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hv=E, -E. Motivation
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Optical frequency comb synthesizers
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How to change spectral range ?

SECOND ORDER NONLINEAR OPTICS !
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E(t)= A exp(—lot)+ A exp(—iw,t)+cC

Optical rectification

.

Second harmonic generation (SHG)
/

PID =22 E (=27 (AA"+ AA J+ 72 A” exp(2iat) +
A% exp(2ia,t)++2 A A exp[—i(w + @, )]+ 2A A exp[i(o, - w, )t]+ ]

Sum frequency generation (SFG)

Difference frequency generation (DFG)



OUTLINE

Equations governing a cw second order parametric process
The problem of phase matching

The equations of linear pulse propagation

Parametric processes in the femtosecond pulse regime

Examples: analytical and numerical discussion



The photons picture
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Optical parametric amplification (OPA) & optical
parametric generation (OPG): what are they ?

m They are the same process as DFG, but differ in the initial conditions

pump
v (2)
0 —-
signal

0,= W3- W
idler

(03

m |n DFG, »;and o, have comparable energies and you look for an intense m,

m |n OPA, », has an energy 100-10000 times lower than o, and you look for a
strong amplification of w, (w acts as a seed)

m |n OPG, o, photons come from vacuum noise and you are looking for
extreme parametric gains (10 nd — > 10" photons !!)



If the gain is not enough...
and/or you lack seed pulses.....
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® You may enclose your crystal in an optical cavity

m ...shine your powerful pump on the crystal

m ...eventually get oscillation, like in a laser, if the parametric gain exceeds losses

OPTICAL PARAMETRIC OSCILLATOR




Femtosecond OPOs vs. OPAs:

Femtosecond OPOs

¢ are pumped by[simple laser oscillators

¢ provide high repetition rates (100 MHz)

¢have low output energy (nJ level)

¢require matching of the OPQO cavity length to pump laser

¢large yet not huge oscillation bandwidth

Femtosecond OPAs
¢require pumping by amplified laser systems
¢provide low repetition rates (1-100 kHz)
¢have high output energy (ud-md level)
¢ are easy to operate (no length stabilization)

¢ ultrabroad bandwidth, up to the few-cycles regime



The wave equations for second order
parametric processes




The wave equation for nonlinear optical media

m Starting from Maxwell’'s equations for an insulating medium without free
charges and currents, we get the wave equation

1 8°E 1 &°P

V°E-
G ot gycy° of

® The polarization of the medium is made of a linear and a nonlinear
contribution

P=P,+ P,

® For a continuous wave, the linear polarizationis P, = & (¢,-1) E

m Making the scalar approximation and considering a plane wave, the
propagation equation becomes

v2g. | O’E_ 1 &Py

c? ot gyc” ot




The slowly varying envelope approximation

m Starting from the scalar propagation equation
1 0%E . 0% Py
— Ho
c? ot? ot
we look for a solution  E(z 1) = A 2) expli(kz— wt)]

with Pu(21) = A2 explilkpz— o)
B By substitution, we get the equation
d°A _. dA @’
+2ik— -k A+— A=—u, 0" Pexplilk , — k) z
&z dz o A=t Pewllk, k)2

_d*A . dA , .
B Assuming — << 2iIk— (slowly varying envelope approximation,

a7 az
_ 2
SVEA) we get the equation aA 11 @ Pexp [i(kp — k)Z]

V2E-

dz



The nonlinear polarization
in second-order parametric interactions

m Consider the superposition of three waves at frequencies o4, ®, and o;
with o4+ @, = o,

E(zt) = A(2) expli(k; z— o t)]+ A (2) expli(ko z— o, 1))+
A; (2) expli(k; z— wst)

®m By second order nonlinear effect, the following polarizations are generated
at the three frequencies

Rn(zZt)=¢,2d, A(Z) A(z) 9@[/((/(3 - kz)z_ (Dlt)]
P (21 =£02der A (2D A2 expli(ks — k) z— o, 1)
P (Z) =£02der A(2) A(2 expli((k + k) z— ao3t)]

where d 4 is an effective second order nonlinear coefficient



Three-frequency interaction in a second order
nonlinear medium

m Consider three waves at @5 (pump), ®4 (signal) and m, (idler), with
04t ®, = 05 . We obtain the following equations

%:ia)ldeff
0Z
d
% _ :wz ef /41/436Xp[IAI<Z]
0Z
d
O _ %6l p p expl-inkd]

0z nC
where Ak = K5 - Kk, - kK, is the wave vector mismatch between the three waves

Setting Ak = 0 is crucial to get highly efficient

energy transfer between the interacting waves




OPA/DFG solution for small pump depletion

® By neglecting pump depletion (A; = cost.) and assuming an input beam at
the signal frequency m, and no input at the idler frequency », (A,(0) = 0) the
coupled differential equations admit the solution:

2

1(L)=1, (0{1 + ?} sinf*(gL)

1(L)=1,(0 )@_1?2 sinf(gL)

with g and y given by:

AK aNfaie
g= \/Y _( j Y= I
2 2nnng,C
the latter representing a figure of merit for the parametric gain.
The presence of a phase-mismatch clearly affects such gain.




Parametric gain

® |n the high gain approximation (yL>>1) and under phase-matching (Ak = 0):
one has:
/1(0) 11(0) @,
|

exp|2L]

l(L)= exp2/L]  1y(L)=

® This allows us to define a parametric gain:

(L) 1 1 0,0, gy
_ - —expl2vL]=1-exp 2 I. L
1,(0) 4%[ L] i y\/ 2nnne,C -

D For high gain we need high pump intensity (ultrashort pulses are good!),
large nonlinear coefficient d_; and high signal and idler frequencies

I O The gain is exponential since the presence of a seed photon at the signal
wavelength stimulates the generation of an additional signal photon and of a
photon at the idler wavelength. Due to the symmetry of signal and idler, the
amplification of an idler photon stimulates in turn the generation of a signal
photon. Therefore, the generation of the signal field reinforces the
generation of the idler field and viceversa, giving rise to a positive feedback



Parametric gain: examples with BBO

Red-pumped BBO crystal

Blue-pumped BBO crystal:
higher gain because

) L4 W,

Parametric Gain

Parametric Gain

100 [ ] A ] A ] A ]

20 40 60 §0 | 100
Pump Intensity (GW/cm")

...........................................................................

G. Cerullo and S. De Silvestri, ' 10' | - . . . .

Rev. Sci. Instrum. 74, 1 (2003). ® pump lntensity (GW/em) ?




Are those gains achievable
with frequency combs ?

/

y = alalle)
- p
2n,n,ne,C

A,=08um; A =12um

1 1 1
A A

i p }Ls

= —— A, =24um

BBO:n, ; ~1.6,d; =2pm/V

L U=10nx
[ = ; = 60fs
oy P Ay

A, = %TCWS =15700pnT

=)

L = 2mm 1t complies with bandwidth and temporal
walk-off issues (see next slides)

W, =100um It complies with spatial walk-off issues

l,=1 GW/cm?2
G =0.89 !l



Energy conservation in parametric interaction

B By manipulation of the previous equations, it is easy to show that

dl, N al, N dl; _
dz dz dz

i.e. the sum of the energies of the three waves is conserved (assuming
a lossless medium)

0

® [n addition, the following relationship (Manley-Rowe) can be proven

1 dl, 1d, 1 db

1 az 1) az 03 az

stating photon conservation: one photon at o, is annihilated and two
photons at w, and o, are simultaneously created



The problem of phase matching




SHG process

B Let us consider for simplicity second harmonic generation (SHG)
(0= =w,0=20, A, =A,=A))

m Neglecting pump depletion ( A, = cost)

20 d
Pow _ 0%l g2 ool ink 2]
az nza)C

m After a length L of nonlinear medium

Lo(L)=71,L sincz(Ang Al sinz(A—ij

AR 2
I (L) 12 L (L)l Ak=0
I (L)
20( L) Qe Izw(L)ocsinz(ATij Ak %0




Phase mismatch in more detail

Driving wave P, < E’ o« A epli2k, z—20t)]
Generated wave  E,, oc epli(k,, z—2mt)]
Phase shiftatL/2  @(B,)—o(E, )< (2k, —k, )- % = AK-



Propagation in birefringent media

In the simpler case of uniaxial crystals, propagation may be
described recurring to a pair of refractive indices, n_, and n,
(extraordinary and ordinary index, respectively, each one
with its own dispersion), and to an index-ellipsoid model:

»

X? v 7
+—=+—=
n M M

nz(ne) K w Frequency 20

1

Z (Optical axis)

Refractive index

v

Each propagation direction, which is given by the wave-
vector k, defines in the plane perpendicular to k an ellipse
whose axes correspond to two polarization eigenstates:

nx(no) X EJ_% no m

E,— r2(0)= m Extraordinary
! ° 1. Sire+ 1, cos” 0 wave




Birifringence phase matching

Positive uniaxial crystals: n, > n,

ne(oo,G) = no(2oo)

NOTE: the refractive indexes n_and n, at
each frequency are obtained by Sellmeier
equations

Birifringence phase-matching involves
coupling between orthogonally polarized
fields - non diagonal terms of the second-
order nonlinear-susceptibility y? tensor

Polar diagram showing the refractive index
dependence as a function of the angle 6 between
k and the optical axis, at the two frequencies



The spatial walk-off probelm

QSR () . 2

iMeo : @ey /
The Pointying vector of the extraordinary
wave S, my be shown to be perpendicular to
the extraordinary normal index surface at its

crossing point with k. This does not happen
for the ordinary wave, with S, // k.

In birefringent crystals the pointing vector of the
extraordinary wave S, = E x H, which gives the
energy propagation direction, suffers from an
angular offset from the k vector. This is referred to
as the walk-off angle 6,,.

It seriously limits the interaction length L for a
given input field diameter D:

| 0-wave

N
om =N

el

|

Phasp

® |ength limitation approximately given by:

L = Dtard



Birifringence phase matching: examples

BBO

—
o
o

B negative uniaxial crystal (n_<n,)
®m high-birifringence:

(o]
o

\ e

n,=1.672 @ 633 nm —» FF ordinary

\\__‘_//

N
_(DO
(6]

Phase-matching angle [°]
(o2}
o

n,=1.549 @ 633 nm —» SH extraord

1 1.5 2 25 3 3.5 4 4.5 5
FF Wavelength[micron]

N\ -

dy, ~2.3 pm/V rather LOW <
20

~ Wide phase-matching : B
< 100 bandwidth 8.5
£ 50\
2
g 8 4 0.6 0.8 1 1.2 1.4 ‘!.6 1.8 2 2.2 2.4

= ° Quite high spatial walk-off

L —

_%.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
FF Wavelength[micron]

1 1.5 2 2.5 3 3.5 4 4.5 5
FF Wavelength[micron]

LiNbO,

B negative uniaxial crystal (n.<n,)

m small-birifringence:

n, =2.283 @ 633 nm — FF ordinary
n,=2.203 @ 633 nm —» SH extraord
dy, ~4 pm/VV LOW-MEDIUM



Phase matching bandwidth: calculation

. AKL m Let us assume phase-matching satisfied at a given
Lo (L) S’ncz( 9 j fundamental frequency (FF) wy:

Ak=0 — k(2o,)-2k(w,)=0 — n2w,)=no,)

and let us determine the FWHM spectral width of the 1, curve.
Izco This implies evaluating Ak for a given frequency shift Ao from
the phase-matching frequency w,, while taking into account that
a frequency shift at the fundamental frequency is doubled at the
second harmonic:

ak

ak

2A0—2—| A
am

®o

2783/ L

2w,

® The FWHM bandwidth at the second harmonic, Awgy = 2Awge, becomes (see figure):

Aog, 2783 o _Awg, 0886
[k,(zmo)_k'(@o)] > [ ‘ AV gy o [k'(2(00)—k'((00)]L




m Recalling that:

Phase matching bandwidth & dispersion

Kw)="" (o)

dn dnadh., dr 5

do dhde’  do  27C

B one may easily refer the SH bandwidth to the crystal dispersion at FF & SH:

SH bandwidth (THz)

—
Oﬂ

—
o
=]

—
Q

—
o
5%}

0.886-cC

Vst = 211 2) - 1)

Wavelength (um)

1.6

EF,:| EFFH Esh

BBO Esh PPSLT
Birifringence Quasi-phase-
phase-matching matching



Phase matching bandwidth: an insight

® Anticipating a result of the short-pulse regime, i.e. the fact that FF and SH pulses

propagate at different “group” velocities given by:

1
V

1

B we may describe the SHG process between these two pulses as follows:

A1 1 .

P [
<« »

SHa mm A y N

m According to Fourier theory we could figure out that:

Aoy =Tgom — Taey = GDM

GROUP DELAY MISMATCH

N I I
) e GDM [t p-t,4] | L




Quasi-phase matching (QPM)

®m |t occurs in special crystals that exhibit a
periodic change of the sign of x2, with a

period:

/ > ®m This period allows a periodic re-

— X phasing of the driving field (P, ) with
the generated SH field, resulting in a
quadratic dependence of L, with L
with an effective nonlinear y:

® The quasi-phase-matching
condition is thus:




QPM: pros and cons

Just need to change the poling period to adjust phase matching (the grating
provides the momentum you need to get phase matching

You may phase match fields with parallel polarization direction and exploit
extremely high nonlinear coefficients

Absence of any spatial walk-off because interacting fields may be set parallel to the

crystal optical axis. 2’(@ K= 271//1
—>—

—

0
Few crystals lend themselves to QPM since you need ferroelectric crystals (e.g.
LiNbO,, KTP, LiTaO;) or semiconductors (GaAs)

The fabrication procedure is rather complex for ferroelectrics — periodic poling
needed — and very complex for semiconductors — orientation patterning

Pretty hard to get phase-matching at short wavelengths due to the technological
barrier of um-level poling periods

Optical damage at high fluence, especially for LiNbO,.



QPM: example

PPLN: periodically-poled lithium niobate Optical axis

FF — extraordinary E E
- FF SH
SH — extraordinary

e mm— _ _

§ 40 Efficient nonlinear processes
E — with frequency combs & without
8 20 \?j‘ > ,/ resonant cavities need for
% %\f\O / QPM nonlinear crystals !!
£ %(59/1 15 2 25 3 35 4 45 5

FF wavelength [micron] PPLN @

Absence of spatial walk-off m
. T ——
allows for confocal focusing: — @
interaction length only limited BBO

by diffraction ! — Wy min =120 um




Phase matching in a parametric interaction

s(ktk=k|  or (@) + @pn(w;) = @yn(ey)

® In a medium with normal dispersion (dn/dwm > 0)
n(ay) < N(wy) < N(as) it o< @, <

®m the phase matching condition can’t be satisfied:

Nws) = Moy o) + @, Jo, nws)-n

~ ”(0)2 )]ﬂ

3 3
m Types of possible birefringence phase matching:
negative uniaxial (n, <n,) positive uniaxial (n,>n,)

TYPEl nfay=n°o0+n°w, (0to—e) N o;=n 0+ nc o, (6te—0)

TYPEIl nfaoy;=nfo,+n°w, (eto—e) m°ay=ncw,+n°own, (e6to—e)
nea,=n°w,+nfw, (0te—oe) nNawy=n°ow+n°wn, (0te—e)




Example: type | phase matching

Birifringence phase-matching in a negative uniaxial crystal

®m The phase matching conditionis  ng(6,) @3 =n,y o4+ Ny, ©,

. n,w +n,o,
giving ne3(6?m)= g &

s
® In a uniaxial crystal, the extraordinary index for propagation along 0 is
S AL
e(G)Z 1 SIP0 + 12 cos2 0 ...the refractive indexes at
© © each wavelength being
2 2 obtained by Sellmeier
. n Ny — N (6 :
which gives  sing,, = —5 o3 > 93(2 m) equations
ne3 (em) Nz — N

QPM in a periodically-poled crystal

o, o, 2T o,
C C A C




Wavelength (um)

Phase matching curves of a near-IR OPA

2,50

2,25

2,00

1,75

1,50

1,25

1,00

7/
7 BBOOPA
L7 Kp = (0.8 um
/7
/7
e
/
¢
Typel S~ _Typell (es+oi—>ep)
l i 1 l 1 l
20 25 30 35 40

Phase matching angle 0 (degrees)



Wavelength (um)

Phase matching curves of a visible OPA

2,5
BBO OPA
20 L Kp =0.4 um
Type II (0 te—e )
1,5 |- ’
Type 11 (es+0i——ep) _
Mo Type I _ -7 -
< ~
0,5—‘_‘,5..-""" )
1 ] 1 ] 1 ] 1 ] 1 ] 1
20 25 30 35 40 45 50

Phase matching angle 0 (degrees)



The equations of linear pulse propagation




The polarization as a driving term

Starting from Maxwell’s equations
O’E 10°E  0°P
07 ¢ of o
the polarization on the r.h.s. acts as a driving term.
The electric field is a plane wave

Ezt)= Azt)epli(ot-k2)

The polarization can be decomposed in linear and nonlinear parts:

Azt)= R(z1)+ R, (z1)
we consider only the linear component:

Fi(z t): pL(Z t)exp [i(wot_ koz)]




Switching to the Fourier domain

By introducing the Fourier transform
E(zo)=3[E(zt)]= j E(z t)exp(~iot)ct

f(z )= Azo-,)exp (- ik,2)

R(zw)=P.(z0-a,)exp(-ik2)
Recalling the derivative rule for the Fourier transform:

S{ d" F(t)} (i) (o)

we get:

n

we obtain:




The slowly varying envelope approximation

We express the second derivative as.:
2 = 2 A A
0 E_[@ A . 0OA @Ajexp(_ikoz)

= — 2K, — —
oz | o2 ' 6z
We assume: 2 A oA

The Slowly Varying Envelope Approximation (SVEA) neglects
variations of the envelope over propagation of the order of wavelength.

With this assumption we obtain:

0A ® ~

—2ikoa—z—k§7\+ 2 A=—p,0" P,



The frequency-dependent polarization

For a monochromatic wave:

R (w)=¢x"(0)Hw)
(@)= {1+ 7" (w))

recalling that:

We obtain:

oA ®’ @
—2’ka——koA @ :_FO[L() ]

which simplifies to:

2ik, a_ [k2 — KA



Propagation in a dispersive medium (l)
Starting from the propagation equation:
2ik, = K (w)- K ]A

We expand k(w) in a Taylor series around the carrier frequency o, :

)= [ &) <w—wo>+1(d2§j%(w—wo>2+1(d3§j (0-o) +.

2\ dw 6\ dw

An expansion up to the third order (or to the second order for
moderate pulse bandwidths) is sufficient. By approximating:

K (0)- ks =K@)-k [Ko)+ k |= 2k [Ko)- K |

0 2

we obtain:
OAw—w ~ 1 ~ 1 ~
, (az 0);k'O(a)—a)O)A+5k”0(a)—a)o)2A+gk'"0(a)—a)o)3A



Propagation in a dispersive medium (ll)

); K, (a)—a)o)/an%k"o (0)_0)0)2/24'%/(”'0 (0-w,) A

K" = d°k _ GVD Is known as Group Velocity Dispersion
o (GVD)



Propagation in a dispersive medium (lil)

We now Fourier transform back to the time domain. Recalling the
derivative rule:

S_l[a)nl’:—(w)]:(_i)n dd,;'(t)
we obtain:
. 2 3
0Azt) 1 0A i, 0 A 1, A,

oz vy,ot 2 "o 6 °of

Which, neglecting third order dispersion ( K", =0 ) becomes:

. 2
0Azt) 1 OA_ T 4o 2A:O
0z V,o Of 2 ot
The parabolic equation captures the main physics of linear
propagation of ultrashort pulses in dispersive media.




In the absence of dispersion

The original equation takes the form: 8/(2,1‘)4_ 1 6/4(2,1‘):
0z V,y Ot

Let us set it in a new reference-frame S Pt 4
moving at v,,, with space/time variables: - “ e V_

go
By transformation of derivatives in the new reference frame :
0A_0A0Z 0AOt _0A_ 1 0A 0A_ 1 0A, 1 oA
0z 070z ot oz o7 V,, ot o7 V,, PY A V,, Of

/ one gets:
0A _ O0A ot 8A 0Z OA /‘( Z tr)
ot ot ot 82 ot ot =
. Tgo = L/ Vo X

The pulse envelope propagates
without distortion at a speed v,
taking a time 1, to cross the crystal




In the presence of dispersion

The pulse gets more and more broadened while propagating, with a pulse
broadening per unit bandwidth given by the GDD (group-delay-dispersion)
parameter (expressed in fs?) :

Gop= e - ( = j:i(qu;):qu’)’:L-GVD

0w 0w\ Vy, ) 0o

If the dispersion-induced pulse broadening is far in excess
of the input pulse duration, at the crystal output one has: 1,,= GDD- B

+—n

where B is the angular-frequency bandwidth B



The equations of nonlinear pulse propagation




Propagation in a nonlinear medium (l)

We start from the equation:
0’E 1 0°E 62FZ o’R,
o =Hy—5 T H 2
0z ¢ or or’ ot

FIJ\IL(Z t) = pNL(Z t)eXp V(a)ot_ kpZ)J

We emphasize that the wavenumber k;, of the nonlinear polarization
at o, is different from that of the electrlc field k,. \We express:

2
B o 14

assuming that the envelope py, varies slowly over the timescale of
an optical cycle:

where:

0’ P OPwnL
> Wy
ot ot

2
<< Wy Pnr




Propagation in a nonlinear medium (ll)

From the equation:

0’E 10°E  O°R |
07 & oF ~ o @tZL — Ho®; Py, eXP[’(a)Ot—kpz)]
0

By the same procedure applied to the linear propagation equation,
we obtain:

CO*A
' of

= 2iky - =20 = koK'~ = =105 Py, expl- iAkZ]

which can be rewritten as:

GA 1 06A i, 0°A .uwcC .
+ k” :—I—O 0 _IAk

where Ak = k -k, is the “wave-vector mismatch” between the
nonlinear polarization and the field



The nonlinear polarization in second-order
parametric interaction (l)

Consider the superposition of three waves at frequencies o,, ®,
and o5 with o+ ©, = ©,
a1 [AEDewliotk2]+ Alzdevlilot-k2]:
2 | Az t)explilast-k 2]+ ce
Impinging on a medium with a second order nonlinear response:

P.(zt)=e, " E(z1)

The nonlinear polarization has components at several frequencies,
such as 2m,, 2w, etc. We assume that the phase-matching
condition selects only the interaction between the three fields at
04, ®, and m, to be efficient.



The nonlinear polarization in second-order
parametric interaction (ll)

We derive the foIIowing terms:

Pu(zt)= 50" A A el - o)k -k)2+ce)
Pu(zt)= EO" A Aexplillo, o)t —(k — k)2+ cc)

Puulzt)= 2= AA e (llor + )t~ (K + k)2)+ ol

Which we plug into the nonlinear propagation equations:

OA 1 0A | ,62A
+ K

:uoa)o
= exp [— IAK.



The nonlinear coupled propagation equations (l)
thus deriving the three coupled equations:

aA + I aA —ik" azA :_i,UOEOCCf)l deffA; Aexp[—i(/g—kz—kl)z]

oz v, ot 2 ' of 2n
6A 1 6A i, 0’A  .ueE,co . .

+ —— K" =—j=22—=d —ilk,—k — K, )z
oz v, ot 2 2T op on ot A Aexp[ ( 3 7 2) ]
6A 1 0A i, 0’A . ue,Cw .

+ ——K" =223 d —ilk + kK, — Kk, )z
oz v, ot 2 Py on, ot A AzeXP[ (1 K, kz)]

7@

These are coupled nonlinear partial differential equations
which are in general not amenable to an analytic solution and
must be treated numerically.



The nonlinear coupled propagation equations (ll)

As a first simplification we neglect the GVD terms. This is justified
by considering that the three interacting pulses are propagating at
very different group velocities v;. The effects of this group velocity
mismatch are more relevant than those of GVD between the
different frequency components of a single pulse.

6/\ 1 0A

82 V. ot —IKIAZ Aexp[ lAkﬂ
@(g ; a(;\; —leA Aexp[ lAkﬂ
%’2 + v ;} —ix,A A exp|iAkZ

0,0y
where the nonlinear coupling constants are defined as: K; = 2Icn

1




The nonlinear coupled propagation equations (lll)

By moving to a frame of reference translating with the group velocity of the
pump pulse:

b4 5/\ 0A _
f—t——— —IK C —IAK
Vs 82 % ot A A Xp[ 4
alg 23 éAtZ _IK2A AeXp[ IAkd
% =—ixK,A Aexp [IAkZ]
0Z
where is the Group Velocity Mismatch (GVM)

between signal/idler and pump waves,
typically expressed in ps/mm. It gives the
group delay accumulated by the two

pulses per unit length.



Phase matching bandwidth in OPA/DFG

It may be estimated from 1 |, (Ak ?
the results obtained in the G= 4 9@(291-) g= \/Y B (7)

cw regime under the high
gain approximation: AK=Kk,—K,— K. with Ak =0 for a given (o, o, o) set

For a given fixed pump frequency o,, if the signal frequency o4 increases to o +Aw,
by energy conservation the idler frequency decreases to o-A®. The wave vector may

thus be written as: ok ok 1 1
Ak = ——SA®+—iA(D=( — JA(D

0w 90 Vs Y,

Introducing Ak in the expression for the gain G and looking for a solution at 50% of
the maximum gain, one gets a FWHM bandwidth:

High gain bandwidth

/2 1/2
AVl 2(In2)” 1)1 I (1) 1 demands for group-
o L velocity matching

between signal and idler



Few general rules for ultrashort-pulse interactions

OO

O O

— PUMP (©,, ©) A (0) %0

OPA/DFG pr ™3 p

orxorc Il et B0
— IDLER (o, @) A(0) =

Input pump duration > input signal
duration

Interaction length limited by temporal
walk-off

Length of the crystal primarily chosen as
a function of §

Pulse distortion without temporal overlap

High gain for v, < v, < v,

Low & for broadband amplification

< <
‘ ‘V V h
Signal delayed from the pump
Exponential gain only as long as the | Vi < Vo <V J

three pulses remain superimposed |




The starting point: the GVM curves (l)

BBO: Ti-sapphire pumped OPA

Type | interaction

This determines L for given
pump/signal durations

e,— O *+ 0 0 g
£ 005 ~ \
£ /
= This fixes the HUGE
= -0.1 bandwidth BANDWIDTH AT
DEGENERACY
E -0.15
O S .
Vap = Vgs™ Vg
L1 .02
3
023 1.1 1.2 1.3 1.4 1.5 1.6

Signal wavelength [micron]



The starting point: the GVM curves (ll)

BBO: Ti-sapphire pumped OPA 85 ~ 50 fs/mm over the
Type Il interaction whole tuning range
€,> 05+ € (o5 -
Kp =(0.8 Mmﬁ ; /;__7 _

E / Vi~ Vap = Vs

3.-0.05 _— f

0.1 MAXIMUM

S o 15 BANDWIDTH

27 POINT

o

é -0.2 /

S 10.25 /

039 1 1.1 1.2 1.3 1.4 1.5 1.6

Signal wavelength [micron]



Generating a frequency comb above 5 um ()

GaSe: Er:fiber pumped DFG

Type | interaction

e,— Og + O,
A, =1.55 um
1,=70fs

0.2

0.1

deltapi| (r) [ps/mm]

©0.05

o

-0.0?

0,5 < 80 fs/mm over the
whole tuning range
—>L=1mm

o Vap
\

[

< Vs <

\

4

gi

0 —

——

/

=

Due to high 3, failure of
exponential gain after few
hundreds um

/

1.8

2

2.2 2.4 2.6
Signal wavelength [micron]

2.8

3.2



Generating a frequency comb above 5 um (ll)

GaSe: Er:fiber pumped DFG

g 20 [ [
=) 4 I TUNING POSSIBLE
S 10 S~ 8 FROM 5TO 12 um
EJ O [ [
2 16 1.8 2 2.2 2.4 2.6 2.8 3 3.2
Z 15 [ [ ; i f
2 SMALL CRYSTAL
S ROTATION NEEDED:
= HIGH BIRIFRINGENCE
& 1? [ [ [ [ f
6 1.8 2 Jd2 24 26 28 3 3.2

5 -3 r [
= SEVERE SPATIAL WALK-OFF:
S, BEAM DIAMETER ~ 60 um
(4V]
S,

76 1.8 > 02 24 26 28 3 3.2

Signal wav. [um]



Spectral Intensity [a.u.]

1,0

The first frequency comb above 5 um (l)
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Spectral intensity [a.u.]

1,0F

0,0 s :
1400 1600

The first frequency comb above 5 um (ll)

mid-IR radiation

generated as idler

J_ A

7800 2000 2200
Wavelength [nm]

d extremely broad tunability: 5 -16 um

a f.,-free comb synthesis

0 absence of 2-photons absorption



The first frequency comb above 5 um (lil)

Tunability through:

[ angle tuning
O chirp tuning

c
=
al MY R
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3,
160 °
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2 __140-
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S | 2 120-
0p) a;) 1
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S ] . '
e o 804
o 5
' 60_
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Wavelength (um)

A. Gambetta et al, Opt. Lett. 33, 2671 (2008)

Spectrum limited
toA>5pum

Comb mode power:
~1-2 nW




A more recent experiment with a more
powerful Er:fiber oscillator

A=1.76-1.93um

250MHz, 100-250mW

DFG
GaSe
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SFS output AL H <||
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i} Delay Stage LYiP
ﬁ . Mid-R
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MAIN output

A=1.55pum
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f;ep
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electronics
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B R E Pyroelectric
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Menlo Systems
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Second experiment: results

— — 600
1.0F b
> l | 200 Tunability through:
g ol '0 % O angle tuning
8 15 16 1.7 18 19 20 g 0 power tuning
£ N
c 10} 5
z . (b)
"'“ ! Spectrum limited
05} "“\ 7 toA>7 um
/ )\ : Comb mode power:
/ | 10.1
0 L‘ 13 15 17 ~ 100-200 nW

Wavelength (um)

A. Gambetta et al, Opt. Lett. 38 1155 (2013)




