
Nathan Newbury
National Institute of Standards and Technology, Boulder, CO

nnewbury@boulder.nist.gov

Noise sources and stabilization strategies in 
frequency combs

ICTP Winter College on Optics
Trieste, Italy

February 17, 2015



Outline

Motivation for frequency combs

Frequency comb

Noise in fiber-based frequency combs
– Fixed point

Making a quiet frequency comb

Fiber frequency combs at NIST
– Overview of different designs since 2003
– Current “robust” NIST frequency comb

Conclusion



Esther Baumann
Hugo Bergeron
Mick Cermak
Ian Coddington
Kevin Cossel
Stefan Droste
Fabrizio Giorgetta
Dan Herman
Nathan Newbury
Laura Sinclair
Bill Swann
Gar-Wing Truong
Eleanor Waxman
Gabe Ycas

Esther Baumann
Hugo Bergeron
Mick Cermak
Ian Coddington
Kevin Cossel
Stefan Droste
Fabrizio Giorgetta
Dan Herman
Nathan Newbury
Laura Sinclair
Bill Swann
Gar-Wing Truong
Eleanor Waxman
Gabe Ycas

PeoplePeople

Other non NIST collaborators:
Brian Washburn (Kansas State)
Jean Daniel Deschenes (U of Laval)
Greg Rieker (CU)

NIST collaborators:
Scott Diddams, Dave Leibrandt, Craig
Nelson, Scott Papp, Frank Quinlan, Kevin
Silverman, Jeff Shainline, Rich Mirin, �…



Recent review articles

RSI Review article on current NIST comb design:
L.C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I.H. Khader, E. Baumann, N. R.
Newbury, and I. Coddington, Invited Article: A Compact Optically Coherent Fiber Frequency
Comb, Review of Scientific Instruments 86, 081301 (2015);

See also: http://www.nist.gov/pml/div686/grp07/fpga based digital control box phase
stablization frequency comb.cfm

Nanophotonics upcoming review on fiber combs:
S. Droste, G. Ycas, B. R. Washburn, I. Coddington, NRN, Optical Frequency Comb Generation
based on Erbium Fiber Lasers, Nanophotonics, to be published

Fiber frequency Comb noise
N. Newbury, W. Swann, J. Opt. Soc. Am. B, Low noise fiber laser frequency combs, 24, (2007)



Frequency Combs: Why are they special?
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Frequency
Comb

Applications of Frequency Combs

Applied to laser-based metrology/sensing systems
– As a spectral ruler - As a frequency divider
– As a “time” ruler - As a calibrated broadband source

Newbury, Nat. Phot., 5, 186 (2011)
Diddams, JOSA B, 27, B51 (2010)



Example applications
Precision molecular spectroscopy

(for greenhouse gases)

Precision
Ranging

Others:
Advanced communications
Fundamental scientific tests
�…

Precision timing across
synchronized network

NISTNIST

Precision microwave generation
(for RADAR)

Precision spectroscopy
(for exoplanet searches)
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A Free Running Mode Locked Laser
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A Free Running Mode Locked Laser
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Passively 
Modelocked Laser

Frequency domain
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With noise, output moves around...
but basic comb structure is preserved.

Comb can only �“translate�” and �“breathe�”
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Offset Frequency Stabilization
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Jones, et al. Science 288, 635 (2000)

J. Hall
T. Hänsch

Spectrally broaden to an octave



Stabilization of the Second Degree of Freedom
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Frequency Comb needs a Reference Oscillator

RF oscillator
(Quartz / DRO / H maser)

Optical Oscillator
(cavity stabilized Laser)

• Quartz/DRO: small, compact, cheap
• RF comb stabilization easy
• No optical coherence in comb
• Broad optical teeth

• Not small, not compact, not cheap
• Optical comb stabilization hard
• Optically coherent comb
• �“Delta function teeth�”

Pound Drever Hall Cavity Lock

1 Hz
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-40 -20 0 20 40
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Signal @ 10 MHz �– 10 GHz Signal @ 200 THz



RF Stabilization
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Optical Stabilization
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RF vs Optical Stabilization: Lever Arm Difference

I( f )

00

Phase locked fo

Optical phase
locked loop

Cavity Stabilized
Laser

fOpt

Phase locked fo

RF

For an RF lock:
RF phase noise is multiplied by n2 up to optical
Broad optical linewidths
Optical teeth central position defined absolutely

For an Optical Lock :
Optical phase noise divided by n2 down to rf
Narrow optical linewidths across comb (if reference laser narrow)



Other Stabilization Options: double pinning
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NO Offset frequency stabilization > no need for octave supercontinuum
But no absolute frequency knowledge (unless cavity separately measured)



Other Stabilization Options: free running laser
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wavelength (nm)
300 500 1000 1500 2000 10000

Ti:sapphire Yb:fiber Er:fiber

Harmonic Generation
and Continuum

Difference Frequency Generation
and Continuum

Femtosecond Laser Frequency Combs

• an array of millions of phase-coherent CW oscillators
• large spectral coverage:  300 nm - 10 microns 
• precisely known frequencies (~1 Hz resolution)
• high peak power for efficient nonlinear optics

A unique source for sensing and spectroscopy

Er:fiber laser
Ti:Sapphire

laser
courtesy of S. Diddams et al.

Tm:fiber



Some Frequency Combs

Laser Freq. Comb
Table Top (1 m2)

NIST ~2000

Schibli, et al. Nature Photonics 2, 355
359 (2008) (IMRA America & JILA)

Yb fiber comb (10W!)

NIST/OFS 04

Ti:Sapphire Combs Er Fiber Combs

Caltech
~2004

Parametric Comb
Chip Scale (1 cm2)

MicroCombs ?

Del�’Haye, Nature, 450, 1214, 2007;
Levy, Nat. Phot. 4, 32 (2010), Papp,
Diddams, PR A 84, 053833 (2011),
EPFL, OE waves, Cornell, CalTech,
MPQ, NIST....

Courtesy S. Diddams

10 GHz
Ti:sapphire Laser

A. Bartels,, Science 326, 681 (2009).

Many others
Er:Yb glass
Thulium Fiber combs
Cr:Forsterite



Most “universal” solution: 
Fiber Laser Based Combs

• Advantages of fiber frequency comb 
– Compact, inexpensive design
– Potential for stable “hands-free” operation
– Compatible with highly reliable telecommunication 

components
– Covers the Infrared region of the spectrum
– Under development at: Menlo, Toptica, MPQ, PTB, AIST, IMRA, 

OFS, U. Konstanz, Kansas State, Arizona, NIST, etc. etc.

• Rest of talk will focus on fiber frequency combs but many 
of the results/analysis are general and apply to other 
frequency combs as well .



Some Different NIST Fiber Combs

NIST/OFS Figure 8
Fiber Frequency Comb

stretched pulse ring laser
Fiber Frequency Comb

Washburn et al., Opt. Lett. 29, 250 (2004) McFerran et al., Opt. Lett. 31, 1997 (2006)
Swann, Opt. Lett. 31, 3046 (2006).

stretched pulse ring laser with variable
rep rate

Fiber Frequency Comb
Washburn et al, OE, 12, 4999 (2004)

Stretched pulse ring lasers
Fiber Frequency Combs
Coddington et al, PRA, 81,

043817 (2010)

Ring laser with intracavity EOM
Swann et al. OE, 19, 243817(2011)

Linear SESAM Linear cavity Fiber
Frequency Comb
Sinclair, OE, 22, 6996 (2014)
Sinclair, RSI, 86, 081301 (2015);

All fiber
Free space



Fiber Laser 
Frequency Comb

Detect comb 
parameters
& feedback

Highly
Nonlinear

Fiber

pump
diode

Stabilized
Comb

Fiber
amp

length

- Stabilize offset frequency by feeding back to pump power
- Stabilize frep (or optical tooth) by feeding back to cavity length

fceo fopt

foptfceo



Ring Laser: 
“Soliton” vs. Stretched pulse mode

CW 
pump

SM Fiber: - Dispersion

Er Doped Fiber:
+ Dispersion

Soliton-mode: net dispersion < 0

Either works for a frequency comb: low dispersion better for noise
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1650160015501500
Wavelength (nm)
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CW 
pump

Stretched-pulse: net dispersion > 0
Ippen, Haus ..., MIT



Free-running Mode-locked laser

100 fs
0.1 nJ

A free-running frequency comb .
Now need to broaden to octave-spanning supercontinuum

pump
diode

10 ns f

E(f)



BallComb-28
NRN 1/19/2004

Highly Nonlinear Fiber (HNLF) for Er
fiber combs
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Index Profile

Ge doped

F2 doped
n ~ 0.2-0.3

nonlinearity : 8 to 15 1/W-km
Effective Area : 13 m2

loss : 0.7 to 1 dB/km
dispersion (1550 nm) :

-10 to +10 ps/nm-km
dispersion slope (1550 nm) : 

0.024 ps/nm2-km
splice loss (to SMF) :0.18 dB
splice loss (to HNLF) :0.02 dB



Fiber Laser Frequency Comb
Octave Spanning Comb

0.1 nJ
100 fs

Highly
Nonlinear

Fiber

pump
diode

Fiber
amp 1 m 2 m1.5 m

reality

our cartoon
How noisy is the free-running comb?
What causes this noise?
How do we feedback against it?



Free-running Linewidths
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Noise Sources 

Fiber
amp

Supercontinuum
generation in Highly 

Nonlinear fiber
Pump

Fluctuations

ASE

Environmental
perturbations
(vibration &
temperature, 

humidity)

“Intra-cavity” noise does
broaden linewidth

ASE

Shot Noise

Degrades Signal-to-Noise
(but not linewidth)

pump
diode

Er+

“Extra-cavity” noise
(white phase noise)



How to characterize the frequency comb 
response to noise (and actuators)?

1. Use Fixed Point
�– fn = nfr+fceo temp ng to characterize noise by

effect on fr and fceo Don�’t!
�– All* noise/actuators change fr
�– But differ in their �“Fixed point�”

2. Use Frequency noise PSD
�– Always characterize by frequency (or phase)

noise power spectral density
�– Linewidth is a (misleading) convenience

(* except self phase modulation or external AOM)



Perturbation -> Comb Noise
Must be “accordion like”

From H. Telle and coworkers: H. R. Telle, B. Lipphart, and J. Stenger, APB, 74, 1 (2002)

fo fn What is noise 
on this tooth?

Correlated!!

fr



“Fixed-Point” picture for Noise

From H. Telle and coworkers: H. R. Telle, B. Lipphart, and J. Stenger, APB, 74, 1 (2002)

fo fn What is noise 
on this tooth?

ffix
(tooth @ nfix)

Any noise described by:
1. Fixed tooth that does not move
2. Repetition rate change about that point

fr

n-nfix



Where is the fixed point?
Three important cases

Round trip & Carrier Phase shift together

Round trip only

Carrier phase only

frequencytime



How to characterize the frequency comb 
response to noise (and actuators)?

1. Use Fixed Point
�– fn = nfr+fceo temp ng to characterize noise by

effect on fr and fceo Don�’t!
�– All* noise/actuators change fr
�– But differ in their �“Fixed point�”

2. Use Frequency noise PSD
�– Always characterize by frequency (or phase)

noise power spectral density
�– Linewidth is a (misleading) convenience

(* except self phase modulation or external AOM)



Frequency Noise PSD
• Can use phase noise 

PSD to by just 
dividing by f2

Random Walk FM
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“Fixed-Point” picture for Noise

From H. Telle and coworkers: H. R. Telle, B. Lipphart, and J. Stenger, APB, 74, 1 (2002)

fo

What is noise 
on this tooth?

ffix
(tooth @ nfix)

Noise on any tooth is just “scaled” repetition rate noise

Frequency Noise PSD

fn

fr

n-nfix



Quantifying the Noise on the Comb
Summing Frequency Noise PSD

fn

What is noise on the nth tooth? Sum of noise from each effect

Fiber
amp

Pump
noise

ASE

Environmental
Perturbations
(temp, vibration)

ASE
Shot Noisepump

diode
Er+

from
temperature

from
vibrations

from amplified
spontaneous
emission

from
pump noise

++ +=



Environmental Perturbations -> Cavity length

t

T = fr
-1

I( f )

0

fo

0

Environmental 
perturbations
(vibration, RH 
temperature,)

length
fluctuation

FIXED POINT
FOR CAVITY LENGTH

Temperature: 10-5 per degree C (very sensitive)
Vibration/Humidity: very sensitive
S ~1/f behavior



Quantifying the Noise on the Comb
Summing Frequency Noise PSD

fn

What is noise on the nth tooth? Sum of noise from each effect
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amp

Pump
noise
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Perturbations
(temp, vibration)
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Effect of Amplified Spontaneous Emission
Direct Timing Jitter

ASE

Er-doped 
fiber 
(gain)

Round Trip
Timing Shift

+ ASE =
tarrival tarrival t

* phase jitter gives 
S-T linewidth

Often called Quantum Limit for mode-locked lasers
– H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993). 
– R. Paschotta, Appl Phys. B 79, 163 (2004). 

Comb expands/contracts 
about center of spectrum

SASE ~ white noise (broadband)

=



Effect of Amplified Spontaneous Emission
Indirect Timing Jitter

ASE

Er-doped 
fiber 
(gain)

Random spectral 
shifts

+ ASE =

– H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993). 
– R. Paschotta, Appl Phys. B 79, 163 (2004). 

Comb expands/contracts 
about center of spectrum

This effect dominates ASE timing jitter at high cavity dispersion

spectral shifts 

+ Dispersion  = Timing shift



Quantifying the Noise on the Comb
Summing Frequency Noise PSD

fn

What is noise on the nth tooth? Sum of noise from each effect

Fiber
amp

Pump
noise
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Environmental
Perturbations
(temp, vibration)
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Shot Noisepump

diode
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from
temperature

from
vibrations

from amplified
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How to solve for the Response 
of the Fiber-Laser Frequency Comb 

• Physical insight
• Ad hoc
• Numerical factors 

sometimes obscure
• Implementation: 

– L. Xu, et al. Opt. 
Lett., vol. 21, 
1996, 
Haverkampf, APB 
78, 2004, etc.

• Analytic, self-
consistent treatment

• Rigorous bookkeeping
• Requires analytic 

perturbations 
(e.g. Lorentzian gain .)

• Master equation is an 
approximation

• Implementation: 
– Haus and Mecozzi, 

JQE., vol. 29, 1993.
– But add chirp, gain 

dynamics, all 
perturbations

• Full solution of NLSE
• Include all effects 
• Significant 

computation (pulse 
width vs round trip vs 
response time)

• Potential loss of 
physical insight

• Implementation:
– Paschotta, Appl. 

Phys. B, vol. 79, 
2004.

(2)
Master Equation & 

Perturbation Theory

(3)
Numerical integration of 

Nonlinear Schrödinger Eq.

(1)
Heuristic derivation

Three Options



Effect of Pump Power Noise on Comb

Er-doped 
fiber 
(gain)CW 

pump

Pump
Fluctuations Pump power 

change Gain change

Pulse 
Energy & Width

Resonant 
Group VelocitySpectral ShiftSelf-SteepeningThird-Order-

Dispersion

Nonlinear self-
frequency shift

Gain 
“filtering” Frequency-

dependent loss

Self-phase
modulation

Non-lorentzian 
resonant gain shift

Round Trip Timing Shift

N. R. Newbury and B. R. Washburn, JQE, 41, 1388 (2005)

Carrier Phase Shift



Slope = /2
“nonlinear loss”

stable

Response Bandwidth and Laser Stability
(Gain-Pulse Energy Coupling)

• System is unstable without 
extra nonlinear loss

– Gain saturation too slow to 
counteract SAM

• Parameters support simple 
exponential decay

– No relaxation oscillations 
(see Namiki et al, APL, 69,3969 (1996))
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Pump
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Coupled differential equations

2

1

1
T

r

T
g

P
w P

P

w w g w
T

g g g
T

Pw g
w P

3 3
11 Erbium

dB dB



Dynamics Pump Power Noise on Comb
Responds as a Low-Pass Filter

Er+ fiber :  
~kHz response

w2
Self-Amplitude 
Modulation

Nonlinear
loss

Pump
Fluctuations

Pump

Namiki et al, APL, 69,3969 (1996), JOSAB 14, 2099 (1997);
J. McFerran et al, Opt. Lett. 31, 1997 (2006) & APB, 86, 219-227 (2007); Newbury and Washburn, JQE, 41, 1388 (2005)

• Overdamped system -> No Relaxation Oscillations!!
• Consequences:

– Finite response to pump fluctuations
– “Slows” laser response to pump power feedback
– But can phase compensate for a simple rolloff with a 

capacitor!

Frequency
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Response Bandwidth: Experiment

Er-doped 
fiber (gain)
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CW 
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PPInput
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Effect of Pump Power Noise on Comb

Er-doped 
fiber 
(gain)CW 

pump

Pump
Fluctuations Pump power 

change Gain change

Pulse 
Energy & Width

Resonant 
Group VelocitySpectral ShiftSelf-SteepeningThird-Order-

Dispersion

Nonlinear self-
frequency shift

Gain 
“filtering” Frequency-

dependent loss

Self-phase
modulation

Non-lorentzian 
resonant gain shift

Round Trip Timing Shift

Fixed Point = Carrier Frequency

N. R. Newbury and B. R. Washburn, JQE, 41, 1388 (2005)

Carrier Phase Shift

Fixed Point = - Infinity
(overall shift of comb)



Change in frep: Theory (Part I)
Spectral Shifts & Third-Order Dispersion Contributions

(
)

0

Slope =

Cause of Spectral Shifts :

1.) Gain pulls frequency toward gain peakgain
Curvature , Dg

0

loss

2.) Loss pushes frequency up or down

,
1

2 NL
g

l l
D

Raman SFS 
Pulling

3.) Raman SFS pushes frequency down

spectrum
rms

Spectral Shift 

Spectral
Shifts

Third-order
dispersion

Round Trip 
Time Shift

Effective Group Velocity depends on spectrum center and width



Changes in frep: Theory (Part II)
Resonant Gain Contribution

• Group index of the Er gain fiber depends on the Er gain inversion
• For Lorentzian gain with gain bandwidth 5 nm, maximum shift: 

– 10 ppm or 500 Hz out of 50 MHz rep. rate

0

g

index

g

gain

Resonant gain 
dispersion

: Homogenous
Gain bandwidth

Round Trip 
Time Shift

+  



Effect of Pump Power Noise on Comb
Summary

Er-doped 
fiber 
(gain)CW 

pump

Pump
Fluctuations Pump power 

change Gain change

Pulse 
Energy & Width

Resonant 
Group VelocitySpectral ShiftSelf-SteepeningThird-Order-

Dispersion

Nonlinear self-
frequency shiftGain 

“filtering” Frequency-
dependent loss

Self-phase
modulation

Non-lorentzian 
resonant gain shift
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Effect of Pump Power Noise on Comb
Summary

Er-doped 
fiber 
(gain)CW 

pump

Pump
Fluctuations Pump power 

change Gain change

Pulse 
Energy & Width

Resonant 
Group VelocitySpectral ShiftSelf-SteepeningThird-Order-

Dispersion

Nonlinear self-
frequency shiftGain 

“filtering” Frequency-
dependent loss

Self-phase
modulation

Non-lorentzian 
resonant gain shift

N. R. Newbury and B. R. Washburn, JQE, 41, 1388 (2005

Round Trip Timing Shift
(fixed point = carrier frequency)
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Usually timing shift dominates

But verify experimentally
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Here fixed point = 150 THz fixed point

Not hard to measure the fixed point
Stimulate comb & measure response! 



Frequency Noise PSDs vs Pump Noise
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Noise Sources 
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Effect of Different Noise Source 
on Frequency Comb
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Output

Environmental Effects
PSD ~ 1/f

Pump Noise
PSD ~ low pass filter

N. Newbury & W. Swann, JOSA B, 8, 1756-1770 (2007); fixed point: H. R. Telle, B. Lipphart, and J. Stenger, APB, 74, 1 (2002)

“Extra-cavity noise”
(ASE, shot noise)

ASE-induced 
Quantum Noise

PSD ~ white noise

frequencyf0



Quieting Down The Comb
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Free-running Frequency Noise at 1 m
(far edge of comb)
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Noisiest part of comb!
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Optical Coherence Between Combs
with IMRA America 

Sub-Hz level residual linewidth
~50% of RF power in coherent peak

0.3 Hz RBW

3 kHz RBW
Comb 1

Comb 2

optical
filter

free-running
cw fiber laser

Swann, I Hartl, M. Fermann, Opt. Lett. 31, 3046 (2006).



Prescription for using a stabilized Frequency Comb 

1. Measure the offset frequency
Hard to do requires octave spanning continuum

2. Detect either an optical beat or high harmonic of the repetition
rate (optical vs rf stabilization)

3. Understand and minimize noise
Check fixed point of pump power modulation if low dispersion cavity!

4. �“Feedback�” to actively cancel leftover noise
High bandwidth feedback
Two or more actuators (or signal processing on comb)

5. Design the rest of the experiment to not re introduce noise we
just cancelled

Minimize out of loop paths.



Limits to Comb Performance
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A Few General Rules of  Thumb for Frequency combs

• Comb has no intrinsic accuracy > needs an external reference
• �“Flat�” supercontinuum not achievable

– Challenge for spectroscopy
– Sometimes solved with multiple supercontinuum branches

• Hard to detect offset frequency (fceo) with enough SNR!
– f 2f requires octave spanning continuum
– 2f 3f requires less bandwidths but more power

• The �“Fixed Point�” picture is the best way to analyze the noise
and the stabilization�….

• Coherent narrow linewidth comb requires careful design & high
bandwidth feedback.

• Frequency stability (Allan deviation) depends on more
experiment than the comb
– �“Out of Loop�” paths almost always dominate frequency stability


