPU cores
= we cannot just translate existing codes, they will not scale

= Vector registers
= do operations on 8-16 numbers at once
= need to rethink the program and change algorithms

= GPUs

= very fast cores, all doing the same thing, on limited local memory
= need to rethink the program and change algorithms to use those cores

= One cannot just translate existing algorithms but hardware-
software co-design is needed to realize the potential of new
architectures

D PHYS Matthias Troyer | 38



Quantum software engineering

= Polynomial scaling is not sufficient

= Hardware-software co-design

= We need to develop quantum software in parallel to quantum
hardware, similar to classical supercomputers

= Optimized algorithms
= Develop faster quantum algorithms
= Rethink the solution of problems on quantum computers

= Optimized libraries

= develop highly optimized quantum libraries for common operations
instead of machine-translating classical codes

= We have routinely accelerated classical codes by factors of more
than 10° and and now need to do the same for quantum codes

D PHYS Matthias Troyer | | 39
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Quantum computing beyond exa-scale

What are the important applications ...
.. that we can solve on a quantum computer ...

.. but not special purpose post-exa-scale classical
hardware that we may build in ten years?

B= Microsoft

Google

A
NOKIA ( ) 2 o
LOCKHEEb MARTIN
DPHYS Matthias Troyer | | 41



And develop it into a killer-app

/. Run the quantum algorithm to solve the problem

6. Embed into specific hardware and check runtime

5. Add error correction and check overhead and resources

4. Optimize code until logical circuit depth < 1014

3. Check for qguantum speedup

2. Implement all oracles and subroutines

1. Find quantum algorithm with quantum speedup

D PHYS Matthias Troyer | | 42



First applications reaching a petaflop

Domain area | Code name Institution # of cores | Performance Notes
Materials DCA++ ORNL 213,120 10PF | Taootecon el
Materials | WL-LSMS | ORNL/ETH | 223232 1.8PF | 2o 2non el
Chemistry | NWChem | PNNL/ORNL | 224,196 1.4 PF | 200 Sordon Sel
Materials DRC ETHUTK | 186,624 1.3PF |20 Sordon Bl

Nanoscience OMEN Duke 222,720 > 1 PF Zoggziogfn‘;fl‘ize”
Biomedical MoBo GaTech 196,608 780 TF | 00 Sqraon Sel
Chemistry | MADNESS | UT/ORNL 140,000 550 TF
Materials LS3DF LBL 147,456 442 TF | 2000 >0vcon Bell

Seismology | SPECFEM3D |USA (multiple)| 149,784 165 TF | 20> >ordon 5el

Source: T. Schulthess atta Ty |

DPHYS
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Simulating quantum systems

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

F eynman Invented qua ntum Simulating Physics with Computers
computers to simulate Richard P. Feynman
q u a n t u m p h y S i C S Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

We can surpass the best
classical computers with only
a little more than 50 qubits!

D PHYS Matthias Troyer | | 44



Solving quantum chemistry on a quantum computer

= AKkiller-app for quantum computing is solving quantum problems

. I|.“
i3
>

= Design a room-temperature superconductor

T ————

= Develop a catalyst for carbon sequestration

= Develop better catalysts for nitrogen fixation (fertilizer)

= [hese problem need better accuracy than we get by using
approximate classical algorithms

= exponentially hard classically
= polynomial complexity on quantum hardware

D PHYS Matthias Troyer | 45



Preparing the ground state

= On a classical computer
= Imaginary time projection W) =lime ™| ¥, )

T—>o0

= Power method or other iterative eigensolver  |¥ ) =1im(H - A)"

¥,

= On a quantum computer

= Unitary operations + measurements:
1. adiabatically prepare trial state \PT>
2. projectively measure energy

3. obtain the ground state if
the ground state energy was measured |, ) picked with propability

¥, )—|¢,) withH|¢,)=E,

0,)
(0,19,

D PHYS Matthias Troyer | | 46



Quantum phase estimation

= Energy can be measured by measuring the phase of a wave function after
unitary evolution

U

") = g,) ="

= We can only measure relative phases, thus compare to the original phase by
doing a controlled evolution

|0>|¢n>%%(|0>+|1>)|¢n>%%(IO>|¢H>+UI1>I¢H>)=%(|0>+e‘"”|1>)|¢n>e%(me"¢>|0>+<1—e-l'¢>|1>)l¢n>

= Measure the ancilla phase qubit to obtain
= (O if the phase is 0 mod 21T

= 1if the phase is T mod 21 Phase - Hi—1H]|~
L
= Repeat the procedure to measure the / f
phase and energy more accurately U

D PHYS Matthias Troyer | | 47



Solving quantum chemistry on a quantum computer
1. Select a finite (generally non-orthogonal) basis set

2. Perform a Hartree-Fock calculation to
= get an approximate solution
= get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set
H = ztpqc;cq + Zqumcgcgcrcr

exact classical approach: full-configuration interaction
exponential complexity!

Whitfield, Biamonte, Aspuru-Guzik
Molecular Physics (2011)

D PHYS Matthias Troyer | 48



Solving quantum chemistry on a quantum computer
1. Select a finite (generally non-orthogonal) basis set

2. Perform a Hartree-Fock calculation to
= get an approximate solution
= get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set
H = ztpqc;cq + ZqurSC;cgcrcr
4. Prepare a good guess for the ground state

5. Perform quantum phase estimation to

= get the ground state wave function Whitfield, Biamonte, Aspuru-Guzik
= get the ground state energy Molecular Physics (2011)

D PHYS Matthias Troyer | 49



Time evolution under the Coulomb Hamiltonian

= Key ingredient: evolve the wave function under the Coulomb Hamiltonian

H= thq c, q+2 s CoCAC,C, = ZH M =O(N") terms
pqrs
. . . M
= Use Trotter breakup to implement time evolution o NH He—ATHm
Whitfield, Biamonte, Aspuru-Guzik, Molecular Physics (2011) - 1

« Efficient circuits available for each of the M=N* terms

lllll

> Se | > e } > B

e
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Representing fermion terms by quantum circuits

= Map the occupation of each spin-orbital to the states of one qubit

0)=[T)  [n=|4)

= Density operators get mapped to Pauli matrices

n. :%(I—O'f)

l

= Hopping terms get mapped to spin flips with Jordan-Wigner strings
qg—1

<=0, []oio,’
cc =0,|]oio,
i=p+1

= Time evolution gets mapped to circuits built from unitary gates

Phase . .

. R -4 t
—i0lcte +cle P 1H HjY ¥
ptq T p) __ i Yl
e J— T g <
Fany Fan)
' 3/

Q {H] U%—oz/zgu H|Y - —02/251\ Yt}
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Can quantum chemistry be performed on a small quantum computer?

Dave Wecker,! Bela Bauer,? Bryan K. Clark,%3 Matthew B. Hastings,? ! and Matthias Troyer?

' Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA
2Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA
3 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
4 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

Phys. Rev. A 90, 022305 (2014)

Can a classically-intractable problem be solved
on a small quantum computer?

Can a classically-intractable problem be solved on
a huge quantum computer?

Can a classically-intractable problem be solved on
the largest imaginable quantum computer?
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Solving a small non-trivial problem

= How many spin-orbitals do we need for an interesting problem?

Cuprate high-T; superconductor O(10000)
Active space of interesting reactions 200-400
Classically tractable by DMRG =70
Classically tractable by full-Cl = 50

= What accuracy do we need?

Wish of my chemistry colleague 0.1fmHa - 1pHa

Modest goal 1mHa

Note that the total energies are of the order of 1kHa

We thus need at least six digits of precision
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Our initial outlook in January 2014

= Second order Trotter formula for m terms needs m3? Trotter steps per

time interval .
52km2||H||t(m||H||t)
€

= Naive scaling with number of spin-orbitals

N, |2tes 1/A¢ Total (Parallel)

term

Upper bound | N* | N [(N)*? =N°®| N (N!0
Empirical scaling| N°>®| N N* N” (N°®)

= Estimates for an example molecule: Fe2S:

Gate count 1018
Parallel circuit depth 1077

Run time @ 10ns gate time 30 years
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Improvements to the quantum algorithms:

= Estimates for an example molecule: Fe2S2 with 118 spin-orbitals

Gate count 110 New gate count 101
Parallel circuit depth 1077 Parallel circuit depth 1070
Run time @ 10ns gate time 30 years Run time @ 10ns gate time 2 minutes

= Attempting to reduce the horrendous runtime estimates we achieved
Wecker et al., PRA (2014), Hastings et al., QIC (2015), Poulin et al., QIC (2015)

= Cancelling of Jordan-Wigner strings: O(N) reduction in gates

= Nesting of terms: O(N) reduction in circuit depth
=  Optimizing circuits: 4x reduction in gates

= Smart interleaving of terms: 10x reduction in Trotter steps

= Multi-resolution Trotter: 10x reduction in gates

= Better quantum phase estimation: 4x reduction in rotation gates
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Optimization 1: reducing Jordan-Wigner strings
M.B. Hastings et al., QIC (2015)

Rearrange the circuits and use an optimized ordering of terms to cancel
most of the Jordan-Wigner strings between terms
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Reduces the cost of Jordan-Wigner strings from O(N) to amortized O(1)

Matthias Troyer |



Optimization 2: Nesting of terms
M.B. Hastings et al., QIC (2015)

= Interleave terms that seem to interfere at first sight due to overlapping
Jordan-Wigner strings

> A\ | VN W
" 17 | | | I
5 |
o T177 I S S S
o' \\ 1\ N W VN W
1 17 | | | I
12, |
0 1111 1 1 1 .

____________________________________________

= Can do O(N) terms in parallel for another power reduction
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Optimization 3: faster phase estimation

= Standard phase estimation
= propagates by time ¢
= controlled rotation gates to implement evolution
(need two normal rotations)

1

ﬁ(|0>+|1>)

1

¢n>%$(|0>

= Improved phase estimation
= propagates by time /2
= no controlled rotations are needed
= 2X fewer gates, 4x fewer rotations

(| O> e+th/2

(e+i¢/2 | O> n e—i¢/2

¢n> _|_| 1> e—th/z ¢n>

(0)+/1)l6.) > 0))=75 1)
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Optimization4: Reducing Trotter-Suzuki errors

D. Poulin et al., QIC (2015)

= Reorder the terms in the Trotter-Suzuki decomposition

= Multi-resolution Trotter scheme: longer time steps fort smaller terms
= Estimate tighter error bounds

7

10"
10°
<T 105§ b&fé\,/
> S
n L ’
f% 1O4§ ,’Q
»n o .7
3 Pid .
L'a 10 ,’ Cx,?/_@,
-
O
Q 2__900,06“566 s
= 10 WoHHE"
= -?\‘ea)\, . ‘E
Z. ,D,,E” n D,/
101?” D .’:%,‘7:
b;-cb(b e L7
0: §/z’//z.
10 — | 1 | 2
10 10

Number of Spin orbitals N
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Improvements to the quantum algorithms:

= Estimates for an example molecule: Fe2S2 with 118 spin-orbitals

Gate count 110 New gate count 101
Parallel circuit depth 1077 Parallel circuit depth 1070
Run time @ 10ns gate time 30 years Run time @ 10ns gate time 2 minutes

= Attempting to reduce the horrendous runtime estimates we achieved
Wecker et al., PRA (2014), Hastings et al., QIC (2015), Poulin et al., QIC (2015)

= Cancelling of Jordan-Wigner strings: O(N) reduction in gates

= Nesting of terms: O(N) reduction in circuit depth
=  Optimizing circuits: 4x reduction in gates

= Smart interleaving of terms: 10x reduction in Trotter steps

= Multi-resolution Trotter: 10x reduction in gates

= Better quantum phase estimation: 4x reduction in rotation gates
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Nitrogen fixation: a potential killer-app

= Ultimate prOblem: —— Atmosphel-'lcﬂlfmgen(n})

= Find catalyst to convert nitrogen to ammonia
at room temperature

= Reduce energy for conversion of air to fertilizer

bacteria living In

= Current solution: Haber process (1909) tegume root nodules “5? Nitrates (0, )

Docom sers
rwm

b&(" and fungi)

= Requires high pressures and temperatures Niitying

Ammonification Nitrification

= Cost: 3-5% of the worlds natural gas o), L Ammoniury, () H weiteso, )

Nitrogen:fdng Nitrifying bacteria

production (1-2% of the world’s annual energy) M=E=Es

= Quantum solution:
= ~ 200 -400 qubits
= Design a catalyst to enable inexpensive fertilizer production
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What about a room temperature superconductor?

.
-

—— -

Full material

Bands per unit cell = 50
Unit cells needed 20x20

Number of spin-orbitals N = 80°000
Number of interaction terms N4

Cirucit depth scaling O(N>)
Estimated runtime @ 10ns gate time age of the universe
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Reduce it to an effective model

Simplify to an effective model capturing the relevant physics

single 2D layer

simplified effective model / /y

Can we efficiently solve such effective models on a quantum computer?
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The Hubbard model

= A simple effective model with only O(N) terms 7 {
t/
i i v
H = —t Z (Ci.6Cjo + €5 oCio) + UZn,,;,Tnz-,l "
(i) i ¥——
/U

= Advantages
=  O(N) terms instead of O(N*) terms
= Can apply all terms in parallel => O(log N) circuit depth for one step
= Much smaller energy range => shorter phase estimation times
= Jotal scaling for adiabatic state preparation about O(N)

= Preparation and measurement need to be optimized
= gaps to excitations
= superconducting pair correlation functions (N* terms)
= dynamic correlation functions
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What about a room temperature superconductor?

| Fullmaterial | Hubbard model

- 50 1
20620 2020
N = 80000 N = 800
. o
o) o1

Estimated runtime @ 10ns gate time age of the universe seconds

> .
/‘(

;o

Hubbard model

3D crystal structure
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Previous work on the Hubbard model

= Abrams and Lloyd, PRL (1997) suggested to use quantum
computers for the time evolution under the Hubbard Hamiltonian

= Ortiz et al, PRA (2001) provided details on how to map fermions to
qubits and how to measure some observables

= Open questions after these seminal papers:
= preparing good trial wave functions

= mapping the time evolution onto actual quantum gates
= estimating the circuit depth (gate count)
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Direct measurements

= After preparing the ground state we can measure any desired quantity U
which we can implement as an efficient circuit

0) —{H[Z(0)]+{H]<F
U

= However, every measurement only gives a single bit!

AO = VarO

1
=M =0(—2) measurements are needed
€

= Solution: perform a quantum amplitude estimation to get the value
(Knill, Somma, Ortiz, PRA (2007))

1 . .
t=0(2) measurement time is needed

= This still destroys the state and we have to (expensively) re-prepare it
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Nondestructive measurements (approach |)
Wecker et al, PRA (2015)

= Make use of the fact that the ground state is an eigenstate of the
Hamiltonian to perform non-destructive measurements

= Measurements using Hellman-Feynman theorem

dE (1)

dH(l)|\P
dA

= (W5 () os(A))

= Add the observable to be measured as a perturbation H(A)=H + 10

= Adiabatically evolve the wave function [P (0)) =W () = | W s (—6))
= Measure the energy and calculate the difference (¥, |0]¥,,) = Eqs(e)— Eg5(—€)
GS GS
2€

loge

= Non-destructive and only 0( ) measurements are needed

€
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Nondestructive measurements (approach ll)

~ Wecker et al, PRA (2015)
= Recover the ground state (GS) after a destructive measurement

Efficient if we measure only a single bit
requires time O(1/¢) if performed coherently

Prepare
ground state

Incorrect
forn >
Np’th time

Energy
correct

Check for ground state
energy with QPE

Measure Uf:lﬁ Measure Uﬁf
and store result and discard result
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From the Hubbard model to materials

Full material Hubbard model

Bands per unit cell = 50 1
Unit cells needed 20x20 20x20
Number of spin-orbitals N = 80000 N = 800
Number of interaction terms N4 O(N)
Cirucit depth scaling O(N>) O(1)
Estimated runtime @ 10ns gate time age of the universe seconds

= [he Hubbard model teaches us fundamental mechanisms but not the
properties of a real material.

= \We gain valuable insights but not quantitative predictive power

= Full ab-initio simulation of a correlated material is too complex even on
quantum hardware
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Solution: a hybrid approach to materials simulation

= Use classical algorithms on peta-scale hardware to derive realistic effective
realistic models of the important bands in a material

= Use quantum algorithms to solve these models on a quantum computer
= |terate by using the results to improve the effective models

Material

/

pDFT

4

/{Initial DFT solution

[

/ Impurity model

-~

. n
Select orbitals Compute DMFT § with bath g =
€irr» Vik Hamiltonian _% " parameters Vy;, €; § g'
2 5 N
) il DMFT  Jis
7 S S
= 3 Q =
R t DFT usi Compute electron &3 £ §
epea using o) ) : o
 DMFT density o, DMFT 2 Greens.functlon 2 g-
density p ensity p 3 (i wy) S y
K T )
Classical computation Quantum computation
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And develop it into a killer-app

/. Run the quantum algorithm to solve the problem

6. Embed into specific hardware and check runtime

5. Add error correction and check overhead and resources

4. Optimize code until logical circuit depth < 1014

3. Check for qguantum speedup

2. Implement all oracles and subroutines

1. Find quantum algorithm with quantum speedup
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Quantum computing as post-exa-scale technology

= Identifying killer-apps for quantum computing is challenging

= the problem has to be hard enough that it cannot be solved on an exascale machine
= the problem has to be amenable to quantum acceleration
= the crossover scale has to be short enough to make it useful

= Potential applications
= factoring and code breaking (relatively easy but limited use)
= quantum lattice models (straightforward!)
= quantum chemistry and material simulations (challenging but enormous potential)
= solving linear systems (can’t we solve them well enough already?)
= others??? machine learning???

= |t is imperative to do realistic resource estimates
= Asymptotic scaling is not enough!
= |tis time to view quantum algorithms from an applications perspective!
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There is much more!

| SHEEEH
. HNHSE
% PE— i TEHE
Blind quantum computing and search Quantum money
(Broadbent, Fitzsimons, Kashefi) (Aaronson, Farhi et al)

Cloud providers cannot know what the user does
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Quantum anneallng

Matthlas Tro er




Analog and digital quantum devices

Quantum simulators

solve quantum models

Quantum annealer

solve hard optimization problems?

DPHYS

o) |

(iBa

Quantum Random
Number Generator

Quantis
0902099A21

Made in Switzeriand
| www.idquantique.com
1

US Patert No. 7,519,641

I n*;

Serial n*:

!
'3

[

Quantum random numbers
perfect randomness

Quantum computers?

solve quantum models (R. Feynman)

factor integers (P. Shor)

Quantum encryption
secure communication

76
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: n PROMISES TO SOLVE SOME or HUMANITY s
‘ MOST COMPLEX PROBLEMS lT S BACKED
BY JEFF BEZOS NASA AND THE cm
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3,600 times faster than classical computers at some tasks

DPHYS

Science Bk

[\FVYYRY NEws  SCIENCEJOURNALS  CAREERS  MULTIMEDIA

Nows Home Hot Topics Categories From the Magazine Sciencelraider Scien

News > Physics > Quantum or not, controversial computier runs no faster than a normal one

LATEST NEWS
-

Quantum annealer. To solve a problam, D-Wave's chip sesks the lowest enargy state of 512 mteracting
anburm Bits, o qubits, tashioned from finy 1ings of supesconducton

Quantum or not, controversial computer runs
no faster than a normal one
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It’s in a quantum superposition!

The Log in | Register | Subscribe Digital & mobile |

Economist

Quantum computing

Faster, slower—or both at once?

The first real-world contests between quantum computers and standard ones

Like <268 Tweet < 25

CHIPMAKERS dislike quantum mechanics.
Half a century of Moore’s law means their
products have shrunk to the point where
they are subject to the famous weirdness of

Matthias Troyer |




DPHYS

Danly e

Google tries to save the world: Internet giant
explains how its move into quantum computing
could solve global warming

Google hopes it will help develop sophisticated artificial life, and find aliens

D-Wave computers run on a 512-qubit processor.
As a comparison, PCs found in homes run on 32-bit or 64-bit processors.
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Quantum annealing of Ising spin glasses

Classical (T)

/ ree Energy

Surface

Quantum (H, )




A device to solve Ising spin glass problems

Find the configurations which minimize the energy

|l
I+
[

H = EJZ.J.SZ.SJ. +2hl.sl. with S,
ij i

This problem is (nondeterministic polynomially) NP-hard, meaning that many
Interesting hard problems can be mapped onto it

= tfraveling salesman problem
= portfolio optimization

= factorization of integers

= graph isomorphisms

= and many more ...

Can a quantum device solve these problems faster than a classical one?
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Annealing and simulated annealing

Annealing

A 7000 year old neolithic technology

Slowly cool metal or glass
to improve its properties

Simulated annealing

Kirkpatrick, Gelatt and Vecchi, Science (1983)

A 30 year old optimization technique

Slowly cool a model in a Monte Carlo simulation
to find the solution to an optimization problem

We don’t always find the global minimum and have to try many times
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Quantum adiabatic algorithm
Farhi, Goldstone, Gutmann and Sipser (2000)

Quantum adiabatic theorem: if we slowly change the Hamilton a quantum
system remains in the ground state of the instantaneous Hamiltonian

have to evolve

[F) sufficiently slowly!

V(x)

Turning on the potential the wave function concentrates
around the minima of the potential
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http://arxiv.org/find/quant-ph/1/au:+Gutmann_S/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Sipser_M/0/1/0/all/0/1

Quantum annealing for the Ising spin glass

Add a transverse magnetic field to induce quantum fluctuations

H(t)=B(1)) J,0i0°— A1) 0}

i<j

Initial time t=0: all spins aligned with the transverse field "
12} A(t/t,)
B(t/t)

—_— = = = = — — — —> el

Energy (GHz)

(=) N S~ D (o]
T T T

Final time t=tr. ground state of the Ising spin glass

ottt N

t/tf

Ground state version: quantum adiabatic algorithm of Farhi et al, (2000)
Finite temperature version: quantum annealing by Brooke et al, (1999)

Simulated quantum annealing: same idea in a QMC simulation, Santoro et al, (2002)
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Quantum annealing in experiments
Brooke, Bitko, Rosenbaum, Aeppli, Science (1999)

Anneal at very low temperatures by changing a quantum control parameter

LiHOg 44 Yo.56 4
25 m Disordered Ferromagnet
Classical (T) v
20

Quantum (H, )

a |
0O 01 02 03 04 05 06 07 08

T(K)

Cool a spin glass by sweeping a
magnetic field at low temperatures
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Three open questions about quantum annealing
for typical (not worst case) problems

1. Does adiabatic quantum computing for the Ising spin glass
have any speedup over classical algorithms?

2. Does finite-temperature quantum annealing have any
speedup over classical algorithms?

3. Does the implementation in the D-Wave devices have any
speedup over classical algorithms?
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The D-Wave device
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The D-Wave device: superconducting flux qubits

Implement Ising spins by flux quanta through superconducting rings
Programmable inductive couplings between flux qubits

: _
o M; o<y bM<y

=8
A TR
E®
é%s
o
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17] Comp. j
/ /
TAAALN x® AV
@y | [®
2o e 3 |2
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C:; i Coupler ij 8

M CxK
ICCJJ(t)—> }@{ }@(
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Josephson

junction (I)():Ccl](t) ®

100°000 Josephson junctions
4’000 digital to analog converters
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A unit cell of the device

Arrange four qubits horizontally and four vertically
Obtain a bipartite fully connected graph of 8 spins
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The full chimera graph: 4x4 unit cells = 128 qubits

Couple horizontal qubits horizontally to the neighbors
Couple vertical qubits vertically to the neighbors
108 of 128 qubits worked

DPHYS R ot



D-Wave Two: 8x8 unit cells with 512 qubits

D PHYS Matthiass Troyer | | 92



What does it do?
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Perform experiments to answer these questions

= Hypothesis 1: D-Wave is a classical annealer

Decoherence is so strong that quantum effects are irrelevant and it is just thermal.
Experimental test. compare to a simulated classical annealer

= Hypothesis 2: D-Wave performs classical (mean field) spin dynamics

The qubits are just classical spins precessing in the magnetic field.
Experimental test: compare to a simulated classical annealer

= Hypothesis 3: D-Wave is an incoherent quantum annealer

Decoherence is weak enough to allow a quantum model to be realized,
but quantum coherence is unimportant for the annealing.

Experimental test: compare to a simulated quantum annealer

= Hypothesis 4: D-Wave is a quantum annealer with quantum speedup
Quantum coherence provides advantages in tunneling through barriers
Experimental test: scaling with problem size is better than that of a simulated annealer
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Our experiments

Find hard test problems for the machine to solve

random 1 couplings on all bonds of the chimera graph

W/

\\"vll

hundred million experiments one billion simulations

/]
%

@ X) _
i classical and quantum Monte Carlo
/N

on D-Wave One

1000 choices of couplings for each problem size
1000 repetitions of the annealing

vary the annealing time and schedule
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Success probability histograms

1. Pick a specific instance of the couplings Jj and fields h;

2. Perform N = 1000 or more annealing runs and measure the final energy
= count the number of times S that we find a ground state
= calculate the success probability s = S/N of finding a ground state in

one run
_ 0.25 |

3. Repeat for many instances ; C) SA
of the couplings J; and fields h; 2 0.20F
£ 0.15}

4. Make a histogram of the S

success probabilities s é 0.10F

Z 0.05| iiﬁ i ii _

O°O%.O 02 04 06 08 1.0

Success probability
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Comparing the histograms

0.30

A) DW

0.25
0.20
0.15
D-Wave One

0.10
0.05

Number of instances

0.00
00 02 04 06 08 1.0

= Bimodal histogram for D-Wave One and the simulated quantum annealer

= D-Wave One is inconsistent with a classical annealer
= D-Wave One is consistent with a simulated quantum annealer
= D-Wave One does not look too similar to mean field spin dynamics
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Correlations

10 . ‘ 20 1<::j% ::j | 20
' N 18 excellent correlations : I gt . 18
0.8 --— 16 0.8 I 16
()} . 14 o) SI - +1 SI = —1 14

c C .
O s . 12 O o6l 12
o 10 o or 10

g -4 - 8 o 0.4

1 8

. = |
O 6 ;) 6
o * but 5% outliers: L ¢> 4
2 ) _ 2

= | | ] calibration problems? o - N | M

0 0.2 0.4 son 0.6 0.8 1.0 0 SI :02_ 0.4 on 0.6 Sloé +1 1.0 0
Simulated quantum annealer D-Wave One, gauge transformed

Investigate calibration issues b _ 0, <40,
59 = H=)J000,
using a gauge transformation i Jiy e aald,

with a, = 1

The correlation between a simulated quantum annealer and D-Wave

IS as good as the correlation of D-Wave with itself

DPHYS
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Correlations
1.0 40
3
g 0.8 36
[¢b] .
> 0.6 simulated
D-Wave ® 32
S 0.4} quantum annealer
o 28
= 0.2
A 24

OO I I I
0.0 0.2 04 0.6 0.8 1.0
DW, gauge averaged

N
o
Instances

classical
classical annealer 8 spin dynamics

The same instances are hard and easy
on D-Wave and the simulated quantum annealer

but not on D-Wave and mean-field spin dynamics or classical annealing
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D-Wave performs like a quantum annealer, but ...

= ...the simulated quantum annealer has a mean-field version
Shin, Smolin, Smith and Vazirani, arXiv:1401.7087

1.0 | | | |
: &
S 0.8l ot | B
= - _
0.6 . I
= .
= IR | =
2 0.4 I 1
© g
-'q_)' N E
%0.2- ol
S .|II
Do oE . . .

80 02 02 06 08 Lo

mean-field quantum annealer

= A quantum annealer at the temperatures where D-Wave operates might
not profit much from quantum effects 7?77
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Lessons learned from the D-Wave devices

= There is evidence for entanglement

nmdl“ﬂlﬂ“l“[fv
Lanting et al, PRX (2014) /
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= There is evidence for collective tunneling
Boixo et al, arXiv:1411.4036

= Performance on spin glasses is consistent with quantum annealing
Boixo et al, Nature Physics (2014)

= But there is also a semi-classical mean-field model that describes the

performance well for spin glass instances
Shin et al, arXiv:1401.7087

= What about quantum speedup?
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The ultimate question: how does it scale?

D-Wave Two wall clock time = 0.243 N* + 304.1 N + 82138 microseconds

<

120 milliseconds
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esuvius core computing time = 0.295 N + 5.456 microseconds
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Number of Variables [N]
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Our experiments

Find test problems for the machine to solve

random £1 couplings on all bonds of the chimera graph

AR
. $ssane
AL Y Yoy

Quantum annealing

Simulated annealing
on D-Wave Two

on Intel CPU

Codes are on
arXiv:1401.1084
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Scaling of wall-clock times

= Time to find the ground state with 99% probability
D-Wave compared to a simulated annealer on a CPU

10° ¢ .
FA) Range 1

107 E
T 99%
10° b T 95%
10° [ = 90%

10% |

Total time [us]

10° |

10° L E

101

V8 V32 V72 V128 V200 V288 V392 V512
Linear problem size v N
= Programming overhead dominates for small problems

D PHYS Matthias Troyer |




Scaling of pure annealing times

To extrapolate to larger sizes focus just on annealing time
to get the intrinsic scaling

1 range, ISI, Gauge averaged against CPU
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Sandy Bridge
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Linear problem size V' N
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Detecting and defining quantum speedup

.....a non-trivial endeavor




Defining quantum speedup

Quantum speedup exists if

I.(N)

S(N)=
(V) 7. (N)

grows with the problem size N

Seems easy and trivial to define, but ...

one can easily get fooled into believing there is speedup

D P HYS Matthias Troyer | 107



Five types of quantum speedup

= Provable quantum speedup
= when we can prove a separation between Tq and T¢
= example: Grover search

= Strong quantum speedup (Traub et al, 2013)

= speedup compared to bound for best classical algorithm,
whether that algorithm is known or not

= Quantum speedup
= speedup compared to best known classical algorithm
= example: Shor’s algorithm

= speedup compared to a (selection of) classical algorithms

= Limited quantum speedup
= speedup compared to a “classical version” of the quantum algorithm
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One can easily get fooled ...

= Suboptimal performance at smaller sizes look like speedup

= Parallel speedup can be mistaken for quantum speedup
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Performance at fixed annealing time

= Initially too flat slope when running at a fixed annealing time

= o determine asymptotic scaling we have to find the optimal annealing
time for each problem size

10° £SA, 50% quantile | | ' | ]
108
10’
» 10° =
> 4
) 5 /‘ 1
= 10 // .
n /
104 7 Sweeps )
< 5 Fq 100 - 2000
10° 10 9 200 [ 10000 -
N 1 20 9 500 I Optimal |
1071 FH 50 T+ 1000 ;
10*

Vs v vi3 vis Va0 vass vz Vel
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“Fake” speedup due to suboptimal performance

= Compare simulated quantum annealing at fixed (suboptimal)
annealing time to classical annealing at optimal annealing time.

= What is a slowdown suddenly looks like speedup

F -] Suboptimal
5+ - Optimal

—

0 - — | | | | |
V8 V32 V712 V128 V200 V288 V392 V512
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Optimizing the total effort

= On DW2 the optimal annealing time is much shorter than 20 us.
= The annealing times are far longer than is needed
= The machine could be much faster
= We cannot demonstrate quantum speedup without doubt

10°

—_
@)
©

FA) SA, range 1 | C) DW, range 1

—_
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Total annealing time [us]
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(e
)]

=

Total annealing time [MCS]

1o W
104' _— _— _— 101
102 103 10* 10° 10! 102
1010 ¢ ————— 10 ¢ : .
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10* | / 10% 1
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10° ¢

10° |

10° i el S 102
DPHYS 102 10° 10* 10° 10 102
Annealing time [MCS] Annealing time [ps]
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Total annealing time [us]
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Parallel versus quantum speedup

= D-Wave Two is a parallel machine acting on all spins simultaneously

= \We need to compare to a parallel classical
machine with the same hardware layout

1
Tc(N) oc ﬁ SA(N)

L T(N) T, (N) 1

(V) Tow(N) Tow N

= One can easily build such a classical machine
in an FPGA or special purpose chip (ASIC)
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Is there quantum speedup?

Compare scaling of D-Wave with simulated annealing

AR'anel
 50% ) Rang

1 75%
1 90%
- 95%
" 99%

Same performance
if we want to solve
half of the problems

Slowdown if we

4 -

[\
. . N I\T\I\;\ want to solve more
1L X = ‘x_‘;‘

| — T |

Vs v V73 i V200 vess iz v

Linear problem size v N

Matthias Troyer |




Why is there no quantum speedup?

' A) R'ange 1

1 50%
> 0.8} 1 75%
N 1 90%
2 06l F1 95%
= H 99%
5
=
&

0

O 1 | |
Ve V32 V2 V128 V200 V288 V392 V512

Linear problem size V' N

= |s it due to the 5% calibration errors and we simply solve the wrong
problem instance?

= Are spin glasses the wrong problem for quantum annealers and we need
other problems to see quantum speedup?

= |s it due to limited coherence and non-zero temperature?

=  Why did previous QMC simulations [Santoro ef al, Science (2002)] give
evidence for qguantum annealing outperforming classical annealing?
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Towards a better understanding




Simulated classical versus quantum annealing

= Early evidence for superiority of QA came from QMC simulations

= Lower residual energies in simulated quantum annealing compared to
simulated thermal annealing, but not for all models

0.1f

0-0 QA (PT=1), P=20

Santoro et al, Science (2002)

0.1
-+~ 0.01F : similar results by

Matsuda, Nishimori, Katzgraber (2009)

- 0.01

0000 1¢ 16 16 1G 1¢°

01 102 108 104 105 108 107
1 [MCS]

0.0011

this is inconsistent with what we saw on D-Wave!
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From classical to quantum Monte Carlo

= Simulated annealing performs a Monte Carlo simulation
=  Sample random configurations according to their Boltzmann weights

Z = Z exp(—,BZ]ijsl.sj)

8] S i<j

A
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From classical to quantum Monte Carlo

= Simulated quantum annealing performs a quantum Monte Carlo simulation
= Sample random configurations according to their Boltzmann weights???

Z=Trexp(-BH)# 2 exp(—BE.)

A
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From classical to quantum Monte Carlo

= Simulated quantum annealing performs a quantum Monte Carlo simulation
= Map quantum system to classical path integral
= Sample random configurations according to their weights

Z =Trexp(-BH) # Z exp(—BE.) Z =Trexp(—BH) = Trexp[(-A H)"]

~Zexp( A D s s = A, 22]‘ .S m]+0(A§)

i<j T

A \

DPHYS
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From classical to quantum Monte Carlo

= Simulated quantum annealing performs a quantum Monte Carlo simulation
= Map quantum system to classical path integral
= Sample random configurations according to their weights

Z=Trexp(—BH)="Tr exp[(—ATH)M]

SN 3 RTINS R WD

i<j T

DPHYS
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Time Step dependence Heim et al, Science (2015)

= The behavior of a simulated quantum annealer depends strongly on
discretization of imaginary time path integrals

10'1:-
ms—q
10'2:-
o M=2 << M=16 - M=064 SRR~
vw M=4 > M=20 = M=128 > M=512
102 a2 M=8 =« M=32 +~ M=256 — M=o

T T T T
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Performance as a classical optimizer "™ Scence (201

= Use a large time step to get best performance

10"}
L
o« M=32, =20
. M=16, 3=16 NS
|« M=20, =20 <+ M=64, =64 S35
—— M =32, 3=32 —— SA, linear in 3
107 I

107 0° 10° 10 1° 10 108
computational effort [M -MCS]
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Performance in the “physical” limit  "cm e Seence 2015

= Faster than classical annealer for short times
= The advantage vanishes for long times
= One should use infinitesimal time steps to make predictions for devices
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But does QMC tell us anything about the real
performance of a quantum annealer?




Scaling of annealing times in quantum annealing

= Quantum adiabatic theorem t oc

= Open systems tunneling through a barrier 7€’ o

N

AFE

Classical (T)

Quantum (H, )

I:3 I:Q I:l Fc I
S. Knysh, arXiv:1506.08608
similar results Farhi et al (2012)

= How does QMC scale compared to that?
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Tunneling between two states of a ferromagnet

A \ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, //IA energy splitting A4
trttt deded

Yo = [ttt 1) + [3344d)
Y= [tt11er) - [H344d)

DPHYS



imaginary time

DPHYS

tetttttt
tetettte

tetttttt
tetettte
teeeteee
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tetttttt

-m +m

. Tunneling determined from
. the time QMC needs to
. create an instanton.



Scaling with system size

108 l | | | | | |
E oxp=0.816(27)
g7 | ED:T=07 e
0" FQMC: T =075 — =

- oxp=0.682(24)

T=J/16

By [ ED:T=075 4
3 WEQMCGI=08
) L exp=0.552(26)

8.4 i

g 10° |

C% 2

10%

6 8 10 12 14 16

Tunneling rate given by QMC scale with ~ Az

as in physical dynamics
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Periodic boundary conditions in imaginary time
require an istanton + anti-istanton pair
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Scaling with system size L
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By cutting open the trace in imaginary time we have a new algorithm, with a better scaling.
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We understand quantum annealing much better

1.0

= D-Wave has built a quantum annealer

= |t performs as we expect from a quantum annealer

= but the quantum annealer may have an effective
semi-classical description (Shin et al.)
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©
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N

DW, gauge averaged

= No evidence of quantum speedup

= Do other classes of problems have speedup?

T H50°/ T A) Rhnge 1
(o]

= 0.8 M 75%

5 90%

? 0.6f 1 95%

 99%

= |tis an analog device: is this due to calibration problems?
= Do we need non-stoquastic quantum annealing?
= Oris there simply no speedup in quantum annealing?

0

Vs v vz Vi v Vo V3s o5

Linear problem size V' N

= Simulated quantum annealing

= Scales just like true quantum annealing for tunneling through a barrier
= |s there any advantage for a physical quantum annealer?
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