Nonlinear optics in the short pulse regime: basics and practice

M. Marangoni

Physics Department, Politecnico di Milano (Italy) Institute of Photonics and Nanotechnology of CNR (Italy)
e-mail: marco.marangoni@.polimi.it

Optical frequency comb synthesizers

How to change spectral range ?

SECOND ORDER NONLINEAR OPTICS !!

$$
E(t)=A \exp \left(-i \omega_{1} t\right)+A_{2} \exp \left(-i \omega_{2} t\right)+\infty
$$

Optical rectification
Second harmonic generation (SHG)

$$
\begin{aligned}
& P^{(2)}(t)=\chi^{(2)} E^{2}(t)=2 \chi^{(2)}\left(A A^{*}+A_{2} A_{2}^{*}\right)+\chi^{(2)}\left[A^{2} \exp \left(-2 i \omega_{1} t\right)+\right. \\
& \left.A_{2}^{2} \exp \left(-2 i \omega_{2} t\right)++2 A A_{2} \exp \left[-i\left(\omega_{1,}+\omega_{2}\right) t\right]+2 A A_{2}^{*} \exp \left[-i\left(\omega_{1}-\omega_{2}\right) t\right]+\infty\right]
\end{aligned}
$$

OUTLINE

■ Equations governing a cw second order parametric process

- The problem of phase matching

■ The equations of linear pulse propagation

- Parametric processes in the femtosecond pulse regime

■ Examples: analytical and numerical discussion

The photons picture

$\hbar \omega_{1}+\hbar \omega_{2}=\hbar \omega_{3}$
SFG $\xrightarrow{\xrightarrow[\omega_{2}]{\omega_{1}}} \chi^{(2)} \xrightarrow{\omega_{3}=\omega_{1}+\omega_{2}}$
$k_{1}+k_{2}=k_{3}$

DFG

Optical parametric amplification (OPA) \& optical parametric generation (OPG): what are they ?

- They are the same process as DFG, but differ in the initial conditions

- In DFG, ω_{3} and ω_{1} have comparable energies and you look for an intense ω_{2}
- In OPA, ω_{1} has an energy 100-10000 times lower than ω_{3} and you look for a strong amplification of ω_{1} (ω_{1} acts as a seed)
- In OPG, ω_{1} photons come from vacuum noise and you are looking for extreme parametric gains ($10 \mathrm{~nJ} \rightarrow>10^{11}$ photons !!)

If the gain is not enough... and/or you lack seed pulses.....

- You may enclose your crystal in an optical cavity
- ...shine your powerful pump on the crystal
- ...eventually get oscillation, like in a laser, if the parametric gain exceeds losses

Femtosecond OPOs vs. OPAs:

Femtosecond OPOs

- are pumped by simple laser oscillators
\bullet provide high repetition rates (100 MHz)
- have low output energy (nJ level)
*require matching of the OPO cavity length to pump laser
\star large yet not huge oscillation bandwidth

Femtosecond OPAs

\star require pumping by amplified laser systems
\bullet provide low repetition rates ($1-100 \mathrm{kHz}$)

- have high output energy ($\mu \mathrm{J}$-mJ level)
- are easy to operate (no length stabilization)
*ultrabroad bandwidth, up to the few-cycles regime

The wave equations for second order parametric processes

The wave equation for nonlinear optical media

- Starting from Maxwell's equations for an insulating medium without free charges and currents, we get the wave equation

$$
\nabla^{2} \boldsymbol{E}-\frac{1}{c_{0}^{2}} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}=\frac{1}{\varepsilon_{0} c_{0}^{2}} \frac{\partial^{2} \boldsymbol{P}}{\partial t^{2}}
$$

- The polarization of the medium is made of a linear and a nonlinear contribution

$$
P=P_{L}+P_{N L}
$$

- For a continuous wave, the linear polarization is $P_{L}=\varepsilon_{0}\left(\varepsilon_{r}-1\right) E$
- Making the scalar approximation and considering a plane wave, the propagation equation becomes

$$
\nabla^{2} E-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\frac{1}{\varepsilon_{0} c_{0}^{2}} \frac{\partial^{2} P_{N L}}{\partial t^{2}}
$$

The slowly varying envelope approximation

- Starting from the scalar propagation equation

$$
\nabla^{2} E-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{N L}}{\partial t^{2}}
$$

we look for a solution

$$
E(z, t)=A(z) \exp [i(k z-\omega t)]
$$

with

$$
P_{N L}(z, t)=P(z) \exp \left[i\left(k_{P} z-\omega t\right)\right]
$$

- By substitution, we get the equation

$$
\frac{d^{2} A}{d z^{2}}+2 i k \frac{d A}{d z}-k^{2} A+\frac{\omega^{2}}{c^{2}} A=-\mu_{0} \omega^{2} P \exp \left[i\left(k_{p}-k\right) z\right]
$$

- Assuming $\frac{d^{2} A}{d z^{2}} \ll 2 i k \frac{d A}{d z}$
(slowly varying envelope approximation,
SVEA) we get the equation

$$
\frac{d A}{d z}=i \mu_{0} \frac{\omega^{2}}{2 k} P \exp \left[i\left(k_{p}-k\right) z\right]
$$

The nonlinear polarization in second-order parametric interactions

- Consider the superposition of three waves at frequencies ω_{1}, ω_{2} and ω_{3} with $\omega_{1}+\omega_{2}=\omega_{3}$

$$
\begin{aligned}
& E(z, t)=A_{1}(z) \exp \left[i\left(k_{1} z-\omega_{1} t\right)\right]+A_{2}(z) \exp \left[i\left(k_{2} z-\omega_{2} t\right)\right]+ \\
& A_{3}(z) \exp \left[i\left(k_{3} z-\omega_{3} t\right)\right]
\end{aligned}
$$

- By second order nonlinear effect, the following polarizations are generated at the three frequencies

$$
\begin{aligned}
& P_{1 N L}(z, t)=\varepsilon_{0} 2 d_{\text {eff }} A_{2}^{*}(z) A_{3}(z) \exp \left[i\left(\left(k_{3}-k_{2}\right) z-\omega_{1} t\right)\right] \\
& P_{2 N L}(z, t)=\varepsilon_{0} 2 d_{\text {eff }} A_{1}^{*}(z) A_{3}(z) \exp \left[i\left(\left(k_{3}-k_{1}\right) z-\omega_{2} t\right)\right] \\
& P_{3 N L}(z, t)=\varepsilon_{0} 2 d_{\text {eff }} A_{1}(z) A_{2}(z) \exp \left[i\left(\left(k_{1}+k_{2}\right) z-\omega_{3} t\right)\right]
\end{aligned}
$$

where $d_{\text {eff }}$ is an effective second order nonlinear coefficient

Three-frequency interaction in a second order nonlinear medium

- Consider three waves at ω_{3} (pump), ω_{1} (signal) and ω_{2} (idler), with $\omega_{1}+\omega_{2}=\omega_{3}$. We obtain the following equations

$$
\begin{aligned}
\frac{\partial A_{1}}{\partial z} & =i \frac{\omega_{1} d_{\text {eff }}}{n_{1} c} A_{2}^{*} A_{3} \exp [i \Delta k z] \\
\frac{\partial A_{2}}{\partial z} & =i \frac{\omega_{2} d_{\text {eff }}}{n_{2} c} A_{1}^{*} A_{3} \exp [i \Delta k z] \\
\frac{\partial A_{3}}{\partial z} & =i \frac{\omega_{3} d_{e f f}}{n_{3} c} A_{1} A_{2} \exp [-i \Delta k z]
\end{aligned}
$$

where $\Delta k=k_{3}-k_{2}-k_{1}$ is the wave vector mismatch between the three waves

> Setting $\Delta \mathrm{k}=0$ is crucial to get highly efficient energy transfer between the interacting waves

OPA/DFG solution for small pump depletion

- By neglecting pump depletion ($\mathbf{A}_{3}=\mathbf{c o s t}$.) and assuming an input beam at the signal frequency ω_{1} and no input at the idler frequency $\omega_{2}\left(A_{2}(0)=0\right)$ the coupled differential equations admit the solution:

$$
\begin{aligned}
& I_{1}(L)=I_{1}(0)\left[1+\frac{\gamma^{2}}{g^{2}}\right] \sinh ^{2}(g L) \\
& I_{2}(L)=I_{1}(0) \frac{\omega_{2}}{\omega_{1}} \frac{\gamma^{2}}{g^{2}} \sinh ^{2}(g L)
\end{aligned}
$$

with g and γ given by:

$$
g=\sqrt{\gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}} \quad \gamma=\sqrt{\frac{\omega_{1} \omega_{2} d_{\text {eff }}}{2 n_{1} n_{2} n_{3} \varepsilon_{0} c^{3}} I_{3}}
$$

the latter representing a figure of merit for the parametric gain.
The presence of a phase-mismatch clearly affects such gain.

Parametric gain

- In the high gain approximation ($\gamma L \gg 1$) and under phase-matching ($\Delta k=0$): one has:

$$
I_{1}(L)=\frac{I_{1}(0)}{4} \exp [2 \gamma L] \quad I_{2}(L)=\frac{I_{1}(0)}{4} \frac{\omega_{2}}{\omega_{1}} \exp [2 \gamma L]
$$

- This allows us to define a parametric gain:

$$
G=\frac{I_{1}(L)}{I_{1}(0)}=\frac{1}{4} \exp [2 \gamma L]=\frac{1}{4} \exp \left[2 \gamma \sqrt{\frac{\omega_{1} \omega_{2} d_{\text {eff }}}{2 n_{1} n_{2} n_{3} \varepsilon_{0} c^{3}} I_{3}} L\right]
$$

For high gain we need high pump intensity (ultrashort pulses are good!), large nonlinear coefficient $d_{\text {eff }}$ and high signal and idler frequencies

The gain is exponential since the presence of a seed photon at the signal wavelength stimulates the generation of an additional signal photon and of a photon at the idler wavelength. Due to the symmetry of signal and idler, the amplification of an idler photon stimulates in turn the generation of a signal photon. Therefore, the generation of the signal field reinforces the generation of the idler field and viceversa, giving rise to a positive feedback

Parametric gain: examples with BBO

Red-pumped BBO crystal

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).

Blue-pumped BBO crystal: higher gain because

$$
\gamma \propto \sqrt{\omega_{1} \omega_{2}}
$$

Are those gains achievable with frequency combs?

HIGH
$I_{p}=1 \mathrm{GW} / \mathrm{cm}^{2}$
$G=0.89!!!$

Energy conservation in parametric interaction

- By manipulation of the previous equations, it is easy to show that

$$
\frac{d l_{1}}{d z}+\frac{d l_{2}}{d z}+\frac{d l_{3}}{d z}=0
$$

i.e. the sum of the energies of the three waves is conserved (assuming a lossless medium)

- In addition, the following relationship (Manley-Rowe) can be proven

$$
\frac{1}{\omega_{1}} \frac{d l_{1}}{d z}=\frac{1}{\omega_{2}} \frac{d l_{2}}{d z}=-\frac{1}{\omega_{3}} \frac{d l_{3}}{d z}
$$

stating photon conservation: one photon at ω_{3} is annihilated and two photons at ω_{1} and ω_{2} are simultaneously created

The problem of phase matching

SHG process

- Let us consider for simplicity second harmonic generation (SHG)

$$
\left(\omega_{1}=\omega_{2}=\omega, \omega_{3}=2 \omega, A_{1}=A_{2}=A_{\omega}\right)
$$

- Neglecting pump depletion ($\mathrm{A}_{\omega} \approx$ cost)

$$
\frac{d A_{2 \omega}}{d z}=i \frac{2 \omega d_{e f f}}{n_{2 \omega} c} A_{\omega}^{2} \exp [-i \Delta k z]
$$

- After a length L of nonlinear medium

$$
\begin{aligned}
& I_{2 \omega}(L)=\gamma^{2} I_{\omega} L^{2} \sin ^{2}\left(\frac{\Delta k L}{2}\right)=\frac{4 \gamma I_{\omega}}{\Delta k^{2}} \sin ^{2}\left(\frac{\Delta k L}{2}\right) \\
& \begin{array}{ll}
I_{2 \omega}(L) \propto I_{\omega}^{2} \\
I_{2 \omega}(L) \propto d_{d f}^{2}
\end{array} \\
& \begin{array}{ll}
I_{2 \omega}(L) \propto L^{2} \quad \Delta k=0 \\
I_{2 \omega}(L) \propto \sin ^{2}\left(\frac{\Delta k L}{2}\right) \quad \Delta k \neq 0
\end{array}
\end{aligned}
$$

Driving wave $\quad P_{N L} \propto E_{\omega}^{2} \propto A_{\omega}^{2} \exp \left[i\left(2 k_{\omega} z-2 \omega t\right)\right]$
Generated wave $\quad E_{2 \omega} \propto \exp \left[i\left(k_{2 \omega} z-2 \omega t\right)\right]$
Phase shift at $\mathrm{L}_{\mathrm{c}} / 2 \quad \varphi\left(P_{N L}\right)-\varphi\left(E_{2 \omega}\right) \propto\left(2 k_{\omega}-k_{2 \omega}\right) \cdot \frac{L_{c}}{2}=\Delta k \cdot \frac{\pi}{\Delta k}=\pi$

Propagation in birefringent media

In the simpler case of uniaxial crystals, propagation may be described recurring to a pair of refractive indices, n_{e} and n_{o} (extraordinary and ordinary index, respectively, each one with its own dispersion), and to an index-ellipsoid model:

$$
\frac{X^{2}}{n_{O}^{2}}+\frac{Y^{2}}{n_{O}^{2}}+\frac{Z^{2}}{n_{e}^{2}}=1
$$

Each propagation direction, which is given by the wavevector \boldsymbol{k}, defines in the plane perpendicular to \boldsymbol{k} an ellipse whose axes correspond to two polarization eigenstates:

$$
\begin{aligned}
& \mathrm{E}_{\perp} \rightarrow n_{0} \quad \text { Ordinary wave } \\
& \mathrm{E}_{/ /} \rightarrow n_{e}^{2}(\theta)=\frac{n_{o}^{2} n_{e}^{2}}{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}
\end{aligned}
$$

Birifringence phase matching

Negative uniaxial crystals: $n_{e}<n_{0}$

$$
n_{e}(2 \omega, \theta)=n_{o}(\omega)
$$

- NOTE: the refractive indexes n_{e} and n_{o} at each frequency are obtained by Sellmeier equations
- Birifringence phase-matching involves coupling between orthogonally polarized fields - non diagonal terms of the secondorder nonlinear-susceptibility χ^{2} tensor

Polar diagram showing the refractive index dependence as a function of the angle θ between \boldsymbol{k} and the optical axis, at the two frequencies

The spatial walk-off probelm

The Pointying vector of the extraordinary wave \boldsymbol{S}_{e} my be shown to be perpendicular to the extraordinary normal index surface at its crossing point with \boldsymbol{k}. This does not happen for the ordinary wave, with $\boldsymbol{S}_{o} / / \boldsymbol{k}$.

- In birefringent crystals the pointing vector of the extraordinary wave $S_{e}=E \times H$, which gives the energy propagation direction, suffers from an angular offset from the \boldsymbol{k} vector. This is referred to as the walk-off angle $\theta_{\text {wo }}$.
- It seriously limits the interaction length L for a given input field diameter D :

- Length limitation approximately given by:

$$
L=D \tan \theta_{\text {wo }}
$$

Birifringence phase matching: examples

BBO

- negative uniaxial crystal $\left(\mathrm{n}_{\mathrm{e}}<\mathrm{n}_{0}\right)$
- high-birifringence:

$$
\begin{aligned}
& n_{o}=1.672 @ 633 \mathrm{~nm} \rightarrow \text { FF ordinary } \\
& n_{e}=1.549 @ 633 \mathrm{~nm} \rightarrow \text { SH extraord } \\
& d_{N L} \sim 2.3 \mathrm{pm} / \mathrm{V} \text { rather LOW }
\end{aligned}
$$

Phase matching bandwidth: calculation

$I_{2 \omega}(L) \propto \operatorname{sinc}^{2}\left(\frac{\Delta k L}{2}\right)$

- Let us assume phase-matching satisfied at a given fundamental frequency (FF) ω_{0} :

$$
\Delta k=0 \quad \rightarrow \quad k\left(2 \omega_{0}\right)-2 k\left(\omega_{0}\right)=0 \quad \rightarrow \quad n\left(2 \omega_{0}\right)=n\left(\omega_{0}\right)
$$

and let us determine the FWHM spectral width of the $I_{2 \omega}$ curve. This implies evaluating Δk for a given frequency shift $\Delta \omega$ from the phase-matching frequency ω_{0}, while taking into account that a frequency shift at the fundamental frequency is doubled at the second harmonic:

$$
\Delta k(\Delta \omega)=\left.\frac{d k}{d \omega}\right|_{2 \omega_{0}} 2 \Delta \omega-\left.2 \frac{d k}{d \omega}\right|_{\omega_{0}} \Delta \omega
$$

- The FWHM bandwidth at the second harmonic, $\Delta \omega_{\text {SH }}=2 \Delta \omega_{\mathrm{FF}}$, becomes (see figure):

$$
\left[k^{\prime}\left(2 \omega_{0}\right)-k^{\prime}\left(\omega_{0}\right)\right] \frac{\Delta \omega_{S H}}{2}=\frac{2.783}{L} \square \Delta v_{S H}=\frac{\Delta \omega_{S H}}{2 \pi}=\frac{0,886}{\left[k^{\prime}\left(2 \omega_{0}\right)-k^{\prime}\left(\omega_{0}\right)\right] L}
$$

Phase matching bandwidth \& dispersion

- Recalling that:

$$
k(\omega)=\frac{\omega}{c} n(\omega) ; \quad \frac{d n}{d \omega}=\frac{d n}{d \lambda} \frac{d \lambda}{d \omega} ; \quad \frac{d \lambda}{d \omega}=-\frac{\lambda^{2}}{2 \pi c}
$$

- one may easily refer the SH bandwidth to the crystal dispersion at FF \& SH:

$$
\Delta v_{S H}=\frac{0.886 \cdot c}{\left|1 / 2 n^{\prime}\left(\lambda_{0} / 2\right)-n^{\prime}\left(\lambda_{0}\right)\right| L \lambda_{0}}
$$

SHG in the visible range

Phase matching bandwidth: an insight

- Anticipating a result of the short-pulse regime, i.e. the fact that FF and SH pulses propagate at different "group" velocities given by:

$$
v_{g, F F}=\frac{1}{k^{\prime}\left(v_{0}\right)} \quad v_{g, S H}=\frac{1}{k^{\prime}\left(2 v_{0}\right)}
$$

■ we may describe the SHG process between these two pulses as follows:

$$
\Delta \tau_{S H}=\tau_{g, F F}-\tau_{g, S H}=G D M
$$

GROUP DELAY MISMATCH

- According to Fourier theory we could figure out that:

$$
\Delta v_{S H} \approx \frac{1}{\tau_{S H}}=\frac{1}{G D M}=\frac{1}{\left|\tau_{g, F F}-\tau_{g, S H}\right|}=\frac{1}{\left|\frac{L}{v_{g, F F}}-\frac{L}{v_{g, F F}}\right|}=\frac{1}{L\left|k^{\prime}\left(v_{0}\right)-k^{\prime}\left(2 v_{0}\right)\right|}
$$

Quasi-phase matching (QPM)

QPM: pros and cons

PROS

- Just need to change the poling period to adjust phase matching (the grating provides the momentum you need to get phase matching
- You may phase match fields with parallel polarization direction and exploit extremely high nonlinear coefficients
- Absence of any spatial walk-off because interacting fields may be set parallel to the crystal optical axis.

CONS

- Few crystals lend themselves to QPM since you need ferroelectric crystals (e.g. $\mathrm{LiNbO}_{3}, \mathrm{KTP}, \mathrm{LiTaO}_{3}$) or semiconductors (GaAs)
- The fabrication procedure is rather complex for ferroelectrics - periodic poling needed - and very complex for semiconductors - orientation patterning
- Pretty hard to get phase-matching at short wavelengths due to the technological barrier of $\mu \mathrm{m}$-level poling periods
- Optical damage at high fluence, especially for LiNbO_{3}.

QPM: example

PPLN: periodically-poled lithium niobate

Phase matching in a parametric interaction

$k_{1}+k_{2}=k_{3}$ or

$$
\omega_{1} n\left(\omega_{1}\right)+\omega_{2} n\left(\omega_{2}\right)=\omega_{3} n\left(\omega_{3}\right)
$$

- In a medium with normal dispersion (dn/d $\omega>0$)

$$
n\left(\omega_{1}\right)<n\left(\omega_{2}\right)<n\left(\omega_{3}\right) \text { if } \quad \omega_{1}<\omega_{2}<\omega_{3}
$$

- the phase matching condition can't be satisfied:

$$
n\left(\omega_{3}\right)=\frac{n\left(\omega_{1}\right) \omega_{1}+n\left(\omega_{2}\right) \omega_{2}}{\omega_{3}}
$$

$$
\left.n\left(\omega_{3}\right)-n\left(\omega_{2}\right)-n\left(\omega_{2}\right)\right] \frac{\omega_{1}}{\omega_{3}}
$$

- Types of possible birefringence phase matching:
negative uniaxial $\left(n_{e}<n_{o}\right)$ positive uniaxial $\left(n_{e}>n_{o}\right)$

TYPE I

$$
n_{3}{ }^{\mathrm{e}} \omega_{3}=n_{1}{ }^{\circ} \omega_{1}+n_{2}{ }^{\circ} \omega_{2} \quad(\mathrm{o}+\mathrm{O} \rightarrow \mathrm{e})
$$

$$
n_{3}{ }^{\circ} \omega_{3}=n_{1}{ }^{\mathrm{e}} \omega_{1}+n_{2}{ }^{\mathrm{e}} \omega_{2}(\mathrm{e}+\mathrm{e} \rightarrow \mathrm{o})
$$

TYPE II $\quad n_{3}{ }^{\mathrm{e}} \omega_{3}=n_{1}{ }^{\mathrm{e}} \omega_{1}+n_{2}{ }^{\circ} \omega_{2} \quad(\mathrm{e}+\mathrm{O} \rightarrow \mathrm{e})$
$n_{3}{ }^{\mathrm{o}} \omega_{3}=n_{1}{ }^{\mathrm{e}} \omega_{1}+n_{2}{ }^{\mathrm{o}} \omega_{2} \quad(\mathrm{e}+\mathrm{O} \rightarrow \mathrm{e})$

$$
n_{3}{ }^{\mathrm{e}} \omega_{3}=n_{1}{ }^{\circ} \omega_{1}+n_{2}{ }^{\mathrm{e}} \omega_{2} \quad(\mathrm{o}+\mathrm{e} \rightarrow \mathrm{e}) \quad n_{3}{ }^{\mathrm{o}} \omega_{3}=n_{1}{ }^{\mathrm{o}} \omega_{1}+n_{2}{ }^{\mathrm{e}} \omega_{2} \quad(\mathrm{o}+\mathrm{e} \rightarrow \mathrm{e})
$$

Example: type I phase matching

Birifringence phase-matching in a negative uniaxial crystal

- The phase matching condition is $n_{e 3}\left(\theta_{m}\right) \omega_{3}=n_{01} \omega_{1}+n_{o 2} \omega_{2}$

$$
\text { giving } \quad n_{e 3}\left(\theta_{m}\right)=\frac{n_{01} \omega_{1}+n_{02} \omega_{2}}{\omega_{3}}
$$

- In a uniaxial crystal, the extraordinary index for propagation along θ is

$$
n_{e}^{2}(\theta)=\frac{n_{o}^{2} n_{e}^{2}}{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}
$$

which gives $\quad \sin \theta_{m}=\frac{n_{e 3}}{n_{e 3}\left(\theta_{m}\right)} \sqrt{\frac{n_{03}^{2}-n_{e 3}^{2}\left(\theta_{m}\right)}{n_{03}^{2}-n_{e 3}^{2}}}$
...the refractive indexes at each wavelength being obtained by Sellmeier equations

QPM in a periodically-poled crystal

$$
k_{1}+k_{2}+\frac{2 \pi}{\Lambda}=k_{3}
$$

$$
\frac{\omega_{1}}{c} n_{1}+\frac{\omega_{2}}{c} n_{2}+\frac{2 \pi}{\Lambda}=\frac{\omega_{3}}{c} n_{3}
$$

Phase matching curves of a near-IR OPA

Phase matching curves of a visible OPA

The equations of linear pulse propagation

The polarization as a driving term

Starting from Maxwell's equations

$$
\frac{\partial^{2} E}{\partial Z^{2}}-\frac{1}{c_{0}^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P}{\partial t^{2}}
$$

the polarization on the r.h.s. acts as a driving term.
The electric field is a plane wave

$$
E(z, t)=A(z, t) \exp \left[i\left(\omega_{0} t-k_{0} z\right)\right]
$$

The polarization can be decomposed in linear and nonlinear parts:

$$
P(z, t)=P_{L}(z, t)+P_{N L}(z, t)
$$

we consider only the linear component:

$$
P_{L}(z, t)=p_{L}(z, t) \exp \left[i\left(\omega_{0} t-k_{0} z\right)\right]
$$

Switching to the Fourier domain

By introducing the Fourier transform

$$
\widetilde{E}(z, \omega)=\mathfrak{J}[E(z, t)]=\int_{-\infty}^{+\infty} E(z, t) \exp (-i \omega t) d t
$$

we get:

$$
\begin{gathered}
\widetilde{E}(z, \omega)=\widetilde{A}\left(z, \omega-\omega_{0}\right) \exp \left(-i k_{0} z\right) \\
\widetilde{P}_{L}(z \omega)=\widetilde{p}_{L}\left(z \omega-\omega_{0}\right) \exp \left(-i k_{0} z\right)
\end{gathered}
$$

Recalling the derivative rule for the Fourier transform:
we obtain:

$$
\mathfrak{J}\left[\frac{d^{n} F(t)}{d t^{n}}\right]=(i \omega)^{n} \widetilde{F}(\omega)
$$

$$
\frac{\partial^{2} \widetilde{E}}{\partial z^{2}}+\frac{\omega^{2}}{c_{0}^{2}} \widetilde{E}=-\mu_{0} \omega^{2} \widetilde{P}_{L}
$$

The slowly varying envelope approximation

We express the second derivative as:

$$
\frac{\partial^{2} \widetilde{E}}{\partial z^{2}}=\left(\frac{\partial^{2} \widetilde{A}}{\partial z^{2}}-2 i k_{0} \frac{\partial \widetilde{A}}{\partial z}-k_{0}^{2} \widetilde{A}\right) \exp \left(-i k_{0} z\right)
$$

We assume:

$$
\frac{\partial^{2} \widetilde{A}}{\partial z^{2}} \ll k_{0} \frac{\partial \widetilde{A}}{\partial z}
$$

The Slowly Varying Envelope Approximation (SVEA) neglects variations of the envelope over propagation of the order of wavelength.

With this assumption we obtain:

$$
-2 i k_{0} \frac{\partial \widetilde{A}}{\partial z}-k_{0}^{2} \widetilde{A}+\frac{\omega^{2}}{c_{0}^{2}} \widetilde{A}=-\mu_{0} \omega^{2} \widetilde{p}_{L}
$$

The frequency-dependent polarization

For a monochromatic wave:

$$
\widetilde{P}_{L}(\omega)=\varepsilon_{0} \chi^{(1)}(\omega) E(\omega)
$$

recalling that:

$$
n_{L}(\omega)=\sqrt{\left(1+\chi^{(1)}(\omega)\right)}
$$

We obtain:

$$
-2 i k_{0} \frac{\partial \widetilde{A}}{\partial z}-k_{0}^{2} \widetilde{A}+\frac{\omega^{2}}{c_{0}^{2}} \widetilde{A}=-\frac{\omega^{2}}{c_{0}^{2}}\left[n_{L}^{2}(\omega)-1\right] \widetilde{A}
$$

which simplifies to:

$$
2 i k_{0} \frac{\partial \widetilde{A}}{\partial z}=\left[k^{2}(\omega)-k_{0}^{2}\right] \widetilde{A}
$$

Propagation in a dispersive medium (I)

Starting from the propagation equation:

$$
2 i k_{0} \frac{\partial \widetilde{A}}{\partial z}=\left[k^{2}(\omega)-k_{0}^{2}\right] \widetilde{A}
$$

We expand $\mathrm{k}(\omega)$ in a Taylor series around the carrier frequency ω_{0} : $k(\omega)=k_{0}+\left(\frac{d k}{d \omega}\right)_{\omega_{0}}\left(\omega-\omega_{0}\right)+\frac{1}{2}\left(\frac{d^{2} k}{d \omega^{2}}\right)_{\omega_{0}}\left(\omega-\omega_{0}\right)^{2}+\frac{1}{6}\left(\frac{d^{3} k}{d \omega^{3}}\right)_{\omega_{0}}\left(\omega-\omega_{0}\right)^{3}+\ldots$

An expansion up to the third order (or to the second order for moderate pulse bandwidths) is sufficient. By approximating:

$$
k^{2}(\omega)-k_{0}^{2}=\left[k(\omega)-k_{0}\right]\left[k(\omega)+k_{0}\right] \cong 2 k_{0}\left[k(\omega)-k_{0}\right]
$$

we obtain:

$$
i \frac{\partial \widetilde{A}\left(\omega-\omega_{0}\right)}{\partial z} \cong k_{0}^{\prime}\left(\omega-\omega_{0}\right) \widetilde{A}+\frac{1}{2} k^{\prime \prime}{ }_{0}\left(\omega-\omega_{0}\right)^{2} \widetilde{A}+\frac{1}{6} k^{\prime \prime \prime}{ }_{0}\left(\omega-\omega_{0}\right)^{3} \widetilde{A}
$$

Propagation in a dispersive medium (II)

$$
\begin{aligned}
& i \frac{\partial \widetilde{A}\left(\omega-\omega_{0}\right)}{\partial z} \cong k_{0}^{\prime}\left(\omega-\omega_{0}\right) \widetilde{A}+\frac{1}{2} k^{\prime \prime}{ }_{0}\left(\omega-\omega_{0}\right)^{2} \widetilde{A}+\frac{1}{6} k^{\prime \prime \prime}{ }_{0}\left(\omega-\omega_{0}\right)^{3} \widetilde{A} \\
& k_{0}^{\prime}=\left(\frac{d k}{d \omega}\right)_{\omega_{0}}=\frac{1}{v_{g 0}} \quad \begin{array}{l}
\text { where } \begin{array}{l}
\text { carrier frequency } \\
\text { cas the group velocity of the }
\end{array}
\end{array} \\
& k^{\prime \prime}=\left(\frac{d^{2} k}{d \omega^{2}}\right)_{\omega_{0}}=G V D \begin{array}{l}
\text { is known as Group Velocity Dispersion } \\
(\mathrm{GVD})
\end{array}
\end{aligned}
$$

Propagation in a dispersive medium (III)

We now Fourier transform back to the time domain. Recalling the derivative rule:

$$
\mathfrak{J}^{-1}\left[\omega^{n} \widetilde{F}(\omega)\right]=(-i)^{n} \frac{d^{n} F(t)}{d t^{n}}
$$

we obtain:

$$
\frac{\partial A(z, t)}{\partial z}+\frac{1}{v_{g 0}} \frac{\partial A}{\partial t}-\frac{i}{2} k_{0}^{\prime \prime} \frac{\partial^{2} A}{\partial t^{2}}+\frac{1}{6} k^{\prime \prime \prime}{ }_{0} \frac{\partial^{3} A}{\partial t^{3}}=0
$$

Which, neglecting third order dispersion $\left(K^{\prime \prime \prime}{ }_{0} \cong 0\right)$ becomes:

$$
\frac{\partial A(z, t)}{\partial z}+\frac{1}{v_{g 0}} \frac{\partial A}{\partial t}-\frac{i}{2} k_{0}^{\prime \prime} \frac{\partial^{2} A}{\partial t^{2}}=0
$$

The parabolic equation captures the main physics of linear propagation of ultrashort pulses in dispersive media.

In the absence of dispersion

The original equation takes the form:

$$
\begin{aligned}
& \frac{\partial A(z, t)}{\partial z}+\frac{1}{v_{g 0}} \frac{\partial A(z, t)}{\partial t}=0 \\
& z=z ; \quad t^{\prime}=t-\frac{z}{v_{g 0}}
\end{aligned}
$$

Let us set it in a new reference-frame moving at $v_{g 0}$, with space/time variables:

By transformation of derivatives in the new reference frame :

$$
\begin{array}{ll}
\frac{\partial A}{\partial z}=\frac{\partial A}{\partial z} \frac{\partial z^{\prime}}{\partial z}+\frac{\partial A}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial z}=\frac{\partial A}{\partial z^{\prime}}-\frac{1}{v_{g 0}} \frac{\partial A}{\partial t^{\prime}} & \frac{\partial A}{\partial z^{\prime}}-\frac{1}{v_{g 0}} \frac{\partial A}{\partial t^{\prime}}+\frac{1}{v_{g 0}} \frac{\partial A}{\partial t^{\prime}}=0 \\
\frac{\partial A}{\partial t}=\frac{\partial A}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial t}+\frac{\partial A}{\partial z^{\prime}} \frac{\partial z}{\partial t}=\frac{\partial A}{\partial t^{\prime}} & \frac{\partial A\left(Z^{\prime}, t^{\prime}\right)}{\partial Z^{\prime}}=0 \\
\tau_{g 0}=L / v_{g 0} & \text { one gets: }
\end{array}
$$

The pulse envelope propagates without distortion at a speed $v_{g o}$ taking a time $\tau_{g 0}$ to cross the crystal

In the presence of dispersion

The pulse gets more and more broadened while propagating, with a pulse broadening per unit bandwidth given by the GDD (group-delay-dispersion) parameter (expressed in fs ${ }^{2}$):

$$
G D D=\frac{\partial \tau_{g 0}}{\partial \omega}=\frac{\partial}{\partial \omega}\left(\frac{L}{V_{g 0}}\right)=\frac{\partial}{\partial \omega}\left(L k_{0}^{\prime}\right)=L k_{0}^{\prime \prime}=L \cdot G V D
$$

If the dispersion-induced pulse broadening is far in excess of the input pulse duration, at the crystal output one has:

where B is the angular-frequency bandwidth B

The equations of nonlinear pulse propagation

Propagation in a nonlinear medium (I)

We start from the equation:

$$
\frac{\partial^{2} E}{\partial Z^{2}}-\frac{1}{C_{0}^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{L}}{\partial t^{2}}+\mu_{0} \frac{\partial^{2} P_{N L}}{\partial t^{2}}
$$

where:

$$
P_{N L}(z, t)=p_{N L}(z t) \exp \left\lfloor i\left(\omega_{0} t-k_{p} z\right)\right\rfloor
$$

We emphasize that the wavenumber $\mathbf{k}_{\mathbf{p}}$ of the nonlinear polarization at ω_{0} is different from that of the electric field \mathbf{k}_{0}. We express:

$$
\frac{\partial^{2} P_{N L}}{\partial t^{2}}=\left(\frac{\partial^{2} \varphi_{N L}}{\partial t}+2 i \omega \frac{\partial p_{N L}}{\partial t}-\omega_{0}^{2} p_{N L}\right) \exp \left[i\left(\omega_{0} t-k_{p} z\right)\right]
$$

assuming that the envelope p_{NL} varies slowly over the timescale of an optical cycle:

$$
\frac{\partial^{2} p_{N L}}{\partial t^{2}}, \omega_{0} \frac{\partial p_{N L}}{\partial t} \ll \omega_{0}^{2} p_{N L}
$$

Propagation in a nonlinear medium (II)

From the equation:

$$
\frac{\partial^{2} E}{\partial z^{2}}-\frac{1}{c_{0}^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} P_{L}}{\partial t^{2}}-\mu_{0} \omega_{0}^{2} p_{N L} \exp \left[i\left(\omega_{0} t-k_{p} z\right)\right]
$$

By the same procedure applied to the linear propagation equation, we obtain:

$$
-2 i k_{0} \frac{\partial A}{\partial z}-2 \frac{i k_{0}}{v_{g 0}} \frac{\partial A}{\partial t}-k_{0} k_{0}^{\prime \prime} \frac{\partial^{2} A}{\partial t^{2}}=-\mu_{0} \omega_{0}^{2} p_{N L} \exp [-i \Delta k z]
$$

which can be rewritten as:

$$
\frac{\partial A}{\partial z}+\frac{1}{v_{g 0}} \frac{\partial A}{\partial t}-\frac{i}{2} k^{\prime \prime}{ }_{0} \frac{\partial^{2} A}{\partial t^{2}}=-i \frac{\mu_{0} \omega_{0} c}{2 n_{0}} p_{N L} \exp [-i \Delta k z]
$$

where $\Delta k=k_{p}-k_{0}$ is the "wave-vector mismatch" between the nonlinear polarization and the field

The nonlinear polarization in second-order parametric interaction (I)

Consider the superposition of three waves at frequencies ω_{1}, ω_{2} and ω_{3} with $\omega_{1}+\omega_{2}=\omega_{3}$

$$
E(z, t)=\frac{1}{2}\left\{\begin{array}{l}
A(z, t) \exp \left[i\left(\omega_{1} t-k_{1} z\right)\right]+A_{2}(z, t) \exp \left[i\left(\omega_{2} t-k_{2} z\right)\right]+ \\
A_{3}(z, t) \exp \left[i\left(\omega_{3} t-k_{3} z\right)\right]+c . c .
\end{array}\right\}
$$

impinging on a medium with a second order nonlinear response:

$$
P_{N L}(z, t)=\varepsilon_{0} \chi^{(2)} E^{2}(z, t)
$$

The nonlinear polarization has components at several frequencies, such as $2 \omega_{1}, 2 \omega_{2}$ etc. We assume that the phase-matching condition selects only the interaction between the three fields at ω_{1}, ω_{2} and ω_{3} to be efficient.

The nonlinear polarization in second-order parametric interaction (II)

We derive the following terms:

$$
\begin{aligned}
& P_{1 N L}(z, t)=\frac{\varepsilon_{0} \chi^{(2)}}{2} A_{2}^{*} A_{3} \exp \left\{i\left[\left(\omega_{3}-\omega_{2}\right) t-\left(k_{3}-k_{2}\right) z\right]+c . c .\right\} \\
& P_{2 N L}(z, t)=\frac{\varepsilon_{0} \chi^{(2)}}{2} A^{*} A_{3} \exp \left\{i\left[\left(\omega_{3}-\omega_{1}\right) t-\left(k_{3}-k_{1}\right) z\right]+c . c .\right\} \\
& P_{3 N L}(z, t)=\frac{\varepsilon_{0} \chi^{(2)}}{2} A A_{2} \exp \left\{\left[\left(\omega_{1}+\omega_{2}\right) t-\left(k_{1}+k_{2}\right) z\right]+\text { c.c. }\right\}
\end{aligned}
$$

Which we plug into the nonlinear propagation equations:

$$
\frac{\partial A}{\partial z}+\frac{1}{v_{g 0}} \frac{\partial A}{\partial t}-\frac{i}{2} k_{0}^{\prime \prime} \frac{\partial^{2} A}{\partial t^{2}}=-i \frac{\mu_{0} \omega_{0} c}{2 n_{0}} p_{N L} \exp [-i \Delta k z]
$$

The nonlinear coupled propagation equations (I)

thus deriving the three coupled equations:

$$
\begin{aligned}
& \frac{\partial A}{\partial z}+\frac{1}{v_{g 1}} \frac{\partial A}{\partial t}-\frac{i}{2} k_{1}^{\prime \prime} \frac{\partial^{2} A}{\partial t^{2}}=-i \frac{\mu_{0} \varepsilon_{0} c \omega_{1}}{2 n_{1}} d_{e f f} A_{2}^{*} A_{3} \exp \left[-i\left(k_{3}-k_{2}-k_{1}\right) z\right] \\
& \frac{\partial A_{2}}{\partial z}+\frac{1}{v_{g 2}} \frac{\partial A_{2}}{\partial t}-\frac{i}{2} k^{\prime \prime}{ }_{2} \frac{\partial^{2} A_{2}}{\partial t^{2}}=-i \frac{\mu_{0} \varepsilon_{0} c \omega_{2}}{2 n_{2}} d_{e f f} A^{*} A_{3} \exp \left[-i\left(k_{3}-k_{1}-k_{2}\right) z\right] \\
& \frac{\partial A_{3}}{\partial z}+\frac{1}{v_{g 3}} \frac{\partial A_{3}}{\partial t}-\frac{i}{2} k_{3}^{\prime \prime} \frac{\partial^{2} A_{3}}{\partial t^{2}}=-i \frac{\mu_{0} \varepsilon_{0} c \omega_{3}}{2 n_{3}} d_{e f f} A A_{2} \exp \left[-i\left(k_{1}+k_{2}-k_{3}\right) z\right]
\end{aligned}
$$

with $\quad d_{\text {eff }}=\frac{\chi^{(2)}}{2} \quad \Delta k=k_{3}-k_{1}-k_{2}$
These are coupled nonlinear partial differential equations which are in general not amenable to an analytic solution and must be treated numerically.

The nonlinear coupled propagation equations (II)

As a first simplification we neglect the GVD terms. This is justified by considering that the three interacting pulses are propagating at very different group velocities vg_{g}. The effects of this group velocity mismatch are more relevant than those of GVD between the different frequency components of a single pulse.

$$
\begin{aligned}
& \frac{\partial A}{\partial z}+\frac{1}{v_{g 1}} \frac{\partial A}{\partial t}=-i \kappa_{1} A_{2}^{*} A_{3} \exp [-i \Delta k z] \\
& \frac{\partial A_{2}}{\partial z}+\frac{1}{v_{g 2}} \frac{\partial A_{2}}{\partial t}=-i \kappa_{2} A^{*} A_{3} \exp [-i \Delta k z] \\
& \frac{\partial A_{3}}{\partial z}+\frac{1}{v_{g 3}} \frac{\partial A_{3}}{\partial t}=-i \kappa_{3} A A_{2} \exp [i \Delta k z]
\end{aligned}
$$

where the nonlinear coupling constants are defined as: $\kappa_{i}=\frac{\omega_{i} d_{e f f}}{2 c n_{i}}$

The nonlinear coupled propagation equations (III)

By moving to a frame of reference translating with the group velocity of the pump pulse:

$$
t^{\prime}=t-\frac{z}{v_{g 3}} \quad \begin{aligned}
\frac{\partial A}{\partial z}+\delta_{13} \frac{\partial A}{\partial t} & =-i \kappa_{1} A_{2}^{*} A_{3} \exp [-i \Delta k z] \\
\frac{\partial A_{2}}{\partial z}+\delta_{23} \frac{\partial A_{2}}{\partial t} & =-i \kappa_{2} A^{*} A_{3} \exp [-i \Delta k z] \\
\frac{\partial A_{3}}{\partial z} & =-i \kappa_{3} A A_{2} \exp [i \Delta k z]
\end{aligned}
$$

where

$$
\delta_{i 3}=\frac{1}{v_{g i}}-\frac{1}{v_{g 3}} \quad i=1,2
$$

is the Group Velocity Mismatch (GVM) between signal/idler and pump waves, typically expressed in ps/mm. It gives the group delay accumulated by the two pulses per unit length.

Phase matching bandwidth in OPA/DFG

It may be estimated from the results obtained in the cw regime under the high gain approximation:

$$
G=\frac{1}{4} \exp (2 g L) \quad g=\sqrt{\gamma^{2}-\left(\frac{\Delta k}{2}\right)^{2}}
$$

$\Delta k=k_{p}-k_{s}-k_{i}$ with $\Delta k=0$ for a given $\left(\omega_{\mathrm{p}} \omega_{\mathrm{s}} \omega_{\mathrm{i}}\right)$ set For a given fixed pump frequency ω_{p}, if the signal frequency ω_{s} increases to $\omega_{s}+\Delta \omega$, by energy conservation the idler frequency decreases to $\omega_{i}-\Delta \omega$. The wave vector may thus be written as:

$$
\Delta k=-\frac{\partial k_{s}}{\partial \omega} \Delta \omega+\frac{\partial k_{i}}{\partial \omega} \Delta \omega=\left(\frac{1}{v_{g s}}-\frac{1}{v_{g i}}\right) \Delta \omega
$$

Introducing Δk in the expression for the gain G and looking for a solution at 50% of the maximum gain, one gets a FWHM bandwidth:

$$
\Delta \mathrm{v} \cong \frac{2(\ln 2)^{1 / 2}}{\pi}\left(\frac{\gamma}{L}\right)^{1 / 2} \frac{1}{\left|\frac{1}{v_{g s}}-\frac{1}{v_{g i}}\right|} \propto\left(\frac{\gamma}{L}\right)^{1 / 2} \frac{1}{\delta_{s i}}
$$

High gain bandwidth demands for groupvelocity matching
between signal and idler

Few general rules for ultrashort-pulse interactions

OPA/DFG REGIME

$$
\begin{array}{ll}
\left(\omega_{\mathrm{p}}, \omega_{3}\right) & A_{p}(0) \neq 0 \\
\left(\omega_{\mathrm{s}}, \omega_{1}\right) & A_{s}(0) \neq 0 \\
\left(\omega_{\mathrm{i}}, \omega_{2}\right) & A_{i}(0)=0
\end{array}
$$

- Input pump duration > input signal duration
\square Interaction length limited by temporal walk-off
- Length of the crystal primarily chosen as a function of $\delta_{p s}$

\square Signal delayed from the pump
\square Exponential gain only as long as the three pulses remain superimposed
\square Pulse distortion without temporal overlap
\square High gain for $v_{g i}<v_{g p}<v_{g s}$
\square Low $\delta_{\text {si }}$ for broadband amplification

The starting point: the GVM curves (I)

BBO: Ti-sapphire pumped OPA

Type I interaction
This determines L for given pump/signal durations
$\mathrm{e}_{\mathrm{p}} \rightarrow \mathrm{O}_{\mathrm{s}}+\mathrm{o}_{\mathrm{i}}$
$\lambda_{\mathrm{p}}=0.8 \mu \mathrm{~m}$

0

The starting point: the GVM curves (II)

BBO: Ti-sapphire pumped OPA

Type II interaction
$\delta_{\text {ps }} \sim 50 \mathrm{fs} / \mathrm{mm}$ over the
whole tuning range

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{p}} \rightarrow \mathrm{o}_{\mathrm{s}}+\mathrm{e}_{\mathrm{i}} \\
& \lambda_{\mathrm{p}}=0.8 \mu \mathrm{~m}
\end{aligned}
$$

Generating a frequency comb above $5 \mu \mathrm{~m}$ (I)

GaSe: Er:fiber pumped DFG

Type I interaction
$\delta_{\mathrm{ps}}<80 \mathrm{fs} / \mathrm{mm}$ over the
whole tuning range
$\rightarrow L=1 \mathrm{~mm}$
$\mathrm{e}_{\mathrm{p}} \rightarrow \mathrm{O}_{\mathrm{s}}+\mathrm{o}_{\mathrm{i}}$
$\lambda_{\mathrm{p}}=1.55 \mu \mathrm{~m}$
$\tau_{\mathrm{p}}=70 \mathrm{fs}$

Generating a frequency comb above $5 \mu \mathrm{~m}$ (II)

GaSe: Er:fiber pumped DFG

The first frequency comb above $5 \mu \mathrm{~m}$ (I)

The first frequency comb above $5 \mu \mathrm{~m}$ (II)

\square extremely broad tunability: $5-16 \mu \mathrm{~m}$

- $f_{\text {ceo }}$-free comb synthesis
\square absence of 2-photons absorption

The first frequency comb above $5 \mu \mathrm{~m}$ (III)

A. Gambetta et al, Opt. Lett. 33, 2671 (2008)

Tunability through:
\square angle tuning
\square chirp tuning

Comb mode power: ~ 1-2 nW

Spectrum limited to $\lambda>5 \mu \mathrm{~m}$

A more recent experiment with a more powerful Er:fiber oscillator

Second experiment: results

GaSe

Tunability through:

\square angle tuning
\square power tuning

Spectrum limited to $\lambda>7 \mu \mathrm{~m}$

Comb mode power: ~ 100-200 nW
A. Gambetta et al, Opt. Lett. 381155 (2013)

