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Optical frequency comb synthesizers

Ti: Sapphire
= 0.8 m

SC = 0.4-1.2 m
frep = 0.07-10 GHz
P < 3 W

Er: fibre
= 1.55 m

SC = 0.8-2.2 m
frep = 0.1-0.25 GHz
P < 1 W

Yb: fibre
= 1.05 m

SC = 0.6-1.6 m
frep = 0.1-1 GHz
P < 80 W



How to change spectral range ?
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SECOND ORDER NONLINEAR OPTICS !!
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Sum frequency generation (SFG)
Difference frequency generation (DFG)

Second harmonic generation (SHG)



OUTLINE

Equations governing a cw second order parametric process

The problem of phase matching

The equations of linear pulse propagation

Parametric processes in the femtosecond pulse regime

Examples: analytical and numerical discussion 



The photons picture
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Optical parametric amplification (OPA) & optical 
parametric generation (OPG): what are they ?

They are the same process as DFG, but differ in the initial conditions
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In DFG, 3 and 1 have comparable energies and you look for an intense 2

In OPG, 1 photons come from vacuum noise and you are looking for 
extreme parametric gains (10 nJ > 1011 photons !!)

pump

signal idler

In OPA, 1 has an energy 100-10000 times lower than 3  and you look for a 
strong amplification of 1 ( 1 acts as a seed) 



You may enclose your crystal in an optical cavity
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Femtosecond OPOs vs. OPAs:
Femtosecond OPOs

are pumped by simple laser oscillators

provide high repetition rates (100 MHz) 

have low output energy (nJ level)

require matching of the OPO cavity length to pump laser 

large yet not huge oscillation bandwidth

Femtosecond OPAs

require pumping by amplified laser systems

provide low repetition rates (1-100 kHz)

have high output energy ( J-mJ level)

are easy to operate (no length stabilization) 

ultrabroad bandwidth, up to the few-cycles regime



The wave equations for second order 
parametric processes



The wave equation for nonlinear optical media

charges and currents, we get the wave equation

The polarization of the medium is made of a linear and a nonlinear 
contribution

P = PL +  PNL

For a continuous wave, the linear polarization is PL =  0 ( r -1 ) E

Making the scalar approximation and considering a plane wave, the 
propagation equation becomes
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The slowly varying envelope approximation
Starting from the scalar propagation equation

we look for a solution

with
By substitution, we get the equation

Assuming (slowly varying envelope approximation, 

SVEA) we get the equation
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The nonlinear polarization 
in second-order parametric interactions
Consider the superposition of three waves at frequencies 1, 2  and 3 
with 1+ 2  = 3

By second order nonlinear effect, the following polarizations are generated 
at the three frequencies

where deff is an effective second order nonlinear coefficient
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Three-frequency interaction in a second order 
nonlinear medium

Consider three waves at 3 (pump) , 1 (signal) and 2 (idler) , with 
1+ 2  = 3 . We obtain the following equations

where k = k3 - k2 - k1 is the wave vector mismatch between the three waves
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Setting k = 0 is crucial to get highly efficient 
energy transfer between the interacting waves   



OPA/DFG solution for small pump depletion

By neglecting pump depletion (A3 = cost.) and assuming an input beam at 
the signal frequency 1 and no input at the idler frequency 2 (A2(0) = 0) the 
coupled differential equations admit the solution:

with g and given by:

the latter representing a figure of merit for the parametric gain. 
The presence of a phase-mismatch clearly affects such gain.
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Parametric gain
In the high gain approximation ( L>>1) and under phase-matching ( k = 0): 
one has:
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For high gain we need high pump intensity (ultrashort pulses are good!), 
large nonlinear coefficient deff and high signal and idler frequencies 

This allows us to define a parametric gain:

The gain is exponential since the presence of a seed photon at the signal 
wavelength stimulates the generation of an additional signal photon and of a 
photon at the idler wavelength. Due to the symmetry of signal and idler, the 
amplification of an idler photon stimulates in turn the generation of a signal 
photon. Therefore, the generation of the signal field reinforces the 
generation of the idler field and viceversa, giving rise to a positive feedback



Parametric gain: examples with BBO
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Red-pumped BBO crystal
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Blue-pumped BBO crystal: 
higher gain because
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G. Cerullo and S. De Silvestri, 
Rev. Sci. Instrum. 74, 1 (2003).



Are those gains achievable 
with frequency combs ? 
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It complies with bandwidth and temporal
walk-off issues (see next slides) 

It complies with spatial walk-off issues

HIGH

Ip = 1 GW/cm2

G = 0.89 !!!



Energy conservation in parametric interaction

By manipulation of the previous equations, it is easy to show that

i.e. the sum of the energies of the three waves is conserved (assuming 
a lossless medium)

In addition, the following relationship (Manley-Rowe) can be proven

stating photon conservation: one photon at 3 is annihilated and two 
photons at 1 and 2 are simultaneously created 
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The problem of phase matching



SHG process

Let us consider for simplicity second harmonic generation (SHG) 
( 1= 2 = , 3 = 2 , A1 = A2 = A )

Neglecting pump depletion ( A cost )

After a length L of nonlinear medium 
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Generated wave
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Phase mismatch in more detail
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Propagation in birefringent media

O
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E//

In the simpler case of uniaxial crystals, propagation may be 
described recurring to a pair of refractive indices, ne and no
(extraordinary and ordinary index, respectively, each one 
with its own dispersion), and to an index-ellipsoid model: 
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Each propagation direction, which is given by the wave-
vector k, defines in the plane perpendicular to k an ellipse 
whose axes correspond to two polarization eigenstates:
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Birifringence phase matching

oe n,n 2

Negative uniaxial crystals: ne < no

2oe n,n

Positive uniaxial crystals: ne > no

Polar diagram showing the refractive index 
dependence as a function of the angle between 
k and the optical axis, at the two frequencies

NOTE: the refractive indexes ne and no at 
each frequency are obtained by Sellmeier
equations
Birifringence phase-matching involves 
coupling between orthogonally polarized 
fields - non diagonal terms of the second-
order nonlinear-susceptibility 2 tensor



The spatial walk-off probelm
In birefringent crystals the pointing vector of the 
extraordinary wave Se = E x H, which gives the 
energy propagation direction, suffers from an 
angular offset from the k vector. This is referred to 
as the walk-off angle wo.

Se

So

The Pointying vector of the extraordinary 
wave Se my be shown to be perpendicular to 
the extraordinary normal index surface at its 
crossing point with k. This does not happen 
for the ordinary wave, with So // k.

Length limitation approximately given by:
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It seriously limits the interaction length L for a 
given input field diameter D: 



Birifringence phase matching: examples
BBO

negative uniaxial crystal (ne<no)
high-birifringence: 

no = 1.672  @ 633 nm FF ordinary
ne = 1.549  @ 633 nm SH extraord
dNL ~2.3 pm/V  rather LOW
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LiNbO3
negative uniaxial crystal (ne<no)
small-birifringence: 

no = 2.283  @ 633 nm FF ordinary
ne = 2.203  @ 633 nm SH extraord
dNL ~4 pm/V  LOW-MEDIUM

Wide phase-matching 
bandwidth

Quite high spatial walk-off



Phase matching bandwidth: calculation
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Let us assume phase-matching satisfied at a given 
fundamental frequency (FF) 0:

and let us determine the FWHM spectral width of the I2 curve. 
This implies evaluating k for a given frequency shift from 
the phase-matching frequency , while taking into account that 
a frequency shift at the fundamental frequency is doubled at the 
second harmonic:  
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Phase matching bandwidth & dispersion

Recalling that: 
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one may easily refer the SH bandwidth to the crystal dispersion at FF & SH:

SHG in the visible range

L= 2.5 cm

BBO
Birifringence 
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FF
SH

we may describe the SHG process between these two pulses as follows: 

Phase matching bandwidth: an insight

Anticipating a result of the short-pulse regime, i.e. the fact that FF and SH pulses 
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According to Fourier theory we could figure out that:
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Quasi-phase matching (QPM)
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It occurs in special crystals that exhibit a 
periodic change of the sign of 2, with a 
period:  

The quasi-phase-matching 
condition is thus: 
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This period allows a periodic re-
phasing of the driving field (PNL) with 
the generated SH field, resulting in a 
quadratic dependence of I2 with L
with an effective nonlinear 2:    

22
2
meff,



QPM: pros and cons

CONS

PROS

Just need to change the poling period to adjust phase matching (the grating 
provides the momentum you need to get phase matching
You may phase match fields with parallel polarization direction and exploit 
extremely high nonlinear coefficients
Absence of any spatial walk-off because interacting fields may be set parallel to the 
crystal optical axis. 

Few crystals lend themselves to QPM since you need ferroelectric crystals (e.g. 
LiNbO3, KTP, LiTaO3) or semiconductors (GaAs)
The fabrication procedure is rather complex for ferroelectrics periodic poling 
needed and very complex for semiconductors orientation patterning
Pretty hard to get phase-matching at short wavelengths due to the technological 
barrier of m-level poling periods
Optical damage at high fluence, especially for LiNbO3. 
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QPM: example
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PPLN: periodically-poled lithium niobate
FF extraordinary
SH extraordinary

dNL,eff ~15-20 pm/V  HIGH

EFF ESH

Optical axis

Absence of spatial walk-off 
allows for confocal focusing: 

interaction length only limited 
by diffraction !
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Efficient nonlinear processes 
with frequency combs & without 

resonant cavities need for 
QPM nonlinear crystals !!

L=2mm

PPLN
w0,min =15 m

BBO
w0,min =120 m

wo = 3.5



Phase matching in a parametric interaction

k1 + k2 = k3 or 1n( 1) + 2n( 2) = 3n( 3)

In a medium with normal dispersion (dn/d > 0)
n( 1) <  n( 2) <  n( 3) if      1< 2 < 3
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Example: type I phase matching

The phase matching condition is ne3( m) 3 = no1 1 + no2 2
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QPM in a periodically-poled crystal

Birifringence phase-matching in a negative uniaxial  crystal
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obtained by Sellmeier 
equations

In a uniaxial crystal, the extraordinary index for propagation along is
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which gives



Phase matching curves of a near-IR OPA
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Phase matching curves of a visible OPA
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The equations of linear pulse propagation
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the polarization on the r.h.s. acts as a driving term.   
The electric field is a plane wave

The polarization can be decomposed in linear and nonlinear parts:

we consider only the linear component:

The polarization as a driving term



By introducing the Fourier transform

we get:

Recalling the derivative rule for the Fourier transform:

Switching to the Fourier domain
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We express the second derivative as: 

We assume:

The Slowly Varying Envelope Approximation (SVEA) neglects 
variations of the envelope over propagation of the order of wavelength.

The slowly varying envelope approximation

With this assumption we obtain:
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For a monochromatic wave: 

recalling that:

The frequency-dependent polarization

which simplifies to:
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Propagation in a dispersive medium (I)
Starting from the propagation equation:

Akk
z
Aik ~~

2 2
0

2
0

We expand k( ) in a Taylor series around the carrier frequency 0 :

...
6
1

2
1 3

03

3
2

02

2

00

000
d

kd
d

kd
d
dkkk

An expansion up to the third order (or to the second order for 
moderate pulse bandwidths) is sufficient. By approximating:
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Propagation in a dispersive medium (II)

where vg0 is the group velocity of the 
carrier frequency
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Propagation in a dispersive medium (III)

We  now Fourier transform back to the time domain. Recalling the 
derivative rule:

we obtain:
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The parabolic equation captures the main physics of linear 
propagation of ultrashort pulses in dispersive media.



In the absence of dispersion
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The pulse envelope propagates 
without distortion at a speed vg0
taking a time g0 to cross the crystal
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In the presence of dispersion
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The pulse gets more and more broadened while propagating, with a pulse 
broadening per unit bandwidth given by the GDD (group-delay-dispersion) 
parameter (expressed in fs2) :

If the dispersion-induced pulse broadening is far in excess 
of the input pulse duration, at the crystal output one has: BGDDout

where B is the angular-frequency bandwidth B



The equations of nonlinear pulse propagation



Propagation in a nonlinear medium (I) 

We  start from the equation:

where:
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We emphasize that the wavenumber kp of the nonlinear polarization 
at 0 is different from that of the electric field k0. We express:
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assuming that the envelope pNL varies slowly over the timescale of 
an optical cycle:



Propagation in a nonlinear medium (II) 

From the equation:

By the same procedure applied to the linear propagation equation, 
we obtain:
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where k = kp-k0 is the - between the 
nonlinear polarization and the field  



The nonlinear polarization in second-order 
parametric interaction (I)

Consider the superposition of three waves at frequencies 1, 2
and 3  with 1+ 2 = 3

impinging on a medium with a second order nonlinear response:

The nonlinear polarization has components at several frequencies, 
such as 2 1, 2 2 etc. We assume that the phase-matching 
condition selects only the interaction between the three fields at 

1, 2 and 3 to be efficient.
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The nonlinear polarization in second-order 
parametric interaction (II)
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We  derive the following terms:

Which we plug into the nonlinear propagation equations:
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The nonlinear coupled propagation equations (I)

thus deriving the three coupled equations:
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These are coupled nonlinear partial differential equations 
which are in general not amenable to an analytic solution and 
must be treated numerically. 

with



The nonlinear coupled propagation equations (II)
As a first simplification we neglect the GVD terms. This is justified 
by considering that the three interacting pulses are propagating at 
very different group velocities vgi. The effects of this group velocity 
mismatch are more relevant than those of GVD between the 
different frequency components of a single pulse. 
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The nonlinear coupled propagation equations (III)

By moving to a frame of reference translating with the group velocity of the 
pump pulse:                 . 

is the Group Velocity Mismatch (GVM) 
between signal/idler and pump waves, 
typically expressed in ps/mm. It gives the 
group delay accumulated by the two 
pulses per unit length. 
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Phase matching bandwidth in OPA/DFG
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Introducing k in the expression for the gain G and looking for a solution at 50% of 
the maximum gain, one gets a FWHM bandwidth:

2
2

2
kgIt may be estimated from 

the results obtained in the 
cw regime under the high 
gain approximation:

gLexpG 2
4
1

For a given fixed pump frequency p, if the signal frequency s increases to s+ , 
by energy conservation the idler frequency decreases to i- . The wave vector may 
thus be written as:

isp kkkk

High gain bandwidth 
demands for group-
velocity matching 

between signal and idler

with k = 0 for a given ( p s i) set



Few general rules for ultrashort-pulse interactions

PUMP ( p, 3) Ap(0) 0
SIGNAL ( s, 1) As(0) 0
IDLER ( i, 2) Ai(0) = 0

OPA/DFG
REGIME

Input pump duration > input signal 
duration
Interaction length limited by temporal 
walk-off
Length of the crystal primarily chosen as 
a function of ps

Signal delayed from the pump
Exponential gain only as long as the 
three pulses remain superimposed
Pulse distortion without temporal overlap
High gain for vgi < vgp < vgs

Low si for broadband amplification
. 

vgp < vgs< vgi

vgi < vgp < vgs



The starting point: the GVM curves (I)

BBO: Ti-sapphire pumped OPA
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p = 0.8 m

This determines L for given 
pump/signal durations

This fixes the 
bandwidth

HUGE 
BANDWIDTH AT 
DEGENERACY

Type I interaction

vgp > vgs> vgi
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The starting point: the GVM curves (II)

BBO: Ti-sapphire pumped OPA

ep os + ei

p = 0.8 m

MAXIMUM 
BANDWIDTH 

POINT

Type II interaction

vgi > vgp > vgs

HIGH GAIN 
ALSO BEYOND 

THE TEMPORAL 
WALK-OFF 

LIMIT

ps ~ 50 fs/mm over the 
whole tuning range
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Generating a frequency comb above 5 m (I)

GaSe: Er:fiber pumped DFG

Due to high pi failure of 
exponential gain after few 

hundreds m

ep os + oi

p = 1.55 m

Type I interaction

p = 70 fs

TUNING REGION
1.7 m s 2.2 m

ps < 80 fs/mm over the 
whole tuning range

L = 1 mm

vgp < vgs < vgi
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Generating a frequency comb above 5 m (II)

GaSe: Er:fiber pumped DFG

TUNING POSSIBLE 
FROM 5 TO 12 m

SMALL CRYSTAL 
ROTATION NEEDED: 

HIGH BIRIFRINGENCE

SEVERE SPATIAL WALK-OFF: 
BEAM DIAMETER ~ 60 m



The first frequency comb above 5 m (I)

fR
p=1.55 m

<P>=250 mW
=65 fs

s = 1-2.2 m
<P> = 160 mW



The first frequency comb above 5 m (II)

Pump ( p) Signal ( s)

extremely broad tunability: 5 -16 m
fceo-free comb synthesis
absence of 2-photons absorption 

mid-IR radiation
generated as idler

beam

GaSe



The first frequency comb above 5 m (III)

Tunability through:

angle tuning
chirp tuning

Spectrum limited
to > 5 m

Comb mode power:
~ 1-2 nW

A. Gambetta et al, Opt. Lett. 33, 2671 (2008)



A more recent experiment with a more 
powerful Er:fiber oscillator 

Menlo Systems 
@ 250 MHz

Raman fiber
for signal

pulse
generation



Second experiment: results

Tunability through:

angle tuning
power tuning

Spectrum limited
to > 7 m

Comb mode power:
~ 100-200 nW

A. Gambetta et al, Opt. Lett. 38 1155 (2013)

GaSe


