

From phase stable pulses to Attosecond Science

Caterina Vozzi Istituto di Fotonica e Nanotecnologie (Milano, Italy)

> ICTP WINTER COLLEGE Trieste, 24 February 2016

Why is this attosecond business interesting??

<u>real-time observation</u> and <u>direct control</u> of electronic motion in atoms, molecules and solids!!

Bohr-model of hydrogen atom:

electron in the ground state moves in a circular classical orbit about the nucleus in ~ 150 as

Attosecond resolution is required!

I. Generation of attosecond pulses

II. Attosecond metrology

III. Applications

I. Generation of attosecond pulses

Sub-femtosecond pulses

light pulses in the XUV are required \rightarrow high-order harmonic generation

High-order Harmonic Generation

3 step model

P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

- I. Ionization: the laser field detaches an electron from the valence shell via tunnel ionization
- II. Propagation: the freed electron is accelerated by the laser field

III. Recombination: the energy gained by the electron is released through the emission of a XUV photon

High-order Harmonic Generation

The process is repeated periodically every half cycle

odd harmonics of the fundamental frequency

...and in the temporal domain

train of attosecond pulses

Electron trajectories

Lewenstein quantum model

- strong field approximation
- single active electron
 (from the outermost valence shell)

$$\vec{\mathcal{E}}_{XUV}[\Omega] \propto -(m\omega)^2 \int_{\mathbb{R}} \int_{\mathbb{R}^+} \int_{\mathbb{R}^3} \underbrace{\frac{e}{\hbar^4} \vec{E}(t-\tau) \cdot \vec{d} \left[\vec{k}(\vec{p},t-\tau)\right]}_{\vec{k}} \vec{d} \left[\vec{k}(\vec{p},t)\right]^* e^{-\frac{i}{\hbar}S(\vec{p},t,\tau)+i\Omega t} d\vec{p} d\tau' dt'$$

$$S(\vec{p},t,\tau) = \int_{t-\tau}^t \frac{\left[\vec{p}+e\vec{A}(t')\right]^2}{2\mu} dt' \qquad \vec{d}(\vec{k}) = \langle e^{i\vec{k}\cdot\vec{r}} |\vec{r}|\Gamma_0(\vec{r}) \rangle$$

Attosecond dynamics probed by HHG

- saddle point approximation (SPA)

 $\vec{\mathcal{E}}_{XUV}[\Omega] \propto -(\Omega)^2 \int_{\mathbb{R}} \int_{\mathbb{R}^+} \int_{\mathbb{R}^3} \frac{e}{\hbar^4} \vec{E}(t-\tau) \cdot \vec{d} \left[\vec{k}(\vec{p},t-\tau) \right] \vec{d} \left[\vec{k}(\vec{p},t) \right]^* \left[e^{-\frac{i}{\hbar}S(\vec{p},t,\tau)+i\Omega t} d\vec{p} d\tau' dt' \right]$ III. recombination

$$\vec{\mathcal{E}}_{XUV}[\Omega] \propto -(\Omega)^2 \vec{E}(t_s - \tau_s) \cdot \frac{e}{\hbar^4} \vec{d} \left[\vec{k}(\vec{p_s}, t_s - \tau_s) \right] \vec{d} \left[\vec{k}(\vec{p_s}, t_s) \right]^* \int_{\mathbb{R}} \int_{\mathbb{R}^+} \int_{\mathbb{R}^3} \underbrace{e^{-\frac{i}{\hbar}S(\vec{p}, t, \tau) + i\Omega t}}_{d\vec{p}d\tau'dt'} d\vec{p} d\tau' dt'$$

- coupling between:

ionization time t_s - τ_s recombination time t_s

photon energy $\hbar\Omega$

$$\begin{aligned} \frac{\partial S(p_s, t_s, \tau_s)}{\partial (-\tau)} &= 0 &= \frac{\left[\vec{p}_s + e\vec{A}(t_s - \tau_s)\right]^2}{2\mu} + I_p \\ \frac{\partial S(p_s, t_s, \tau_s)}{\partial t} &= 0 &= \frac{\left[\vec{p}_s + e\vec{A}(t_s)\right]^2}{2\mu} + I_p - \hbar\Omega \\ \vec{\nabla}_{\vec{p}}S(p_s, t_s, \tau_s) &= 0 &= \int_{t_s - \tau_s}^{t_s} \frac{\left[\vec{p}_s + e\vec{A}(t')\right]}{\mu} dt' \end{aligned}$$

Attosecond dynamics probed by HHG

Each saddle point solution defines a quantum trajectory

THE ATTOSECOND NATURE OF THE PROCESS IS MAPPED INTO THE HHG SPECTRUM

G. Sansone et al., Phys. Rev. A 70, 013411 (2004)

from a train of attosecond pulses...

...to a single attosecond pulse

Single Attosecond Pulse recipe:

- selection of only one emission event:
 spectral selection
 - temporal gating
- attochirp compensation
- CEP stability
- few-cycle pulses (most of the time...)

spectral selection of cutoff photons leads to generation of SAP

<u>requirements</u>: linear polarization sub-5-fs pulses CEP stability

I. Christov et al., Phys. Rev. Lett. 78, 1251 (1997) A. Baltuska et al., Nature 421, 611 (2003)

Spectral selection role of the CEP $E=E_{o}sin(\omega_{o}t)$ $E=E_{o}cos(\omega_{o}t)$ electric field XUV pulse electric field XUV pulse time time band-pass filter 140 140 120 120 ohoton energy (eV) 100 100 80 80 60 60

spectral selection of cutoff photons leads to generation of one or two attosecond pulses!

40

-3 -2 -1 0

1

emission time (fs)

2

3

4

40

-3

-2 -1 0

1

emission time (fs)

2

3

4

Spectral selection

HHG in Neon

- pulse duration 5 fs
- stabilized CEP

broad continuum only in the cut-off!

Spectral selection

HHG in Neon

- pulse duration ~ 4 fs
- stabilized CEP

broad continuum 😊

Spectral selection state of the art

generation of a single 80 as pulse around 80 eV

E. Goulielmakis et al., Science 320, 1614 (2008)

Temporal gating schemes

Polarization gating

one-color scheme (Generalized) Double Optical Gating

- Two-color gating intense IR pulses + intense visible few-cycle pulses
- Ionization gating

few-cycle pulses with above saturation intensity and controlled electric field: high-energy isolated pulses on target

HHG polarization dependence

linear polarization

circular polarization

electron returns to the parent ion HHG emission possible electron doesn't return to the parent ion HHG emission strongly reduced

few-cycle pulses CEP stability

P. Corkum et al., Opt. Lett. 19, 1870 (1994) O. Tcherbakoff et al., Phys. Rev. A 68, 043804 (2003)

Polarization gating

Polarization gating results in Ne

pulse duration 5 fs, delay $\delta = 6.2$ fs, $\phi_o < \phi < \phi_{o+3\pi}$

- strong periodic modulation of emission efficiency for Δφ= π
 continuous spectra from 30 eV to 75 eV for all CEPs
- I. Sola et al., Nature Physics 2, 319 (2006)

Temporal gating with two colors

Two-color gating

driving field: $\omega_1 + \omega_2$ $\omega_2 = 2 \omega_1 + \delta \omega$: spectrally detuned second harmonic

new periodicity of the electric field can lead to isolation of single attosecond pulses!

<u>key parameters</u>:

- central wavelength of the two components
- intensity of the pulses
- temporal overlap
- gas target position

H. Merdji et al., Opt. Lett. 32, 3134 (2007)

Two-color gating

Intense IR pulses: 1.45 μ m, 20 fs, $I_{IR} = 2 \times 10^{14}$ W/cm² Intense VIS pulses: 0.8 μ m, 13 fs, $I_{VIS} = 8.5 \times 10^{14}$ W/cm²

- τ=0: cutoff extension and continuum generation
- outside overlap: harmonic spectrum is dominated by VIS pulse
- IR component: responsible for cutoff extension
- VIS component: increase of conversion efficiency

F. Calegari et al., Opt. Lett. 34, 3125 (2009)

Ionization gating

High-energy few-cycle pulses: complete depletion of neutral atom population on the pulse leading edge for some CEP values confinement of the XUV emission within a single event

<u>requirements</u>:

- few cycle pulses
- peak intensity > saturation intensity
- CEP control
- low gas pressure
- spatial filtering after the gas cell

XUV spectra vs CEP: xenon

pulse duration 5 fs, peak intensity 2.3 10¹⁵ W/cm² 2.5–mm Xe cell

- periodic change of amplitude and shape for $\Delta \phi = \pi$
- CEP drives transition from double to single emission
- measured pulse energy on target \sim 2.1 nJ

F. Ferrari et al., Nature Phot. 4, 875 (2010)

Atto-chirp

selection of short trajectories

electron recombination time depends on the energy!

positive chirp of harmonic emission on the attosecond timescale

and the atto-chirp??

metallic filter provides negative GDD in the XUV region!

López-Martens et al. Phys. Rev. Lett., 94, 033001 (2005)

Metallic filters

40

1.5-um PARAMETRIC SOURCE

© C. Manzoni & D. Brida

Looking for...

THE PERFECT DRIVING PULSE

Cut off extension towards the soft X ray region Ponderomotive electron energy $U_p \sim \lambda^2$

CEP stability for single attosecond pulse generation Attochirp scales as ~ λ^{-1}

Tunability of discrete harmonics

but...

Generation yield $\sim \lambda^{-\alpha}$ with $\alpha \sim 5-6$

PASSIVE STABILIZATION OF CARRIER ENVELOPE PHASE

Difference Frequency Generation (DFG):

DFG between two pulses carrying the same CEP leads to automatic phase-stabilization of the DF pulse

Baltuška et al., Phys. Rev. Lett. 88, 133901 (2002)

POSSIBLE IMPLEMENTATION DFG in OPAs

IR-pumped collinear OPA

Idler self phase stabilization

Narrow phase matching bandwidth

X. Fang et al., Opt. Lett. 29, 1282 (2004)

SH-pumped SH-seeded Non-collinear OPA

Idler self phase stabilization

Broad phase matching bandwidth

Idler angular dispersion

S. Adachi et al., Opt. Lett. 29, 1150 (2004)

INTERPULSE AND INTRAPULSE DFG

DFG between two frequency shifted pulses

🛞 Delay-induced CEP jitter

C. Manzoni et al., Opt. Lett. 29, 2668(2004)

DFG between short and long wavelength components of a broadband pulse

No necessity to maintain time delay between mixing pulses

T. Fuji et al., Opt. Lett. 30, 332 (2005)

OUR PROPOSAL

Compression of the initial pulse by filamentation in Kr → high energy supercontinuum → pulse compression down to 10 fs

OUR PROPOSAL

Compression of the initial pulse by filamentation in Kr \rightarrow high energy supercontinuum \rightarrow pulse compression down to 10 fs

Difference frequency generation of the supercontinuum \rightarrow carrier wavelength in the near IR \rightarrow passive stabilization of the CEP

Amplification by Near-IR OPA at degeneracy \rightarrow high energy, broad gain bandwidth

PARAMETRIC SOURCE experimental setup

Opt. Lett. 32, 2957 (2007)

PARAMETRIC SOURCE spectral characterization

PARAMETRIC SOURCE temporal characterization

Zero Additional Phase SPIDER nearly transform-limited 17-fs pulse width

3 to 4 optical cycle pulses @ 1.5 μm

CARRIER-ENVELOPE PHASE STABILITY how to measure it

Generation of an octave spanning spectrum Frequency doubling in a non-linear crystal Observation of spectral interference between the two components

CARRIER-ENVELOPE PHASE STABILITY

Spectral broadening by filamentation in krypton

minimizes intensityphase coupling

0.19 rad RMS

J. Opt. Soc. Am. B 25, B112 (2008)

II. Attosecond pulse characterization

General scheme of attosecond metrology

far from resonances, attosecond electron wavepacket is a replica of the attosecond field \rightarrow characterization of the electron wavepacket

FROG-CRAB

Frequency-Resolved Optical Gating for Complete Reconstruction of Attosecond Bursts

Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (R) 2005

FROG-CRAB

photoionization spectrum:

$$\begin{split} S(W,\tau) &= \Big| \int_{-\infty}^{+\infty} dt \; e^{i\phi(t)} \; \mathbf{d} \; \mathbf{E}_X(t-\tau) \; e^{i(W+I_p)t} \Big|^2 \\ \end{aligned}$$

$$\begin{aligned} \text{delay between IR} & \text{dipole transition} & \text{XUV field} \\ \text{and XUV pulses} & \text{element} \end{aligned}$$

$$\begin{aligned} \text{phase gate:} \quad \phi(t) &= -\int_t^\infty dt' [\mathbf{v} \cdot \mathbf{A}(t') + \mathbf{A}^2(t')/2] \\ \text{final electron velocity} & \text{IR vector potential} \end{aligned}$$

the IR laser field provides a phase gate for FROG measurements on attosecond bursts

initial electron momentum

$$p_i = \sqrt{2mW_o} \qquad W_o = \hbar\omega_{XUV} - I_p$$

effect of streaking pulse
$$\Delta \mathbf{p}(t) = \mathbf{e} \int_{t}^{+\infty} \mathbf{E}_{IR}(t') dt' = \mathbf{e} \mathbf{A}(t)$$

final electron momentum

$$\mathbf{p}_f(t) = \mathbf{p}_i + \Delta \mathbf{p}(t)$$

electron energy: $W(t) \approx W_o + \sqrt{8mW_o}eA(t)$

Kitzler et al. PRL 88, 173903 (2002) Itatani et al. PRL 88, 173904 (2002)

cross-correlation with driving light pulse

 \rightarrow photoelectron spectra vs delay

Temporal characterization

dispersion compensation by 300-nm Al filter

G. Sansone et al., Science 314, 443 (2006)

Attosecond spectroscopy

attosecond-scale electronic dynamics in molecules do affect chemical changes!

when charge migration is the crucial step, the time-scale relevant to chemistry is set by electronic motion

- electron delocalization in aromatic molecules
- photosynthesis
- long-range electron transfer in biomolecules
- biological energy conversion processes

L.S. Cederbaum, J. Zobeley, Chem. Phys. Lett. 307, 205 (1999) F. Remacle, R.D. Levine, PNAS 103, 6793 (2006)

"Intrinsic" tools in Attosecond Technology

Attosecond optical pulses always associated to attosecond electron pulses

- electrons give access to spatial resolution: electron wavelength (~1Å)
- optics gives electron collision physics a systematic method for measuring dynamics

Attosecond photon or electron pulses always synchronized to a visible pulse with controlled waveform

extension of conventional ultrafast spectroscopy and strong field coherent control from the cycleaveraged into the sub-cycle domain of visible light

Attosecond measurements

XUV ionization followed by **acceleration** of the ionized electron in a strong IR field (**streak camera approach**)

Attosecond pulse characterization Attosecond streaking spectroscopy

> Relaxation dynamics of core-excited atoms, M. Drescher et al., Nature **419**, 803 (2002). Attosecond spectroscopy in <u>condensed matter</u>, A. Cavalieri et al., Nature **449**, 1029 (2007)

XUV excitation of **bound states**, followed by ionization in a strong IR field

Real-time observation of electron tunnelling and multi-electron dynamics in atoms

M. Uiberacker *et al.*, Nature **446**, 627 (2007)

P. B. Corkum & F. Krausz, Nat. Physics 3, 381 (2007)

As streaking spectroscopy

<u>as pump –as probe</u>:

- low flux of as pulses
- low two-photon transition probabilities in the XUV

<u>as streaking spectroscopy:</u>

- few-cycle IR pulse with controlled waveform + nonlinear process may replace the attosecond pulse either in probing or starting electron dynamics
- probing inner-atomic relaxation dynamics

As Streaking Spectroscopy

time-domain observation of the decay of an innershell vacancy via Auger relaxation in isolated atoms

M. Drescher et al., Nature 419,803 (2002)

As Streaking Spectroscopy

Decay much faster than period of IR: Auger electron maps out the oscillation of the IR field

Decay much slower than period of IR: measure cross correlation between IR pulse duration and Auger decay

M. Drescher et al., Nature 419,803 (2002)

Streaked electron spectra following core-hole excitation

- In this experiment the Auger decay was slower than the optical period of the IR laser
- A decay time of the excitation of 7.9 ± 1 fs could be inferred
- M. Drescher et al., Nature 419,803 (2002)
As spectroscopy in condensed matter probing photoelectron em

- Sub-fs photoemission from 4f core states and from conduction band
- Extension of streaking spectroscopy to condensed matter
- 100-as delay between photoelectron emission from localized core states and from delocalized conductionband states
- A. Cavalieri et al., Nature 449, 1029 (2007)

probing photoelectron emission from single-crystal tungsten

XUV excitation of bound states followed by ionization in a strong IR field

M. Uiberacker et al., Nature 446, 627 (2007)

Shake-up state in Ne

Kinetic energy

0

Binding energy

IR

- 2) excitation of a second 2p level to an excited ionic states
- 3) ionization of excited state by an IR field

4) doubly charged ions

M. Uiberacker et al., Nature 446, 627 (2007)

M. Uiberacker et al., Nature 446, 627 (2007)

Investigation of Ultrafast Electron Dynamics Triggered by Attosecond XUV Pulses in Amino Acids

Francesca Calegari

Application to biomolecular building blocks:

Aromatic amino acids evaporated in a TOF-mass spectrometer

Mass of fragments produced by XUV pump and VIS/NIR probe pulses measured as a function of the pump probe delay with attosecond time precision

L. Belshaw et al., J. Phys. Chem. Lett. 3, 3751(2012) F. Calegari et al., JSTQE 21, 2419218 (2015)

Investigation of Ultrafast Electron Dynamics Triggered by **Attosecond XUV Pulses in Amino Acids**

Francesca Calegari

Electron migration from the amino group to the

F. Calegari et al., Science 346, 336 (2014)

Electron migration from the amino group to the indole group in **2.15 fs**

Tryptophan – m/q=79.5

30

Looking for motivated students and postdocs: francesca.calegari@polimi.it Visit us on Facebook: www.facebook.com/erc.starlight

European Research Council Established by the European Commission

Molecular imaging

Shooting the "molecular movie":

chemical properties of molecules are determined by the outermost electronic structure

Motivation

Imaging of structural changes in molecules

- · direct access to excited states
- · visualization of conical intersections
- · precursor of coherent control

Molecular imaging

Imaging of the total electron density:

- X-ray diffraction
- · electron scattering

Imaging of the outermost electronic structure:

- electron momentum spectroscopy
- scanning tunneling microscopy
- · high order harmonic generation
 - \rightarrow simple experimental technique

 - \rightarrow table top'setup \rightarrow temporal resolution (as to tens of fs)

HHG as an interferometer

tunnel ionization \rightarrow beam splitter electron wave-packet motion \rightarrow delay line re-collision \rightarrow interference

HHG tomography recipe

the transition dipole moment is the spatial Fourier transform of $r \Psi(r)$

 $\langle \Psi(\mathbf{r})|\mathbf{r}|\exp[ik(\omega)\cdot\mathbf{r}]\rangle$

tomographic reconstruction of $\Psi(\mathbf{r})$: the optical frequencies wmap the spatial frequencies k

1 - align the molecule2 - drive HHG for different angles

Impulsive alignment of molecules

molecule in intense ultrashort laser field: pulse duration $\tau < T_R$ intensity $I > 10^{12}$ W/cm²

coherent excitation of rotational wave-packet

- \rightarrow rotational revivals
- → field-free alignment of the molecular sample for certain delays!

J. Ortigoso et al., J. Chem. Phys. 110, 3870 (1999)

CO2 orbital tomography

«more complex» molecules

Multielectron dynamics

Ultrafast Dynamic Imaging of complex molecules

PhD and Post Doc position available!

European Research Council

Established by the European Commission

A new lab @ CNR-IFN

the laser source

Driving laser source: 22 fs pulses 15 mJ energy 1 kHz rep rate

erc

The Udyni lab @ CNR-IFN

manipulating the light

High energy OPA <15 fs pulses 2 mJ energy 1 kHz rep rate + hollow fiber compression

The Udyni lab @ CNR-IFN

- XUV spectrometer
 80-1 nm spectral range
 stigmatic/astigmatic
 harmonic polarization detection
- · large dynamical range

VMI spectrometer for electrons up to 200 eV

- · time-resolved molecular orbital tomography
- time-resolved Laser Induced Electron
 Diffraction
- transient absorption spectroscopy
- harmonic polarimetry

Coming

Soon

A Marie Skłodowska-Curie Innovative Training Network in Molecular Physics Funded by the European Union

- Currently recruiting for entry in September 2016, **12 positions available**
- Opportunities to conduct research leading to a PhD as part of a network comprising:

University of Nottingham, UK Max Born Institute, Germany Aarhus University, Denmark Synchrotron SOLEIL, France Photek, UK RoentDek, Germany

Benefits:

- Highly attractive salary
- Opportunities for secondments
- Significant travel budget

Consiglio Nazionale delle Ricerche, Italy University of Frankfurt, Germany Université Paris-Sud, France

- Network-based conferences and workshops
- Interaction with industrial partners
- Teamwork

For more information visit: ASPIRE-ITN.EU

The Udyni lab @ CNR-IFN

Marcelo Alcocer Anna G. Ciriolo Michele Devetta Davide Faccialà Fabio Frassetto Cristian Manzoni Matteo Negro Luca Poletto Aditya Pusala Salvatore Stagira

caterina.vozzi@cnr.it www.udyni.eu www.mi.ifn.cnr.it/research/ultrafast/molecularimaging

