Nonlinear optics in the short pulse regime: basics and practice

M. Marangoni

Physics Department, Politecnico di Milano (Italy)

Institute of Photonics and Nanotechnology of CNR (Italy)

e-mail: marco.marangoni@.polimi.it

Optical frequency comb synthesizers

How to change spectral range ?

SECOND ORDER NONLINEAR OPTICS !! $\begin{array}{c} \omega_{1} \\ \omega_{2} \end{array}$ $\chi^{(2)} \\ \end{array}$ $\begin{array}{c} 2\omega_{1} \\ 2\omega_{2} \\ \omega_{1} + \omega_{2} \\ \omega_{1} - \omega_{2} \end{array}$

$$E(t) = A_1 \exp(-i\omega_1 t) + A_2 \exp(-i\omega_2 t) + cc$$

Optical rectification $P^{(2)}(t) = \chi^{(2)}E^{2}(t) = 2\chi^{(2)}\left(A_{1}A_{1}^{*} + A_{2}A_{2}^{*}\right) + \chi^{(2)}[A^{2}\exp(-2i\omega_{1}t) + A_{2}^{2}\exp(-2i\omega_{2}t) + 2A_{2}A_{2}\exp[-i(\omega_{1} + \omega_{2})t] + 2A_{1}A_{2}^{*}\exp[-i(\omega_{1} - \omega_{2})t] + \alpha]$ Difference frequency expection (DEC)

Sum frequency generation (SFG)

Difference frequency generation (DFG)

OUTLINE

Equations governing a cw second order parametric process

- The problem of phase matching
- The equations of linear pulse propagation
- Parametric processes in the femtosecond pulse regime
- Examples: analytical and numerical discussion

The photons picture

Optical parametric amplification (OPA) & optical parametric generation (OPG): what are they ?

They are the same process as DFG, but differ in the initial conditions

In DFG, ω_3 and ω_1 have comparable energies and you look for an intense ω_2

In OPA, ω_1 has an energy 100-10000 times lower than ω_3 and you look for a strong amplification of ω_1 (ω_1 acts as a seed)

■ In OPG, ω_1 photons come from vacuum noise and you are looking for extreme parametric gains (10 nJ \rightarrow > 10¹¹ photons !!)

If the gain is not enough... and/or you lack seed pulses.....

- You may enclose your crystal in an optical cavity
- ...shine your powerful pump on the crystal
- ...eventually get oscillation, like in a laser, if the parametric gain exceeds losses

OPTICAL PARAMETRIC OSCILLATOR

Femtosecond OPOs vs. OPAs:

Femtosecond OPOs

- are pumped by simple laser oscillators
- provide high repetition rates (100 MHz)
- have low output energy (nJ level)
- FREQUENCY COMBS require matching of the OPO cavity length to pump laser
- Iarge yet not huge oscillation bandwidth

Femtosecond OPAs

- require pumping by amplified laser systems
- provide low repetition rates (1-100 kHz)
- have high output energy (μ J-mJ level)
- are easy to operate (no length stabilization)
- Itrabroad bandwidth, up to the few-cycles regime

The wave equations for second order parametric processes

The wave equation for nonlinear optical media

Starting from Maxwell's equations for an insulating medium without free charges and currents, we get the wave equation

$$\nabla^2 \boldsymbol{E} - \frac{1}{\boldsymbol{c_0}^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = \frac{1}{\varepsilon_0 \boldsymbol{c_0}^2} \frac{\partial^2 \boldsymbol{P}}{\partial t^2}$$

The polarization of the medium is made of a linear and a nonlinear contribution

$$P = P_L + P_{NL}$$

- For a continuous wave, the linear polarization is $P_L = \varepsilon_0 (\varepsilon_r 1) E$
- Making the scalar approximation and considering a plane wave, the propagation equation becomes

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0 c_0^2} \frac{\partial^2 \mathbf{P}_{NL}}{\partial t^2}$$

The slowly varying envelope approximation

Starting from the scalar propagation equation

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \mathbf{P}_{NL}}{\partial t^2}$$

we look for a solution

$$E(z,t) = A(z) \exp[i(kz - \omega t)]$$
$$P_{NL}(z,t) = P(z) \exp[i(k_P z - \omega t)]$$

By substitution, we get the equation

$$\frac{d^2 A}{dz^2} + 2ik\frac{dA}{dz} - k^2 A + \frac{\omega^2}{c^2} A = -\mu_0 \omega^2 P \exp\left[i(k_p - k)z\right]$$

Assuming

with

$$\frac{d^2 A}{dz^2} \ll 2ik\frac{dA}{dz}$$

(slowly varying envelope approximation,

SVEA) we get the equation

$$\frac{dA}{dz} = i\mu_0 \frac{\omega^2}{2k} \operatorname{Pexp}\left[i(k_p - k)z\right]$$

The nonlinear polarization in second-order parametric interactions

Consider the superposition of three waves at frequencies ω_1 , ω_2 and ω_3 with $\omega_1 + \omega_2 = \omega_3$

$$E(z,t) = A_1(z) \exp[i(k_1z - \omega_1 t)] + A_2(z) \exp[i(k_2z - \omega_2 t)] + A_3(z) \exp[i(k_3z - \omega_3 t)]$$

By second order nonlinear effect, the following polarizations are generated at the three frequencies

$$P_{1NL}(z,t) = \varepsilon_0 2d_{eff} A_2^*(z) A_3(z) \exp[i((k_3 - k_2)z - \omega_1 t)]$$

$$P_{2NL}(z,t) = \varepsilon_0 2d_{eff} A_1^*(z) A_3(z) \exp[i((k_3 - k_1)z - \omega_2 t)]$$

$$P_{3NL}(z,t) = \varepsilon_0 2d_{eff} A_1(z) A_2(z) \exp[i((k_1 + k_2)z - \omega_3 t)]$$

where d_{eff} is an effective second order nonlinear coefficient

Three-frequency interaction in a second order nonlinear medium

Consider three waves at ω_3 (pump), ω_1 (signal) and ω_2 (idler), with $\omega_1 + \omega_2 = \omega_3$. We obtain the following equations

$$\frac{\partial A_{1}}{\partial z} = i \frac{\omega_{1} d_{eff}}{n_{1} c} A_{2}^{*} A_{3} \exp[i \Delta kz]$$
$$\frac{\partial A_{2}}{\partial z} = i \frac{\omega_{2} d_{eff}}{n_{2} c} A_{1}^{*} A_{3} \exp[i \Delta kz]$$
$$\frac{\partial A_{3}}{\partial z} = i \frac{\omega_{3} d_{eff}}{n_{3} c} A_{1} A_{2} \exp[-i \Delta kz]$$

where $\Delta k = k_3 - k_2 - k_1$ is the wave vector mismatch between the three waves

Setting $\Delta k = 0$ is crucial to get highly efficient energy transfer between the interacting waves

OPA/DFG solution for small pump depletion

By neglecting pump depletion (A₃ = cost.) and assuming an input beam at the signal frequency ω₁ and no input at the idler frequency ω₂ (A₂(0) = 0) the coupled differential equations admit the solution:

$$I_1(L) = I_1(0) \left[1 + \frac{\gamma^2}{g^2} \right] \sinh^2(gL)$$
$$I_2(L) = I_1(0) \frac{\omega_2}{\omega_1} \frac{\gamma^2}{g^2} \sinh^2(gL)$$

with g and γ given by:

$$\boldsymbol{g} = \sqrt{\gamma^2 - \left(\frac{\Delta \boldsymbol{k}}{2}\right)^2} \qquad \gamma = \sqrt{\frac{\omega_1 \omega_2 \boldsymbol{d}_{eff}}{2n_1 n_2 n_3 \varepsilon_0 \boldsymbol{c}^3}} \boldsymbol{I}_3$$

the latter representing a figure of merit for the parametric gain. The presence of a phase-mismatch clearly affects such gain.

Parametric gain

In the high gain approximation ($\gamma L >>1$) and under phase-matching ($\Delta k = 0$): one has:

$$I_1(L) = \frac{I_1(0)}{4} \exp[2\gamma L] \qquad I_2(L) = \frac{I_1(0)}{4} \frac{\omega_2}{\omega_1} \exp[2\gamma L]$$

This allows us to define a parametric gain:

$$\boldsymbol{G} = \frac{\boldsymbol{I}_1(\boldsymbol{L})}{\boldsymbol{I}_1(0)} = \frac{1}{4} \exp[2\gamma \boldsymbol{L}] = \frac{1}{4} \exp\left[2\gamma \sqrt{\frac{\omega_1 \omega_2 \boldsymbol{d}_{eff}}{2n_1 n_2 n_3 \varepsilon_0 \boldsymbol{c}^3} \boldsymbol{I}_3 \boldsymbol{L}}\right]$$

For high gain we need high pump intensity (ultrashort pulses are good!), large nonlinear coefficient d_{eff} and high signal and idler frequencies

The gain is exponential since the presence of a seed photon at the signal wavelength stimulates the generation of an additional signal photon and of a photon at the idler wavelength. Due to the symmetry of signal and idler, the amplification of an idler photon stimulates in turn the generation of a signal photon. Therefore, the generation of the signal field reinforces the generation of the idler field and viceversa, giving rise to a positive feedback

Parametric gain: examples with BBO

Are those gains achievable with frequency combs ?

 $I_p = 1 \text{ GW/cm}^2$ G = 0.89 !!!

Energy conservation in parametric interaction

By manipulation of the previous equations, it is easy to show that

$$\frac{dI_1}{dz} + \frac{dI_2}{dz} + \frac{dI_3}{dz} = 0$$

i.e. the sum of the energies of the three waves is conserved (assuming a lossless medium)

In addition, the following relationship (Manley-Rowe) can be proven

$$\frac{1}{\omega_1}\frac{dI_1}{dz} = \frac{1}{\omega_2}\frac{dI_2}{dz} = -\frac{1}{\omega_3}\frac{dI_3}{dz}$$

stating photon conservation: one photon at ω_3 is annihilated and two photons at ω_1 and ω_2 are simultaneously created

The problem of phase matching

SHG process

Let us consider for simplicity second harmonic generation (SHG)

$$(\omega_1 = \omega_2 = \omega, \omega_3 = 2\omega, A_1 = A_2 = A_\omega)$$

• Neglecting pump depletion ($A_{\omega} \approx cost$)

$$\frac{dA_{2\omega}}{dz} = i \frac{2\omega d_{eff}}{n_{2\omega}c} A_{\omega}^2 \exp\left[-i\Delta k z\right]$$

After a length L of nonlinear medium

$$I_{2\omega}(L) = \gamma^2 I_{\omega} L^2 \sin c^2 \left(\frac{\Delta kL}{2}\right) = \frac{4\gamma I_{\omega}}{\Delta k^2} \sin^2 \left(\frac{\Delta kL}{2}\right)$$

$$I_{2\omega}(L) \propto I_{\omega}^{2}$$

$$I_{2\omega}(L) \propto d_{eff}^{2}$$

$$I_{2\omega}(L) \propto sin^{2} \left(\frac{\Delta kL}{2}\right) \qquad \Delta k \neq 0$$

Driving wave

Generated wave

 $P_{NI} \propto E_{\omega}^2 \propto A_{\omega}^2 \exp[i(2k_{\omega}z-2\omega t)]$ $E_{2\omega} \propto \exp[i(k_{2\omega}z-2\omega t)]$ Phase shift at L_c/2 $\phi(P_{NL}) - \phi(E_{2\omega}) \propto (2K_{\omega} - K_{2\omega}) \cdot \frac{L_c}{2} = \Delta K \cdot \frac{\pi}{\Delta k} = \pi$

Propagation in birefringent media

 $n_{\rm z}(n_{\rm e})$

 (n_{α})

E_{//}

In the simpler case of uniaxial crystals, propagation may be described recurring to a pair of refractive indices, n_e and n_o (extraordinary and ordinary index, respectively, each one with its own dispersion), and to an index-ellipsoid model:

wave

Each propagation direction, which is given by the wavevector **k**, defines in the plane perpendicular to **k** an ellipse whose axes correspond to two polarization eigenstates:

$$\overrightarrow{n_{x}(n_{o})}^{X} \quad \mathsf{E}_{\perp} \rightarrow n_{o} \qquad \text{Ordinary wave}$$
$$\mathbf{E}_{//} \rightarrow n_{e}^{2}(\theta) = \frac{n_{o}^{2} n_{e}^{2}}{n_{o}^{2} \sin^{2}\theta + n_{e}^{2} \cos^{2}\theta} \qquad \text{Extraordinary}$$
wave

Birifringence phase matching

Negative uniaxial crystals: $n_e < n_o$

$$n_{e}(2\omega,\theta) = n_{o}(\omega)$$

Positive uniaxial crystals: $n_e > n_o$

$$n_e(\omega, \theta) = n_o(2\omega)$$

- NOTE: the refractive indexes n_e and n_o at each frequency are obtained by Sellmeier equations
- Birifringence phase-matching involves coupling between orthogonally polarized fields - non diagonal terms of the secondorder nonlinear-susceptibility χ² tensor

Polar diagram showing the refractive index dependence as a function of the angle θ between *k* and the optical axis, at the two frequencies

The spatial walk-off probelm

The Pointying vector of the extraordinary wave S_e my be shown to be perpendicular to the extraordinary normal index surface at its crossing point with k. This does not happen for the ordinary wave, with $S_o // k$.

- In birefringent crystals the pointing vector of the extraordinary wave $S_e = E \times H$, which gives the energy propagation direction, suffers from an angular offset from the *k* vector. This is referred to as the walk-off angle θ_{wo} .
- It seriously limits the interaction length *L* for a given input field diameter *D*:

Birifringence phase matching: examples

BBO

- negative uniaxial crystal (n_e<n_o)
- high-birifringence:
- $n_o = 1.672 \oplus 633 \text{ nm} \rightarrow \text{FF ordinary}$
- n_e = 1.549 @ 633 nm \rightarrow SH extraord
- d_{NL} ~2.3 pm/V rather LOW

LiNbO₃

- negative uniaxial crystal (n_e<n_o)
- small-birifringence:
- $n_o = 2.283 @ 633 nm \rightarrow FF ordinary$
- $n_e = 2.203$ @ 633 nm → SH extraord $d_{NI} \sim 4 \text{ pm/V}$ LOW-MEDIUM

Phase matching bandwidth: calculation

The FWHM bandwidth at the second harmonic, $\Delta \omega_{SH} = 2\Delta \omega_{FF}$, becomes (see figure):

Phase matching bandwidth & dispersion

• Recalling that:
$$k(\omega) = \frac{\omega}{c} n(\omega);$$
 $\frac{dn}{d\omega} = \frac{dn}{d\lambda} \frac{d\lambda}{d\omega};$ $\frac{d\lambda}{d\omega} = -\frac{\lambda^2}{2\pi c}$

one may easily refer the SH bandwidth to the crystal dispersion at FF & SH:

$$\Delta \mathbf{v}_{SH} = \frac{0.886 \cdot \mathbf{C}}{\left| 1/2 \, \mathbf{n}'(\lambda_0/2) - \mathbf{n}'(\lambda_0) \right| \mathbf{L} \lambda_0}$$

Phase matching bandwidth: an insight

Anticipating a result of the short-pulse regime, i.e. the fact that FF and SH pulses propagate at different "group" velocities given by:

$$\mathbf{v}_{g,FF} = \frac{1}{\mathbf{k}'(\mathbf{v}_0)} \qquad \mathbf{v}_{g,SH} = \frac{1}{\mathbf{k}'(2\mathbf{v}_0)}$$

we may describe the SHG process between these two pulses as follows:

According to Fourier theory we could figure out that:

$$\Delta v_{SH} \approx \frac{1}{\tau_{SH}} = \frac{1}{GDM} = \frac{1}{\left|\tau_{g,FF} - \tau_{g,SH}\right|} = \frac{1}{\left|\frac{L}{V_{g,FF}} - \frac{L}{V_{g,FF}}\right|} = \frac{1}{\left|\frac{L}{L/k'(v_0) - k'(2v_0)}\right|}$$

Quasi-phase matching (QPM)

It occurs in special crystals that exhibit a
 periodic change of the sign of χ², with a period:

This period allows a periodic rephasing of the driving field (P_{NL}) with the generated SH field, resulting in a **quadratic dependence of I_{2ω} with L** with an effective nonlinear χ₂:

$$\chi_{2,eff} = \frac{2}{\pi m} \chi_2$$

The quasi-phase-matching condition is thus:

$$\frac{2\pi}{\Lambda} = k(2\omega_0) - 2k(\omega_0)$$

QPM: pros and cons

PROS

- Just need to change the poling period to adjust phase matching (the grating provides the momentum you need to get phase matching
- You may phase match fields with parallel polarization direction and exploit extremely high nonlinear coefficients
- Absence of any spatial walk-off because interacting fields may be set parallel to the crystal optical axis.

- Few crystals lend themselves to QPM since you need ferroelectric crystals (e.g. LiNbO₃, KTP, LiTaO₃) or semiconductors (GaAs)
- The fabrication procedure is rather complex for ferroelectrics periodic poling needed – and very complex for semiconductors – orientation patterning
- Pretty hard to get phase-matching at short wavelengths due to the technological barrier of µm-level poling periods
- Optical damage at high fluence, especially for LiNbO₃.

QPM: example

Phase matching in a parametric interaction

or
$$\omega_1 n(\omega_1) + \omega_2 n(\omega_2) = \omega_3 n(\omega_3)$$

In a medium with normal dispersion (dn/dω > 0)

$$n(\omega_1) < n(\omega_2) < n(\omega_3)$$
 if $\omega_1 < \omega_2 < \omega_3$

the phase matching condition can't be satisfied:

$$n(\omega_3) = \frac{n(\omega_1)\omega_1 + n(\omega_2)\omega_2}{\omega_3}$$

 $k_1 + k_2 = k_3$

$$n(\omega_3) - n(\omega_2) - n(\omega_2)] \frac{\omega_1}{\omega_3}$$

Types of possible birefringence phase matching:

negative uniaxial $(n_e < n_o)$ positive uniaxial $(n_e > n_o)$ TYPE I $n_3^e \omega_3 = n_1^o \omega_1 + n_2^o \omega_2$ $(0+0\rightarrow e)$ $n_3^o \omega_3 = n_1^e \omega_1 + n_2^e \omega_2$ $(e+e\rightarrow o)$ TYPE II $n_3^e \omega_3 = n_1^e \omega_1 + n_2^o \omega_2$ $(e+o\rightarrow e)$ $n_3^o \omega_3 = n_1^e \omega_1 + n_2^o \omega_2$ $(e+o\rightarrow e)$ $n_3^e \omega_3 = n_1^o \omega_1 + n_2^e \omega_2$ $(o+e\rightarrow e)$ $n_3^o \omega_3 = n_1^o \omega_1 + n_2^e \omega_2$ $(o+e\rightarrow e)$

Example: type I phase matching

Birifringence phase-matching in a negative uniaxial crystal

- The phase matching condition is $n_{e3}(\theta_m) \omega_3 = n_{o1} \omega_1 + n_{o2} \omega_2$ giving $n_{e3}(\theta_m) = \frac{n_{o1}\omega_1 + n_{o2}\omega_2}{\omega_3}$
- In a uniaxial crystal, the extraordinary index for propagation along θ is

$$n_{e}^{2}(\theta) = \frac{n_{o}^{2} n_{e}^{2}}{n_{o}^{2} \sin^{2}\theta + n_{e}^{2} \cos^{2}\theta}$$

which gives $\sin\theta_{m} = \frac{n_{e3}}{n_{e3}(\theta_{m})} \sqrt{\frac{n_{o3}^{2} - n_{e3}^{2}(\theta_{m})}{n_{o3}^{2} - n_{e3}^{2}}}$

...the refractive indexes at each wavelength being obtained by Sellmeier equations

QPM in a periodically-poled crystal

$$\boldsymbol{k}_1 + \boldsymbol{k}_2 + \frac{2\pi}{\Lambda} = \boldsymbol{k}_3$$

$$\frac{\omega_1}{c}n_1 + \frac{\omega_2}{c}n_2$$

Phase matching curves of a near-IR OPA

Phase matching curves of a visible OPA

The equations of linear pulse propagation

The polarization as a driving term

Starting from Maxwell's equations

$$\frac{\partial^2 \boldsymbol{E}}{\partial \boldsymbol{z}^2} - \frac{1}{\boldsymbol{c}_0^2} \frac{\partial^2 \boldsymbol{E}}{\partial \boldsymbol{t}^2} = \mu_0 \frac{\partial^2 \boldsymbol{P}}{\partial \boldsymbol{t}^2}$$

the polarization on the r.h.s. acts as a driving term. The electric field is a plane wave

$$E(z,t) = A(z,t) \exp[i(\omega_0 t - k_0 z)]$$

The polarization can be decomposed in linear and nonlinear parts:

$$P(z,t) = P_L(z,t) + P_{NL}(z,t)$$

we consider only the linear component:

$$P_{L}(z,t) = p_{L}(z,t) \exp[i(\omega_{0}t - k_{0}z)]$$

Switching to the Fourier domain

By introducing the Fourier transform

$$\widetilde{E}(z,\omega) = \Im[E(z,t)] = \int_{-\infty}^{+\infty} E(z,t) \exp(-i\omega t) dt$$

we get:

$$\widetilde{E}(z,\omega) = \widetilde{A}(z,\omega-\omega_0)\exp(-ik_0z)$$
$$\widetilde{P}_L(z,\omega) = \widetilde{P}_L(z,\omega-\omega_0)\exp(-ik_0z)$$

Recalling the derivative rule for the Fourier transform:

$$\Im\left[\frac{d^{n}F(t)}{dt^{n}}\right] = (i\omega)^{n}\widetilde{F}(\omega)$$

we obtain:

$$\frac{\partial^2 \widetilde{E}}{\partial z^2} + \frac{\omega^2}{c_0^2} \widetilde{E} = -\mu_0 \omega^2 \widetilde{P}_L$$

The slowly varying envelope approximation

We express the second derivative as:

$$\frac{\partial^2 \widetilde{E}}{\partial z^2} = \left(\frac{\partial^2 \widetilde{A}}{\partial z^2} - 2ik_0 \frac{\partial \widetilde{A}}{\partial z} - k_0^2 \widetilde{A}\right) \exp\left(-ik_0 z\right)$$

 $\frac{\partial^2 A}{\partial z^2} << k_0 \frac{\partial A}{\partial z}$

We assume:

The **Slowly Varying Envelope Approximation (SVEA)** neglects variations of the envelope over propagation of the order of wavelength.

With this assumption we obtain:

$$-2ik_0\frac{\partial\widetilde{A}}{\partial z}-k_0^2\widetilde{A}+\frac{\omega^2}{c_0^2}\widetilde{A}=-\mu_0\omega^2\widetilde{p}_L$$

The frequency-dependent polarization

For a monochromatic wave:

$$\widetilde{P}_{L}(\omega) = \varepsilon_{0} \chi^{(1)}(\omega) E(\omega)$$

recalling that:

$$n_{L}(\omega) = \sqrt{\left(1 + \chi^{(1)}(\omega)\right)}$$

We obtain:

$$-2ik_{0}\frac{\partial\widetilde{A}}{\partial z}-k_{0}^{2}\widetilde{A}+\frac{\omega^{2}}{c_{0}^{2}}\widetilde{A}=-\frac{\omega^{2}}{c_{0}^{2}}[n_{L}^{2}(\omega)-1]\widetilde{A}$$

which simplifies to:

$$2ik_0\frac{\partial\widetilde{A}}{\partial z} = \left[k^2(\omega) - k_0^2\right]\widetilde{A}$$

Propagation in a dispersive medium (I)

Starting from the propagation equation:

$$2ik_0\frac{\partial \widetilde{A}}{\partial z} = \left[k^2(\omega) - k_0^2\right]\widetilde{A}$$

We expand k(ω) in a Taylor series around the carrier frequency ω_0 :

$$\boldsymbol{k}(\boldsymbol{\omega}) = \boldsymbol{k}_0 + \left(\frac{d\boldsymbol{k}}{d\boldsymbol{\omega}}\right)_{\omega_0} \left(\boldsymbol{\omega} - \boldsymbol{\omega}_0\right) + \frac{1}{2} \left(\frac{d^2\boldsymbol{k}}{d\boldsymbol{\omega}^2}\right)_{\omega_0} \left(\boldsymbol{\omega} - \boldsymbol{\omega}_0\right)^2 + \frac{1}{6} \left(\frac{d^3\boldsymbol{k}}{d\boldsymbol{\omega}^3}\right)_{\omega_0} \left(\boldsymbol{\omega} - \boldsymbol{\omega}_0\right)^3 + \dots$$

An expansion up to the third order (or to the second order for moderate pulse bandwidths) is sufficient. By approximating:

$$\boldsymbol{k}^{2}(\boldsymbol{\omega}) - \boldsymbol{k}_{0}^{2} = [\boldsymbol{k}(\boldsymbol{\omega}) - \boldsymbol{k}_{0}] [\boldsymbol{k}(\boldsymbol{\omega}) + \boldsymbol{k}_{0}] \cong 2\boldsymbol{k}_{0} [\boldsymbol{k}(\boldsymbol{\omega}) - \boldsymbol{k}_{0}]$$

we obtain:

$$i\frac{\partial\widetilde{A}(\omega-\omega_0)}{\partial z} \cong k'_0(\omega-\omega_0)\widetilde{A} + \frac{1}{2}k''_0(\omega-\omega_0)^2\widetilde{A} + \frac{1}{6}k'''_0(\omega-\omega_0)^3\widetilde{A}$$

Propagation in a dispersive medium (II)

Propagation in a dispersive medium (III)

We now Fourier transform back to the time domain. Recalling the derivative rule: m = (n)

$$\mathfrak{I}^{-1}\left[\omega^{n}\widetilde{F}(\omega)\right] = (-i)^{n} \frac{d^{n}F(t)}{dt^{n}}$$

we obtain:

$$\frac{\partial A(z,t)}{\partial z} + \frac{1}{V_{g0}} \frac{\partial A}{\partial t} - \frac{i}{2} k''_0 \frac{\partial^2 A}{\partial t^2} + \frac{1}{6} k'''_0 \frac{\partial^3 A}{\partial t^3} = 0$$

Which, neglecting third order dispersion ($k''_0 \cong 0$) becomes:

$$\frac{\partial A(z,t)}{\partial z} + \frac{1}{V_{g0}} \frac{\partial A}{\partial t} - \frac{i}{2} K'_{0} \frac{\partial^{2} A}{\partial t^{2}} = 0$$

The **parabolic equation** captures the main physics of linear propagation of ultrashort pulses in dispersive media.

In the absence of dispersion

The original equation takes the form:

Let us set it in a new reference-frame moving at v_{g0} , with space/time variables:

By transformation of derivatives in the new reference frame :

$$\frac{\partial A(z,t)}{\partial z} + \frac{1}{v_{g0}} \frac{\partial A(z,t)}{\partial t} = 0$$

$$z' = z; \quad t' = t - \frac{z}{v_{g0}}$$

$$\frac{\partial A}{\partial z'} - \frac{1}{v_{g0}} \frac{\partial A}{\partial t'} + \frac{1}{v_{g0}} \frac{\partial A}{\partial t'} = 0$$
$$\frac{\partial A(z',t')}{\partial z'} = 0$$

The pulse envelope propagates without distortion at a speed v_{g0} taking a time τ_{g0} to cross the crystal

In the presence of dispersion

The pulse gets more and more broadened while propagating, with a pulse broadening per unit bandwidth given by the GDD (group-delay-dispersion) parameter (expressed in fs²) :

$$GDD = \frac{\partial \tau_{g_0}}{\partial \omega} = \frac{\partial}{\partial \omega} \left(\frac{L}{V_{g_0}} \right) = \frac{\partial}{\partial \omega} \left(LK'_0 \right) = LK''_0 = L \cdot GVD$$

If the dispersion-induced pulse broadening is far in excess of the input pulse duration, at the crystal output one has: $\tau_{out} = GDD \cdot B$

where B is the angular-frequency bandwidth B

The equations of nonlinear pulse propagation

Propagation in a nonlinear medium (I)

We start from the equation:

$$\frac{\partial^2 E}{\partial z^2} - \frac{1}{c_0^2} \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_L}{\partial t^2} + \mu_0 \frac{\partial^2 P_{NL}}{\partial t^2}$$

where:

$$P_{NL}(z,t) = p_{NL}(z,t) \exp\left[i(\omega_0 t - k_p z)\right]$$

We emphasize that the wavenumber $\mathbf{k}_{\mathbf{p}}$ of the nonlinear polarization at ω_0 is **different** from that of the electric field \mathbf{k}_0 . We express:

$$\frac{\partial^2 P_{NL}}{\partial t^2} = \left(\frac{\partial^2 p_{NL}}{\partial t^2} + 2i\omega_0 \frac{\partial p_{NL}}{\partial t} - \omega_0^2 p_{NL}\right) \exp\left[i(\omega_0 t - k_p z)\right]$$

assuming that the envelope p_{NL} varies slowly over the timescale of an optical cycle:

$$\frac{\partial^2 \boldsymbol{p}_{NL}}{\partial t^2}, \omega_0 \frac{\partial \boldsymbol{p}_{NL}}{\partial t} << \omega_0^2 \boldsymbol{p}_{NL}$$

Propagation in a nonlinear medium (II)

From the equation:

$$\frac{\partial^2 E}{\partial z^2} - \frac{1}{c_0^2} \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P_L}{\partial t^2} - \mu_0 \omega_0^2 P_{NL} \exp\left[i(\omega_0 t - k_p z)\right]$$

By the same procedure applied to the linear propagation equation, we obtain:

$$-2ik_0\frac{\partial A}{\partial z} - 2\frac{ik_0}{V_{g0}}\frac{\partial A}{\partial t} - k_0k''_0\frac{\partial^2 A}{\partial t^2} = -\mu_0\omega_0^2 p_{NL}\exp\left[-i\Delta kz\right]$$

which can be rewritten as:

$$\frac{\partial A}{\partial z} + \frac{1}{v_{g0}} \frac{\partial A}{\partial t} - \frac{i}{2} k''_0 \frac{\partial^2 A}{\partial t^2} = -i \frac{\mu_0 \omega_0 c}{2n_0} p_{NL} \exp\left[-i\Delta kz\right]$$

where $\Delta \mathbf{k} = \mathbf{k}_p \cdot \mathbf{k}_0$ is the "wave-vector mismatch" between the nonlinear polarization and the field

The nonlinear polarization in second-order parametric interaction (I)

Consider the superposition of three waves at frequencies ω_1 , ω_2 and ω_3 with $\omega_1 + \omega_2 = \omega_3$

$$E(z,t) = \frac{1}{2} \begin{cases} A(z,t) \exp[i(\omega_1 t - k_1 z)] + A_2(z,t) \exp[i(\omega_2 t - k_2 z)] + \\ A_3(z,t) \exp[i(\omega_3 t - k_3 z)] + c.c. \end{cases}$$

impinging on a medium with a second order nonlinear response:

$$P_{NL}(z,t) = \varepsilon_0 \chi^{(2)} E^2(z,t)$$

The nonlinear polarization has components at several frequencies, such as $2\omega_1$, $2\omega_2$ etc. We assume that the **phase-matching condition** selects only the interaction between the three fields at ω_1 , ω_2 and ω_3 to be efficient.

The nonlinear polarization in second-order parametric interaction (II)

We derive the following terms:

$$P_{1NL}(z,t) = \frac{\varepsilon_0 \chi^{(2)}}{2} A_2^* A_3 \exp\{i[(\omega_3 - \omega_2)t - (k_3 - k_2)z] + c.c.\}$$

$$P_{2NL}(z,t) = \frac{\varepsilon_0 \chi^{(2)}}{2} A_1^* A_3 \exp\{i[(\omega_3 - \omega_1)t - (k_3 - k_1)z] + c.c.\}$$

$$P_{3NL}(z,t) = \frac{\varepsilon_0 \chi^{(2)}}{2} A_1 A_2 \exp\{i[(\omega_1 + \omega_2)t - (k_1 + k_2)z] + c.c.\}$$

Which we plug into the nonlinear propagation equations:

$$\frac{\partial A}{\partial z} + \frac{1}{v_{g0}} \frac{\partial A}{\partial t} - \frac{i}{2} k''_0 \frac{\partial^2 A}{\partial t^2} = -i \frac{\mu_0 \omega_0 c}{2 n_0} p_{NL} \exp\left[-i\Delta kz\right]$$

The nonlinear coupled propagation equations (I)

thus deriving the three coupled equations:

$$\frac{\partial A}{\partial z} + \frac{1}{v_{g_1}} \frac{\partial A}{\partial t} - \frac{i}{2} K''_1 \frac{\partial^2 A}{\partial t^2} = -i \frac{\mu_0 \varepsilon_0 C \omega_1}{2n_1} d_{eff} A_2^* A_3 \exp\left[-i(k_3 - k_2 - k_1)z\right]$$

$$\frac{\partial A_2}{\partial z} + \frac{1}{v_{g_2}} \frac{\partial A_2}{\partial t} - \frac{i}{2} K''_2 \frac{\partial^2 A_2}{\partial t^2} = -i \frac{\mu_0 \varepsilon_0 C \omega_2}{2n_2} d_{eff} A_1^* A_3 \exp\left[-i(k_3 - k_1 - k_2)z\right]$$

$$\frac{\partial A_3}{\partial z} + \frac{1}{v_{g_3}} \frac{\partial A_3}{\partial t} - \frac{i}{2} K''_3 \frac{\partial^2 A_3}{\partial t^2} = -i \frac{\mu_0 \varepsilon_0 C \omega_3}{2n_3} d_{eff} A_1 A_2 \exp\left[-i(k_1 + k_2 - k_3)z\right]$$

with
$$d_{eff} = \frac{\chi^{(2)}}{2} \quad \Delta k = k_3 - k_1 - k_2$$

 (\mathbf{n})

These are **coupled nonlinear partial differential equations** which are in general not amenable to an analytic solution and must be treated numerically.

The nonlinear coupled propagation equations (II)

As a first simplification we neglect the GVD terms. This is justified by considering that the three interacting pulses are propagating at very different group velocities v_{gi} . The effects of this group velocity mismatch are more relevant than those of GVD between the different frequency components of a single pulse.

$$\frac{\partial A}{\partial z} + \frac{1}{v_{g1}} \frac{\partial A}{\partial t} = -i\kappa_1 A_2^* A_3 \exp\left[-i\Delta kz\right]$$
$$\frac{\partial A_2}{\partial z} + \frac{1}{v_{g2}} \frac{\partial A_2}{\partial t} = -i\kappa_2 A_1^* A_3 \exp\left[-i\Delta kz\right]$$
$$\frac{\partial A_3}{\partial z} + \frac{1}{v_{g3}} \frac{\partial A_3}{\partial t} = -i\kappa_3 A_1 A_2 \exp\left[i\Delta kz\right]$$

where the nonlinear coupling constants are defined as:

$$\kappa_i = \frac{\omega_i d_{eff}}{2cn_i}$$

The nonlinear coupled propagation equations (III)

By moving to a frame of reference translating with the group velocity of the pump pulse: .

$$t' = t - \frac{z}{V_{g3}}$$

$$\frac{\partial A}{\partial z} + \delta_{13} \frac{\partial A}{\partial t} = -i\kappa_1 A_2^* A_3 \exp\left[-i\Delta kz\right]$$
$$\frac{\partial A_2}{\partial z} + \delta_{23} \frac{\partial A_2}{\partial t} = -i\kappa_2 A_1^* A_3 \exp\left[-i\Delta kz\right]$$
$$\frac{\partial A_3}{\partial z} = -i\kappa_3 A_1 A_2 \exp\left[i\Delta kz\right]$$

where

is the Group Velocity Mismatch (**GVM**) between signal/idler and pump waves, typically expressed in **ps/mm**. It gives the **group delay accumulated by the two pulses per unit length**.

Phase matching bandwidth in OPA/DFG

It may be estimated from the results obtained in the cw regime under the high gain approximation:

$$G = \frac{1}{4} \exp(2gL)$$
 $g = \sqrt{\gamma^2 - \left(\frac{\Delta k}{2}\right)^2}$

 $\Delta k = k_p - k_s - k_i$ with $\Delta k = 0$ for a given ($\omega_p \ \omega_s \ \omega_i$) set

For a given fixed pump frequency ω_p , if the signal frequency ω_s increases to $\omega_s + \Delta \omega$, by energy conservation the idler frequency decreases to $\omega_i - \Delta \omega$. The wave vector may thus be written as:

$$\Delta \mathbf{k} = -\frac{\partial \mathbf{k}_s}{\partial \omega} \Delta \omega + \frac{\partial \mathbf{k}_i}{\partial \omega} \Delta \omega = \left(\frac{1}{\mathbf{v}_{gs}} - \frac{1}{\mathbf{v}_{gi}}\right) \Delta \omega$$

Introducing Δk in the expression for the gain *G* and looking for a solution at 50% of the maximum gain, one gets a FWHM bandwidth:

$$\Delta \mathbf{v} \cong \frac{2(\ln 2)^{1/2}}{\pi} \left(\frac{\gamma}{L}\right)^{1/2} \frac{1}{\left|\frac{1}{\mathbf{V}_{gs}} - \frac{1}{\mathbf{V}_{gi}}\right|} \propto \left(\frac{\gamma}{L}\right)^{1/2} \frac{1}{\delta_{si}}$$

High gain bandwidth demands for groupvelocity matching between signal and idler

Few general rules for ultrashort-pulse interactions

- Input pump duration > input signal duration
- Interaction length limited by temporal walk-off
- □ Length of the crystal primarily chosen as a function of δ_{ps}
- □ Signal delayed from the pump
- Exponential gain only as long as the three pulses remain superimposed
- Pulse distortion without temporal overlap
- $\Box \text{ High gain for } V_{gi} < V_{gp} < V_{gs}$
- $\hfill\square$ Low δ_{si} for broadband amplification

The starting point: the GVM curves (I)

The starting point: the GVM curves (II)

Generating a frequency comb above 5 µm (I)

Generating a frequency comb above 5 µm (II)

GaSe: Er:fiber pumped DFG

The first frequency comb above 5 μm (I)

The first frequency comb above 5 μ m (II)

The first frequency comb above 5 μ m (III)

A more recent experiment with a more powerful Er:fiber oscillator

Menlo Systems @ 250 MHz

Raman fiber for signal pulse generation

Second experiment: results

GaSe
Tunability through:
angle tuning
power tuning

Spectrum limited to $\lambda > 7 \mu m$

Comb mode power: ~ 100-200 nW