Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

26 February 2016

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

La seconde

est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium 133.

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Satellite navigation

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Satellite navigation

Telecommunications

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Satellite navigation

Telecommunications

Deep space missions

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Satellite navigation

Telecommunications

Deep space missions

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Satellite navigation

Telecommunications

Deep space missions

E-commerce, banking,

stock exchange

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Satellite navigation

Telecommunications

Deep space missions

E-commerce, banking,

stock exchange

Fundamental research

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本語を 本語を 本語を 本日を

Satellite navigation

Telecommunications

Deep space missions

Transport

E-commerce, banking,

stock exchange

Fundamental research

smart grid

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Satellite navigation

Telecommunications

Deep space missions

Transport

E-commerce, banking,

stock exchange

Fundamental research

Electric power

smart grid

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

・ロト・日本・日本・日本・日本・日本・日本

Global GNSS market size: 250 billion € in 2016

source: European GNSS Agency (GSA), 4rd Market Report (2015)

Telecommunications: one trillion \$ market by 2019

source: Global Wireless Infrastructure Market 2013 Forecast to Industry Size, Shares, Strategies, Trends, and Growth 2019

Smart electrical grid: 400 billion € by 2020

source: GTM Research, Global Smart Grid Technologies and Growth Markets, 2013-2020

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

Direct applications

JRP-s16 OC18 "Optical clocks with 1E-18 uncertainty" Letters of support

Applications of optical clocks

Affiliation	Country	Area of expertise
CCTF (Consultative Committee on Time and	International	SI second
Frequency)		
Space Optical Clocks	International	Science in space
ESA (European Space Agency)	International	Science in space
ACES (Atomic Clock Ensemble in Space)	International	Science in space
University of Liverpool	UK	Oceanography
Institut für Erdmessung, Hannover	Germany	Geodesy
British Geological Survey	UK	Geodesy
International Association of Geodesy	International	Geodesy
JIVE (Joint Institute for VLBI ERIC)	International	Radio astronomy
British Telecommunications	UK	Telecommunications
Orange Polska	Poland	Telecommunications

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Atomic clock

$$\Delta E = \text{const.}$$

Atomic clock diagram

Ideal clock: a signal with stable and universal frequency.

 Energy levels of unperturbed atoms are stable and universal.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト - ヨ - -

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Atomic clock

$$\Delta E = \text{const.}$$

Atomic clock diagram

$$\omega(t) = \omega_{ef} * (1 + \varepsilon + y(t))$$

 ε -fractional offset of frequency y(t) - fractional fluctuations of frequency

Accuracy

- uncertainty of ε

Stability

- statistical properties of y(t), interrogation characterized by the Allan deviation $\sigma_{\gamma}(\tau)$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Accuracy and stability

source: nist.gov

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Allan deviation

 f_n is a set of frequency offset measurements that consists of individual measurements, f_1 , f_2 , f_3 , and so on and the data are equally spaced in segments τ seconds long.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Time standards

- 1. Atomic fountains, accuracy of $\sim 10^{-16}$
- 2. Commercial caesium clocks, with good long term stability $\sim 10^{-15}$ over few months and accuracy of $\sim 10^{-13}$
- 3. Hydrogen masers: 1.4 GHz hyperfine structure transition in atomic hydrogen. Much better short-time stability than any commercial caesium clock: $\sim 10^{-15}$ over few hours

くしゃ 本面 そうせん ほう うめんろ

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Caesium clocks and hydrogen masers

HP5071A caesium clock and VCH-1005

hydrogen maser in the Central Office of

Measures in Poland

(日)、(同)、(日)、(日)、(日)、

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Caesium clocks and hydrogen masers

Feng-Lei Hong et al. Opt. Express 13, 5253-5262 (2005)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Atomic fountain

Best accuracy: 2.6×10⁻¹⁶ Real-time control of collision shift with adiabatic

passage: Phys. Rev. Lett. 89, 233004 (2002)

Resolution 6x10⁻¹⁷ at 50 days (assuming white noise)

v(FO2-Rb) (2007) =6 834 682 610.904 309 (8) Hz

Total uncertainty 1.1x10-15

Total uncertainty	4.9	2.6	4.5	6.6
Others (quantum motion, Background gas collisions, Ramsey & Rabi pulling,)	< 2.0	< 2.0	< 2.5	< 1.7
Microwave leakage and phase perturbations	< 0.5	< 0.5	< 0.1	< 6
First order Doppler effect	< 3.0	-0.96 ± 0.84	< 2.0	
Cold collisions and cavity pulling	245.3 +/- 3	191.6 +/- 0.8	0 +/- 2.5	16.7 +/- 1.7
Blackbody radiation	164.9 +/- 0.6	167.2 +/- 0.6	120.6 +/- 1.6	165.3 +/- 0.6
Quadratic Zeeman effect	-1276.2 +/- 0.2	-1919.5 +/- 0.2	-3472 +/- 0.2	-305.7 +/- 1.1
Corr. +/-Uncert. (10 16)	FO1	F02-Cs	FO2-Rb	FOM

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Source: Systèmes de Références Temps-Espace

Helen Margolis, Nature Physics 10, 82-83 (2014)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

 \rightarrow Δv

Quality of the clock: $Q = \frac{\nu}{\Delta \nu} \times \frac{S}{N}$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Quality of the clock: $Q = \frac{\nu}{\Delta \nu} \times \frac{S}{N} \sim \nu T \times \frac{S}{N}$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本語を 本語を 本語を 本日を

Quality of the clock: $Q = \frac{\nu}{\Delta \nu} \times \frac{S}{N} \sim \nu T \times \frac{S}{N}$ Stability of an atomic clock: $\sigma_y(\tau) \sim \frac{\sigma_{spect}}{Q} \sqrt{\frac{T_c}{\tau}}$ Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 $\Delta \nu$

Quality of the clock: $Q = \frac{\nu}{\Delta \nu} \times \frac{S}{N} \sim \nu T \times \frac{S}{N}$ Stability of an atomic clock: $\sigma_y(\tau) \sim \frac{\sigma_{spect}}{Q} \sqrt{\frac{T_c}{\tau}}$ Quantum Shot Noise limitation: $\sigma_y(\tau) = \frac{1}{\pi Q} \times \frac{1}{N_{at}} \times \sqrt{\frac{T_c}{\tau}}$ Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Optical clocks: trapped ions and neutral atoms

lon traps: lons trapped in the Paul trap by the RF field

► Trap is perturbed only slightly \Rightarrow excellent accuracy 3×10^{-18}

N. Huntemann et al. Phys. Rev. Lett.

116, 063001 (2016)

► Good stability $(3 \times 10^{-15}/\sqrt{\tau})$, but restricted by Quantum Shot Nose - only 1 ion. Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

Optical clocks: trapped ions and neutral atoms

lon traps: lons trapped in the Paul trap by the RF field

► Trap is perturbed only slightly \Rightarrow excellent accuracy 3×10^{-18}

> N. Huntemann et al. Phys. Rev. Lett. 116. 063001 (2016)

- ► Good stability $(3 \times 10^{-15}/\sqrt{\tau})$, but restricted by Quantum Shot Nose only 1 ion
 - only 1 ion.

Neutral atoms: Optical lattice

• A trap with a hight-intensity light \Rightarrow high perturbation, though well under control. $2 * 10^{-18}$

T.L. Nicholson et al. Nature Communications, 6, 6896 (2015)

► High number of atoms (10⁴)⇒ high stability possible. $1.8 \times 10^{-16}/\sqrt{\tau}$ down to 2×10^{-18}

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Optical clocks: trapped ions and neutral atoms

A. G. Smart, Phys. Today 67, 3, 12 (2014)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

A transition good for optical clock

Natural linewidth of an electric dipole (E1) transition is typically bigger than 1 MHz \Rightarrow Q below 10⁸

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

A transition good for optical clock

Natural linewidth of an electric dipole (E1) transition is typically bigger than 1 MHz \Rightarrow Q below 10^8

Clock transition should be:

- Narrow (forbidden)
- Mostly insensitive to external fields.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

A transition good for optical clock

Natural linewidth of an electric dipole (E1) transition is typically bigger than 1 MHz \Rightarrow Q below 10^8

Clock transition should be:

- Narrow (forbidden)
- Mostly insensitive to external fields.

Possible candidates:

- two-photon transitions and higher order electric transitions (quadrupole, octupole ...)
- a low energy nuclear transition (still sought at ²²⁹Th)
- an intercombination transition

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

(4日) (四) (注) (注) (注) (10)

1_P.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

°P2

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲ロト ▲母ト ▲目ト ▲目ト 三日 - のへの

- Forbidden ${}^{1}S_{0} {}^{3}P_{1}$ transition:
 - Fine structure interaction

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

- Forbidden ${}^{1}S_{0} {}^{3}P_{1}$ transition:
 - Fine structure interaction
 - Double forbidden ${}^{1}S_{0} {}^{3}P_{0}$ transition:
 - Fermions: hyperfine interaction
 - Bosons: quenching by a static B field

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle
4He 20Ne

⁴⁰Ar ¹³²Xe

$$f(v) \sim \frac{v^2}{T^{3/2}} e^{-\frac{mv^2}{2kT}}$$

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases

Speed (m/s)

500 1000 1500 2000 2500

0.004

0.003

0.002

0.001

Probability density (s/m)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

source: Pdbailey at Wikipedia

$f(v) \sim \frac{v^2}{T^{3/2}} e^{-\frac{mv^2}{2kT}}$

• Doppler shift:
$$\nu = \nu_0 \left(1 + \frac{v}{c}\right)$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

source: Pdbailey at Wikipedia

$f(v) \sim \frac{v^2}{T^{3/2}} e^{-\frac{mv^2}{2kT}}$

• Doppler shift:
$$\nu = \nu_0 \left(1 + \frac{v}{c}\right)$$

Distribution of the observed frequencies:

$$P_{\nu}(\nu)d\nu = P_{\nu}(\nu)\frac{d\nu}{d\nu}d\nu$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

source: Pdbailey at Wikipedia

$\blacktriangleright f(v) \sim \frac{v^2}{T^{3/2}} e^{-\frac{mv^2}{2kT}}$

• Doppler shift:
$$\nu = \nu_0 \left(1 + \frac{v}{c}\right)$$

 Distribution of the observed frequencies:

$$P_{\nu}(\nu)d\nu = P_{\nu}(\nu_{\nu})\frac{d\nu}{d\nu}d\nu$$

$$\int P_{\nu}(\nu) d\nu \sim \sqrt{\frac{1}{T^2 \nu_0^2}} \exp\left(-\frac{mc^2(\nu-\nu_0)^2}{2kT\nu_0^2}\right) d\nu$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

source: Pdbailey at Wikipedia

$f(v) \sim \frac{v^2}{T^{3/2}} e^{-\frac{mv^2}{2kT}}$

• Doppler shift:
$$\nu = \nu_0 \left(1 + \frac{v}{c}\right)$$

 Distribution of the observed frequencies:
 D (x) dx - D (x) dy dy

$$P_{\nu}(\nu)d\nu = P_{\nu}(\nu_{\nu})\frac{d\nu}{d\nu}d\nu$$

$$\sqrt{\frac{1}{T^2\nu_0^2}} \exp\left(-\frac{mc^2(\nu-\nu_0)^2}{2kT\nu_0^2}\right) d\nu$$
$$\blacktriangleright \Delta\nu_{FWHM} = \sqrt{\frac{8kT\ln 2}{mc^2}}\nu_0$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ④ < ◎

source: Pdbailey at Wikipedia

•
$$f(v) \sim \frac{v^2}{T^{3/2}} e^{-\frac{mv^2}{2kT}}$$

• Doppler shift:
$$\nu = \nu_0 \left(1 + \frac{v}{c}\right)$$

Distribution of the observed frequencies: $P_{\nu}(\nu)d\nu = P_{\nu}(v_{\nu})\frac{d\nu}{d}d\nu$

$$P_{\nu}(\nu)d\nu \sim \sqrt{\frac{1}{T^{2}\nu_{0}^{2}}} \exp\left(-\frac{mc^{2}(\nu-\nu_{0})^{2}}{2kT\nu_{0}^{2}}\right)d\nu$$

• $\Delta \nu_{FWHM} = \sqrt{\frac{8kT \ln 2}{mc^2}} \nu_0 \sim GHz$ at room temperature

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases

source: Pdbailey at Wikipedia

Sub-Doppler spectroscopy, or cool down atoms...

$$f(v) \sim \frac{v^2}{T^{3/2}} e^{-\frac{mv^2}{2kT}}$$

• Doppler shift:
$$\nu = \nu_0 \left(1 + \frac{v}{c}\right)$$

 Distribution of the observed frequencies:

$$P_{\nu}(\nu)d\nu = P_{\nu}(\nu_{\nu})\frac{d\nu}{d\nu}d\nu$$

$$\int \mathcal{P}_{\nu}(\nu) d\nu \sim \sqrt{\frac{1}{T^2 \nu_0^2}} \exp\left(-\frac{mc^2(\nu-\nu_0)^2}{2kT\nu_0^2}\right) d\nu$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

E

Ee

Eg

p²

2m

Optical lattice atomic clocks

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

|g,p>

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Unperturbed Hamiltonian of the atom: $H_0 = \hbar \omega_g \ket{g} \bra{g} + \hbar \omega_e \ket{e} \bra{e}$

Zero point energy can be chosen at will: $H_0 = \hbar \omega_0 |e\rangle \langle e|$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Unperturbed Hamiltonian of the atom: $H_0 = \hbar \omega_g \ket{g} \ket{g} \ket{g} \ket{e} \ket{e} \ket{e}$

Zero point energy can be chosen at will: $H_0 = \hbar \omega_0 |e\rangle \langle e|$

Monochromatic electromagnetic wave: $\vec{E}(t, \vec{r}) = \vec{E_0}e^{-\hat{\imath}(\omega t + \phi(\vec{r}))} + c.c.$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

ション ふゆ ア キョン キョン ヨー もくの

Unperturbed Hamiltonian of the atom: $H_0 = \hbar \omega_g \ket{g} \ket{g} \ket{g} \ket{e} \ket{e} \ket{e}$

Zero point energy can be chosen at will: $H_0 = \hbar \omega_0 |e\rangle \langle e|$

Monochromatic electromagnetic wave: $\vec{E}(t, \vec{r}) = \vec{E_0}e^{-\hat{\imath}(\omega t + \phi(\vec{r}))} + c.c.$

The interaction Hamiltonian under dipole approximation: $H_{int} = -\hat{d} \cdot \vec{E}$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

ション ふゆ ア キョン キョン ヨー もくの

Unperturbed Hamiltonian of the atom: $H_0 = \hbar \omega_g |g\rangle \langle g| + \hbar \omega_e |e\rangle \langle e|$

Zero point energy can be chosen at will: $H_0 = \hbar \omega_0 |e\rangle \langle e|$

Monochromatic electromagnetic wave: $\vec{E}(t, \vec{r}) = \vec{E_0}e^{-\hat{\imath}(\omega t + \phi(\vec{r}))} + c.c.$

The interaction Hamiltonian under dipole approximation: $H_{int} = -\hat{d}\cdot\vec{E}$

 $\hat{d}=e\hat{r}$ due to parity can be expressed as $\hat{d}=d_{eg}\ket{e}ra{g}+d_{eg}^{*}\ket{g}ra{e}$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

Unperturbed Hamiltonian of the atom: $H_0 = \hbar \omega_g \ket{g} ra{g} + \hbar \omega_e \ket{e} ra{e}$

Zero point energy can be chosen at will: $H_0 = \hbar \omega_0 |e\rangle \langle e|$

Monochromatic electromagnetic wave: $\vec{E}(t, \vec{r}) = \vec{E_0}e^{-\hat{\imath}(\omega t + \phi(\vec{r}))} + c.c.$

The interaction Hamiltonian under dipole approximation: $H_{int} = -\hat{d}\cdot\vec{E}$

 $\hat{d}=e\hat{r}$ due to parity can be expressed as $\hat{d}=d_{eg}\ket{e}ra{g}+d^*_{eg}\ket{g}ra{e}$

 $\implies \mathcal{H}_{int} = \frac{\hbar}{2} \Omega(\vec{r}) e^{-\hat{\imath}\omega t} \left(|e\rangle \langle g| + |g\rangle \langle e| \right) + \frac{\hbar}{2} \Omega^*(\vec{r}) e^{\hat{\imath}\omega t} \left(|g\rangle \langle e| + |e\rangle \langle g| \right)$ where $\Omega(\vec{r}) = -2d \cdot \vec{E_0} e^{-\phi(\vec{r})} / \hbar$ is the so-called Rabi frequency.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

After rotating wave approximation ($|\Delta| = |\omega - \omega_0| \ll \omega_0$):

$$H_{int}^{RWA} = rac{\hbar}{2} \Omega(\vec{r}) e^{-\hat{\imath}\omega t} \ket{e} ra{g} + rac{\hbar}{2} \Omega^*(\vec{r}) e^{\hat{\imath}\omega t} \ket{g} ra{e}$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

After rotating wave approximation $(|\Delta| = |\omega - \omega_0| \ll \omega_0)$:

$$H_{int}^{RWA} = rac{\hbar}{2} \Omega(\vec{r}) e^{-\hat{\imath}\omega t} \ket{e} ra{g} + rac{\hbar}{2} \Omega^{*}(\vec{r}) e^{\hat{\imath}\omega t} \ket{g} ra{e}$$

Using the abbreviation for the generalized Rabi frequency: $\tilde{\Omega}=\sqrt{\Delta^2+\Omega^2}$

the probability of finding the atom in the upper level state is:

$$egin{aligned} P_e(t) &= rac{\Omega}{ ilde{\Omega}}\sin^2(ilde{\Omega}t/2) \ P_e(\omega) &\sim rac{\sin^2(\omega t/2)}{(\omega t/2)^2}. \end{aligned}$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

After rotating wave approximation $(|\Delta| = |\omega - \omega_0| \ll \omega_0)$:

$$H_{int}^{RW\!A}=rac{\hbar}{2}\Omega(ec{r})e^{-\widehat{\imath}\omega\,t}\ket{e}ig\langle g
vert+rac{\hbar}{2}\Omega^{*}(ec{r})e^{\widehat{\imath}\omega\,t}\ket{g}ig\langle e
ight
angle$$

Using the abbreviation for the generalized Rabi frequency: $\tilde{\Omega}=\sqrt{\Delta^2+\Omega^2}$

the probability of finding the atom in the upper level state is:

 $P_e(t) = rac{\Omega}{ar{\Omega}} \sin^2(ar{\Omega}t/2).$ $P_e(\omega) \sim rac{\sin^2(\omega t/2)}{(\omega t/2)^2}.$

In the presence of sufficient decoherence, $P_e(\omega)$ becomes a Lorentzian line shape whose width is the decoherence rate Γ divided by 2π .

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

After rotating wave approximation $(|\Delta| = |\omega - \omega_0| \ll \omega_0)$:

$$H_{int}^{RW\!A}=rac{\hbar}{2}\Omega(ec{r})e^{-\widehat{\imath}\omega\,t}\left|e
ight
angle\left\langle g
ight|+rac{\hbar}{2}\Omega^{*}(ec{r})e^{\widehat{\imath}\omega\,t}\left|g
ight
angle\left\langle e
ight
angle$$

Using the abbreviation for the generalized Rabi frequency: $\tilde{\Omega} = \sqrt{\Delta^2 + \Omega^2}$

the probability of finding the atom in the upper level state is:

 $P_e(t) = rac{\Omega}{ar{\Omega}} \sin^2(ilde{\Omega}t/2).$ $P_e(\omega) \sim rac{\sin^2(\omega t/2)}{(\omega t/2)^2}.$

In the presence of sufficient decoherence, $P_e(\omega)$ becomes a Lorentzian line shape whose width is the decoherence rate Γ divided by 2π . Doppler shift across the atomic velocity distribution broadens the line shape into a Gaussian or Voigt line shape.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

In a harmonic potential the atomic motion is not a continuous variable, but is restricted to the quantized motional states $|n\rangle$ of the system.

 \implies New term in Hamiltonian: $H_{osc} = \hbar \omega_h \left(a^{\dagger} a + \frac{1}{2} \right)$.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲□ ● ● ●

In a harmonic potential the atomic motion is not a continuous variable, but is restricted to the quantized motional states $|n\rangle$ of the system.

 \implies New term in Hamiltonian: $H_{osc} = \hbar \omega_h \left(a^{\dagger} a + \frac{1}{2} \right)$.

Modified Rabi rate of transitions in two-level atom from $|g\rangle |n\rangle$ state to $|e\rangle |m\rangle$ state:

$$\begin{split} \Omega_{mn} &= \tilde{\Omega} \langle m | e^{\hat{i} \eta \left(a + a^{\dagger} \right)} | n \rangle = \tilde{\Omega} e^{-\eta^2 / 2} \sqrt{\frac{n < !}{n > !}} \eta^{|m-n|} L_{n <}^{|m-n|} (\eta^2) \\ \text{where } \eta &= \sqrt{\frac{\hbar k^2}{2m\omega_h}} = \frac{k x_0}{\sqrt{2}} \text{ is the so-called Lamb-Dicke parameter} \end{split}$$

 $\eta \ll 1$ required!

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

ション ふゆ ア キョン キョン ヨー もくの

frequency (units of trap frequency, ω)

source: Ludlow et al. Rev. Mod. Phys. 87, 637 (2015)

$\eta \ll 1$ required!

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

source: Ludlow et al. Rev. Mod. Phys. 87, 637 (2015)

$\eta \ll 1$ required!

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

aser cooling

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Back to two-level atom ($\hbar\omega_0$) in the EM field (ω).

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Back to two-level atom $(\hbar\omega_0)$ in the EM field (ω) .

Electric dipole moment: $\vec{p}(\vec{r}, t) = \alpha \vec{E}(\vec{r}, t)$, where α is the complex polarizability of the atom.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Back to two-level atom $(\hbar\omega_0)$ in the EM field (ω) .

Electric dipole moment: $\vec{p}(\vec{r},t) = \alpha \vec{E}(\vec{r},t)$, where α is the complex polarizability of the atom.

Potential of interaction between the light and the dipole moment: $U_{dip} = -\frac{1}{2} \left\langle \vec{p} \cdot \vec{E} \right\rangle = -\frac{1}{2\varepsilon_0 c} Re(\alpha) I(\vec{r})$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

ション ふゆ ア キョン キョン ヨー もくの

Back to two-level atom $(\hbar\omega_0)$ in the EM field (ω) .

Electric dipole moment: $\vec{p}(\vec{r},t) = \alpha \vec{E}(\vec{r},t)$, where α is the complex polarizability of the atom.

Potential of interaction between the light and the dipole moment: $U_{dip} = -\frac{1}{2} \left\langle \vec{p} \cdot \vec{E} \right\rangle = -\frac{1}{2\varepsilon_0 c} Re(\alpha) I(\vec{r})$ Scattering rate: $\Gamma_{sc} = \frac{\langle \vec{p} \cdot \vec{E} \rangle}{h_{cl}} Im(\alpha) I(\vec{r})$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

ション ふゆ ア キョン キョン ヨー もくの

Back to two-level atom $(\hbar\omega_0)$ in the EM field (ω) .

Electric dipole moment: $\vec{p}(\vec{r},t) = \alpha \vec{E}(\vec{r},t)$, where α is the complex polarizability of the atom.

Potential of interaction between the light and the dipole moment:
$$\begin{split} U_{dip} &= -\frac{1}{2} \left\langle \vec{p} \cdot \vec{E} \right\rangle = -\frac{1}{2\varepsilon_0 c} Re(\alpha) I(\vec{r}) \\ \text{Scattering rate: } \Gamma_{sc} &= \frac{\left\langle \vec{p} \cdot \vec{E} \right\rangle}{\hbar \omega} Im(\alpha) I(\vec{r}) \end{split}$$

In the classical Lorentz Oscillator model of an atom $(\ddot{x} + \Gamma_\omega \dot{x} + \omega_0^2 x = -eE(t)/m_e)$

$$\alpha = 6\pi\varepsilon_0 c^3 \frac{\Gamma/\omega_0^2}{\omega_0^2 - \omega^2 - \hat{\imath}(\omega^3/\omega_0^2)\Gamma}, \text{ where } \Gamma = (\omega_0/\omega)^2 \Gamma_\omega.$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Back to two-level atom ($\hbar\omega_0$) in the EM field (ω).

Electric dipole moment: $\vec{p}(\vec{r},t) = \alpha \vec{E}(\vec{r},t)$, where α is the complex polarizability of the atom.

Potential of interaction between the light and the dipole moment:
$$\begin{split} U_{dip} &= -\frac{1}{2} \left\langle \vec{p} \cdot \vec{E} \right\rangle = -\frac{1}{2\varepsilon_0 c} Re(\alpha) I(\vec{r}) \\ \text{Scattering rate: } \Gamma_{sc} &= \frac{\left\langle \vec{p} \cdot \vec{E} \right\rangle}{\hbar \omega} Im(\alpha) I(\vec{r}) \end{split}$$

In the classical Lorentz Oscillator model of an atom $(\ddot{x} + \Gamma_\omega \dot{x} + \omega_0^2 x = -eE(t)/m_e)$

$$\alpha = 6\pi\varepsilon_0 c^3 \frac{\Gamma/\omega_0^2}{\omega_0^2 - \omega^2 - \hat{\imath}(\omega^3/\omega_0^2)\Gamma}, \text{ where } \Gamma = (\omega_0/\omega)^2 \Gamma_\omega.$$

After rotating wave approximation ($|\Delta| = |\omega - \omega_0| \ll \omega_0$):

$$U_{dip} = \frac{3\pi c^2}{2\omega_0^3} \frac{\Gamma}{\Delta} I(\vec{r})$$

$$\Gamma_{sc} = \frac{3\pi c^2}{2\hbar\omega_0^3} \left(\frac{\Gamma}{\Delta}\right)^2 I(\vec{r})$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

$$U_{dip} = rac{3\pi c^2}{2\omega_0^3} rac{\Gamma}{\Delta} I(\vec{r})$$

 $\Gamma_{sc} = rac{3\pi c^2}{2\hbar\omega_0^3} \left(rac{\Gamma}{\Delta}
ight)^2 I(\vec{r})$

- The interaction potential U_{dip} is proportional to the light intensity $I(\vec{r})$ and its sign depends on the detuning.
 - $\blacktriangleright \Delta < 0$ red detuned force directed to potential maxima
 - ► Δ > 0 blue detuned force directed to potential minima

•
$$\Gamma_{sc}/U_{dip} \propto 1/\Delta \Longrightarrow$$
 large detuning are better for us

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

aser cooling

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

The most basic optical lattice trap consists of two focused, counter-propagating red-detuned laser beams $(\vec{k} \text{ and } -\vec{k})$

Intensity in the direction of propagation (z) becomes a standing wave:

$$I(z) = \left| \vec{E_1}(z,t) + \vec{E_2}(z,t) \right|^2 = 2 \left| E_0 \cos(\omega t) \cos(kz) \right|^2 \approx E_0^2 \cos^2(kz)$$

and the potential $U(z) \sim \cos^2(kz)$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

One-dimensional optical lattice: $U(r, z) = U_o \left(1 - e^{-2r^2/w_o^2} \cos^2(kz)\right)$ Two-level atoms in the lattice probed by the clock laser (ω_p, k_p) can be described by:

$$\begin{aligned} \hat{H} &= \hbar \omega_{eg} |e\rangle \langle e| + (\hbar \Omega \cos(\omega_p t - k_p \hat{z}) |e\rangle \langle g| + H.C.) + \hat{H}_{ext}, \\ \hat{H}_{ext} &= \frac{\hbar^2 \hat{\kappa}^2}{2m} + U_0 (1 - e^{-2(\hat{\kappa}^2 + \hat{y}^2)/w_0^2} \cos^2(k\hat{z})) \end{aligned}$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime

Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

One-dimensional optical lattice: $U(r, z) = U_o \left(1 - e^{-2r^2/w_o^2} \cos^2(kz)\right)$ Two-level atoms in the lattice probed by the clock laser (ω_p, k_p) can be described by:

$$\begin{aligned} \hat{H} &= \hbar \omega_{eg} |e\rangle \langle e| + (\hbar \Omega \cos(\omega_p t - k_p \hat{z}) |e\rangle \langle g| + H.C.) + \hat{H}_{ext}, \\ \hat{H}_{ext} &= \frac{\hbar^2 \hat{\kappa}^2}{2m} + U_0 (1 - e^{-2(\hat{\kappa}^2 + \hat{y}^2)/w_0^2} \cos^2(k\hat{z})) \\ \Rightarrow \text{ Bloch states!} \end{aligned}$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime

Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

source: PhD thesis Rodolphe Le Targat

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

\Rightarrow Bloch states \Rightarrow tunneling between sites \Rightarrow no longer in L-D regime.

source: PhD thesis Rodolphe Le Targat

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime

Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Solution: vertical lattice

$$\hat{H}_{ext} = rac{\hbar^2 \hat{\kappa}^2}{2m} + U_0(1 - e^{-2(\hat{x}^2 + \hat{y}^2)/w_0^2} \cos^2(k\hat{z})) + mg\hat{z}$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime

Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡

Resolved sidebands in ⁸⁸Sr optical lattice clock

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Optical lattice atomic clocks Michał Zawada
Lattice depth

Typical depth of the lattice: few tens of μ K.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

Lattice depth

Typical depth of the lattice: few tens of μ K.

Atoms have to be cooled down to tens of $\mu {\rm K}$ before loading into the lattice \ldots

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The basic idea - absorption and spontaneous emission

$$\Delta \vec{p} = \sum \hbar \vec{k}_{abs} - \sum \hbar \vec{k}_{em} = N \hbar \vec{k}_{abs} - 0$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The basic idea - absorption and spontaneous emission

$$\Delta ec{p} = \sum \hbar ec{k}_{abs} - \sum \hbar ec{k}_{em} = N \hbar ec{k}_{abs} - 0$$

Example:

Na atoms, $\lambda = 590$ nm, m = 23, v = 600 m/s at T = 400 K. Absorption of 1 photon $\implies \Delta v = \hbar k/m = 3$ cm/s. \implies it takes $\sim 20~000$ photons to stop. If I = 6 mW/cm², then the atomic beam will stop in 1 ms at 0.5 m. Deceleration: 10^6 m/s².

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

ション ふゆ ア キョン キョン ヨー もくの

A complication: atoms will go off resonance due to the Doppler shift.

source: WD. Phillips, Rev. Mod. Phys., 70, 721, (1998)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

A complication: atoms will go off resonance due to the Doppler shift.

Solutions:

- Tune the frequency of the laser.
- Tune the transition frequency in atoms.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

A complication: atoms will go off resonance due to the Doppler shift.

"Chirping" the laser frequency:

source: WD. Phillips et al., j. Opt. Soc. Am. B, 2, 1751 (1985)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ● ●

A complication: atoms will go off resonance due to the Doppler shift.

Zeeman slower

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Laser cooling — Zeeman slower

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Laser cooling — Optical molasses

Two counter propagating, red-detuned laser beams with frequency $\omega < \omega_0$

Atoms are more in resonance with counter-propagating beam. Atoms loose energy when emitting

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Laser cooling — Optical molasses

For low velocities $F \propto v \Longrightarrow$ cooling.

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Laser cooling — Magneto-Optical trap

Force which depends on position $F \propto x$ \implies Magneto-Optical Trap Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Laser cooling — Magneto-Optical trap

source: TM Brzozowski PhD Thesis Cooling limit — In emissions of photons $\langle v^2 \rangle \neq 0$ \implies Doppler limit: $K_B T = \hbar \Gamma/2$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Vacuum System

And now back to Optical Lattice Clocks...

source: P. Morzynski PhD Thesis

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Alkaline earth-like

Two stages of magneto-optical trapping needed.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Alkaline earth-like

Real atoms in vast majority are not two-level atoms...

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲ロト ▲母ト ▲目ト ▲目ト 三目 - のへの

Alkaline earth-like

Solution: Repumping lasers.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Lamb-Dicke regime

Lamb-Dicke regime: $\sqrt{\frac{\omega_{rec}}{\omega_V}}\sqrt{(n+1)} \ll 1$ Potential with depth $10E_{rec}$ or more is needed to neglect motions of atoms.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Lamb-Dicke regime

Lamb-Dicke regime: $\sqrt{\frac{\omega_{rec}}{\omega_V}}\sqrt{(n+1)} \ll 1$ Potential with depth $10E_{rec}$ or more is needed to neglect motions of atoms. Strong trapping light

- huge light shift (AC Stark shift), at least several tens of kHz,
- polarisation dependent effects

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Magic

 $U = -\frac{1}{4} \alpha(\epsilon, \omega_L) E^2$ Solution: "Magic" wavelength

Source: Katori, Nature Photonics 5, 203, (2011) where polarizabilites, i.e. AC-Stark shifts, are equal for both clock states

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本語を 本語を 本語を 本日を

Lasers for Sr optical lattice clock

source: PG. Westergaard PhD Thesis

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

・ロト ・日下 ・日下 ・日下 ・ クタウ

Clock laser

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2 Magic wavelenght Ultra-stable laser

Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ● ● ●

Ultra-stable cavity

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2 Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Timing scheme of one cycle in ⁸⁸Sr clock

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Bosons vs fermions

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Source: Katori, Nature Photonics 5, 203, (2011)

Timing scheme of one cycle in ⁸⁷Sr clock

Optical Blue MOT Red MOT pumping Interrogation Detection Blue MOT Zeeman Slower Red MOT Quadrupole magnetic field Homogeneois magnetic field Optical lattice Repumpers Blue probe Clock light

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

Interrogation and detection

Fluorescence imaging with electron shelving technique probes directly the probability of the transition $P_c = \frac{N_e}{N_e + N_r}$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Detection

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Remember Rabi oscillations?

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

Rabi interrogation

Single clock laser π pulse.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ramsey interrogation

source: PG. Westergaard PhD Thesis

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ramsey interrogation

(日)、

э

source: MN Bishof PhD Thesis

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

Lock to the clock line

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

Stability

- noises of an oscillator (laser)
- noises of detection
- quantum projection noise

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Dick effect

Dead time in each clock cycle leads to degrading the long term clock stability due to fast fluctuation of clock laser

source: PG Westergaard et al., IEEE Trans. Ultrason., Ferroelect., Freq. Control, 57, 623

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

Dick effect

Dead time in each clock cycle leads to degrading the long term clock stability due to fast fluctuation of clock laser

Depends on:

- S(f): noise of the laser
- d: Duty cycle
- g(t): type of interrogation used

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

ъ

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

Dick effect

Dead time in each clock cycle leads to degrading the long term clock stability due to fast fluctuation of clock laser

Depends on:

- S(f): noise of the laser
- d: Duty cycle
- g(t): type of interrogation used

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

ъ

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy
Dick effect

Dead time in each clock cycle leads to degrading the long term clock stability due to fast fluctuation of clock laser

Depends on:

- S(f): noise of the laser
- d: Duty cycle
- g(t): type of interrogation used

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Dick effect

Dead time in each clock cycle leads to degrading the long term clock stability due to fast fluctuation of clock laser

Depends on:

- S(f): noise of the laser
- d: Duty cycle
- g(t): type of interrogation used

Limitation of the fractional Allan variance:

$$\sigma_L^2(\tau) = \frac{1}{\tau} \sum_{m=1}^{\infty} \left| \frac{g_m}{g_0} \right|^2 S(m/T_c)$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

Dick effect - synchronous vs asynchronous comparison

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Detection noise

How the fluctuations of the clock transition frequency transfer into fluctuation of the locked clock laser

- An example Ramsey interrogation, π/2 impulses τ_d long, separated by T
- Probability of transition at frequency ν is $p(\nu) = \frac{1}{2} (1 + \cos(2\pi T ((\nu \nu_0))))$
- Fluctuations of the probability measurements δp and fluctuations of transition frequency $\delta \nu_0$ are connected by: $\delta p = \pi T \delta \nu_0$
- ► For any measurement $\delta p = \pi \int_{cycle} g(t) \delta \nu_0(t) dt$, where g(t) is an atomic sensivity function
- ► δp is applied as an error signal to the PI lock of the laser. Therefore any noise in probability measurement induce noise of the frequency of the locked laser $\delta P/\pi T_{cycle} < g(t) >$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

Quantum projection noise

- A two-level system prepared as a linear superposition $|\psi\rangle = c_A |A\rangle + c_B |B\rangle$
- We detect if the system is in $|A\rangle$ or $|B\rangle$
- Probability of the system in state $|A\rangle$ is equal to $p_A = |c_A|^2$
- Measurements can be predicted in certainty only when $c_A = 0$ or $c_B = 0$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

ション ふゆ ア キョン キョン ヨー もくの

Quantum projection noise

- ► A two-level system prepared as a linear superposition $|\psi\rangle = c_A |A\rangle + c_B |B\rangle$
- We detect if the system is in $|A\rangle$ or $|B\rangle$
- Probability of the system in state $|A\rangle$ is equal to $p_A = |c_A|^2$
- Measurements can be predicted in certainty only when $c_A = 0$ or $c_B = 0$
- ▶ N independent atoms, N_A i N_B are in |A⟩ and |B⟩ states, respectively
- ► $P(N_B, N, p_B) = \frac{N!}{N_B!(N!-N_B!)} (p_B)^{N_B} (1-p_B)^{N-N_B}$
- variance of the binomial distribution: $\sigma^2 = Np_B(1 p_B)$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

State-of-the art - above QPN

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy

Stability Accuracy

source: BJ Bloom et al. Nature 506, 71, (2014)

Accuracy

How well we can control shifts due to environment

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

ション ふゆ ア キョン キョン ヨー もくの

Zeeman effect: 1 and 2 order

linear

quadratic

Optical pumping + interleaved $^{(2015)}$ measurements $m_F = \pm 1/2$

Measurement with different value of total magnetic field and interpolation to zero

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2 Magic wavelenght Ultra-stable laser Clock cycle

Linear AC Stark shift

Lattice light

Probe light

source: M. Takamoto et al Nature 435, 321

イロト 不同ト イヨト イヨト

ъ

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

(2005)

Room temperature $\Rightarrow \lambda \sim 10 \mu m$

⁸⁷Sr:
$$\Delta \nu_{|{}^{1}S_{0}>\rightarrow|{}^{3}P_{0}>,E1} = -2.354 \pm 0.032 Hz$$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

How to fight?

Fractional correction from BBR shift at 300 K

- Sr: -5.5×10^{-15}
- ▶ Yb: -2.6 × 10⁻¹⁵
- ► Hg: -1.6 × 10⁻¹⁶

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

ション ふゆ ア キョン キョン ヨー もくの

How to fight?

- Fractional correction from BBR shift at 300 K
 - Sr: -5.5×10^{-15}
 - ▶ Yb: −2.6 × 10⁻¹⁵
 - ► Hg: -1.6 × 10⁻¹⁶

Measure surroundings as good as possible and do the ray-tracing

source: P. Morzynski et al. Sci Rep, 5, 17495 (2015)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

How to fight?

Fractional correction from BBR shift at 300 K

- Sr: -5.5×10^{-15}
- ▶ Yb: −2.6 × 10⁻¹⁵
- ▶ Hg: −1.6 × 10⁻¹⁶

Measure surroundings as good as possible and do the ray-tracing

ション ふゆ ア キョン キョン ヨー もくの

source: TL Nicholson et al Nat. Commun.6, 6896 (2015)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

How to fight?

Fractional correction from BBR shift at 300 K

- Sr: -5.5×10^{-15}
- ▶ Yb: -2.6 × 10⁻¹⁵
- ► Hg: -1.6 × 10⁻¹⁶

Measure surroundings as good as possible and do the ray-tracing

Cryogenic environment

白头 不同头 不同头 不同头 一回

source: I. Ushijima Nat. Photon. 9, 185, (2015)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Accuracy of $10^{-18} \leftrightarrow$ light-shift control better than 10^{-8}

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡

Accuracy of $10^{-18} \leftrightarrow$ light-shift control better than 10^{-8}

• hyperpolarisability $\Delta \nu = -\frac{1}{4h} \Delta \alpha(\omega, \boldsymbol{e}) E^2 - \frac{1}{16h} \Delta \gamma(\omega, \boldsymbol{e}) E^4$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

うせん 御 (山) (山) (山) (山) (山) (山) (山)

Accuracy of $10^{-18} \leftrightarrow$ light-shift control better than 10^{-8}

• hyperpolarisability $\Delta \nu = -\frac{1}{4h} \Delta \alpha(\omega, \boldsymbol{e}) E^2 - \frac{1}{16h} \Delta \gamma(\omega, \boldsymbol{e}) E^4$

• three contributions of electrical dipol polarisability $\alpha(\omega, \boldsymbol{e})$: scalar, vector and tensor $\Delta \nu_{\alpha}^{E1} = (\Delta \kappa^s + \Delta \kappa^v \xi m_F \sin \psi + \Delta \kappa^t f(\theta, \psi, \xi) [3m_F^2 - F(F-1)]) U_0$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

Accuracy of $10^{-18} \leftrightarrow$ light-shift control better than 10^{-8}

• hyperpolarisability $\Delta \nu = -\frac{1}{4h} \Delta \alpha(\omega, \boldsymbol{e}) E^2 - \frac{1}{16h} \Delta \gamma(\omega, \boldsymbol{e}) E^4$

• three contributions of electrical dipol polarisability $\alpha(\omega, \boldsymbol{e})$: scalar, vector and tensor $\Delta \nu_{\alpha}^{E1} = (\Delta \kappa^s + \Delta \kappa^v \xi m_F \sin \psi + \Delta \kappa^t f(\theta, \psi, \xi) [3m_F^2 - F(F-1)]) U_0$

• higher multipoles besides E1 $\Delta \nu^{M1/E2} = \zeta (n+1/2) \sqrt{U_0}$

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

くしゃ 本面 そうせん ほう うめんろ

Other effects

Line pulling

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

・ロト ・四ト ・ヨト ・ヨト ・日・ シュウ

Other effects

- Line pulling
- Collisions

In fermions cold-cold collisions are limited, since *s*-wave scattering is forbidden (possible *p*-wave scattering of ${}^{3}P_{0}$ states)

くしゃ 本面 そうせん ほう うめんろ

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

aser cooling

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Other effects

- Line pulling
- Collisions
- DC Stark shift

Static charges on dielectrics inside the vaccum

Can be high (up to \sim 40 Hz), but easy to remove. (IEEE TUFFC 59, 411, 2012)

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Gravitational redshift

Clock raised by 33 cm.

Optical lattice atomic clocks

Michał Zawada KL FAMO, Nicolaus Copernicus University

Time standards

Optical clocks 1

Lamb-Dicke regime Wannier-Stark regime

Laser cooling and trapping

Optical clocks 2

Magic wavelenght Ultra-stable laser Clock cycle

Stability and accuracy Stability Accuracy

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ④ < ⊙