
Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Optical lattice atomic clocks

Michał Zawada
KL FAMO, Nicolaus Copernicus University

26 February 2016



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

La seconde
est la durée de 9 192 631 770 périodes de la radiation
correspondant à la transition entre les deux niveaux hyperfins
de l’état fondamental de l’atome de césium 133.

The second is the duration of 9 192 631 770 periods of the
radiation corresponding to the transition between the two
hyperfine levels of the ground state of the caesium 133 atom.
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Who needs a better time?
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Who needs a better time?

Satellite navigation
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Who needs a better time?

Satellite navigation

Telecommunications



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Who needs a better time?

Satellite navigation

Telecommunications

Deep space missions
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Who needs a better time?

Satellite navigation

Telecommunications

Deep space missions

Transport

E-commerce, banking,

stock exchange
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Who needs a better time?

Satellite navigation

Telecommunications

Deep space missions

Transport

E-commerce, banking,

stock exchange

Fundamental research

Electric power

smart grid

Geodesy
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Worldwide market

Global GNSS market size: 250 billion e in 2016
source: European GNSS Agency (GSA), 4

rd Market Report (2015)

Telecommunications: one trillion $ market by 2019
source: Global Wireless Infrastructure Market 2013 Forecast to Industry Size, Shares,

Strategies, Trends, and Growth 2019

Smart electrical grid: 400 billion e by 2020
source: GTM Research, Global Smart Grid Technologies and Growth Markets, 2013-2020
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Direct applications
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Atomic clock

Atomic clock diagram

� Ideal clock: a signal with
stable and universal
frequency.

� Energy levels of
unperturbed atoms are
stable and universal.
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Atomic clock

Atomic clock diagram

ω(t) = ωef ∗ (1 + ε+ y(t))

ε -fractional offset of frequency
y(t) - fractional fluctuations of
frequency

Accuracy
- uncertainty of ε

Stability
- statistical properties of y(t),
characterized by the Allan
deviation σy (τ)
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Accuracy and stability

source: nist.gov
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Allan deviation

σf (τ) =

���� 1

2

�

n

�
fn+1,τ − fn,τ

�2

n

source: nist.gov

fn is a set of frequency offset measurements that consists of
individual measurements, f1, f2, f3, and so on and the data
are equally spaced in segments τ seconds long.
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Time standards

1. Atomic fountains, accuracy of ∼ 10−16

2. Commercial caesium clocks, with good long term
stability ∼ 10−15 over few months and accuracy of
∼ 10−13

3. Hydrogen masers: 1.4 GHz hyperfine structure transition
in atomic hydrogen. Much better short-time stability
than any commercial caesium clock: ∼ 10−15 over few
hours
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Caesium clocks and hydrogen masers

HP5071A caesium clock and VCH-1005

hydrogen maser in the Central Office of

Measures in Poland
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Caesium clocks and hydrogen masers

Feng-Lei Hong et al. Opt. Express 13, 5253-5262 (2005)
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Atomic fountain

Source: Systèmes de Références Temps-Espace
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Microwave clocks vs optical clocks

Helen Margolis, Nature Physics 10, 82-83 (2014)
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Microwave clocks vs optical clocks

Quality of the clock: Q = ν
∆ν × S

N
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Microwave clocks vs optical clocks

Quality of the clock: Q = ν
∆ν × S

N
∼ νT × S

N
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Microwave clocks vs optical clocks

Quality of the clock: Q = ν
∆ν × S

N
∼ νT × S

N

Stability of an atomic clock: σy (τ) ∼ σspect

Q

�
Tc

τ
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Microwave clocks vs optical clocks

Quality of the clock: Q = ν
∆ν × S

N
∼ νT × S

N

Stability of an atomic clock: σy (τ) ∼ σspect

Q

�
Tc

τ

Quantum Shot Noise limitation: σy (τ) =
1
πQ × 1

Nat
×
�

Tc

τ
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Optical clocks: trapped ions and neutral atoms

Ion traps: Ions trapped in the
Paul trap by the RF field

� Trap is perturbed only
slightly ⇒ excellent
accuracy 3 × 10−18

N. Huntemann et al. Phys. Rev. Lett.

116, 063001 (2016)

� Good stability
(3 × 10−15/

√
τ), but

restricted by
Quantum Shot Nose
- only 1 ion.
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Optical clocks: trapped ions and neutral atoms

Ion traps: Ions trapped in the
Paul trap by the RF field

� Trap is perturbed only
slightly ⇒ excellent
accuracy 3 × 10−18

N. Huntemann et al. Phys. Rev. Lett.

116, 063001 (2016)

� Good stability
(3 × 10−15/

√
τ), but

restricted by
Quantum Shot Nose
- only 1 ion.

Neutral atoms: Optical lattice

� A trap with a hight-intensity
light ⇒ high perturbation,
though well under control.
2 ∗ 10−18

T.L. Nicholson et al. Nature

Communications, 6, 6896 (2015)

� High number of atoms
(104)⇒ high stability
possible. 1.8 × 10−16/

√
τ

down to 2 × 10−18
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Optical clocks: trapped ions and neutral atoms

A. G. Smart, Phys. Today 67, 3, 12 (2014)
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A transition good for optical clock

Natural linewidth of an electric dipole (E1) transition is
typically bigger than 1 MHz ⇒ Q below 108



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

A transition good for optical clock

Natural linewidth of an electric dipole (E1) transition is
typically bigger than 1 MHz ⇒ Q below 108

Clock transition should be:
� Narrow (forbidden)
� Mostly insensitive to external fields.
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A transition good for optical clock

Natural linewidth of an electric dipole (E1) transition is
typically bigger than 1 MHz ⇒ Q below 108

Clock transition should be:
� Narrow (forbidden)
� Mostly insensitive to external fields.

Possible candidates:
� two-photon transitions and higher order electric

transitions (quadrupole, octupole . . . )
� a low energy nuclear transition (still sought at 229

Th)
� an intercombination transition
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Alkaline-earth and alkaline-earth like atoms/ions

Source: NIST
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Alkaline-earth and alkaline-earth like atoms/ions
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Alkaline-earth and alkaline-earth like atoms/ions

� Forbidden 1
S0 − 3

P1
transition:

� Fine structure
interaction
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Alkaline-earth and alkaline-earth like atoms/ions

� Forbidden 1
S0 − 3

P1
transition:

� Fine structure
interaction

� Double forbidden
1
S0 − 3

P0 transition:
� Fermions: hyperfine

interaction
� Bosons: quenching by

a static B field
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Quality killers: Doppler shift and recoil shift

source: Pdbailey at Wikipedia

� f (v) ∼ v
2

T3/2 e
−mv

2
2kT
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Quality killers: Doppler shift and recoil shift

source: Pdbailey at Wikipedia

� f (v) ∼ v
2

T3/2 e
−mv

2
2kT

� Doppler shift: ν = ν0

�
1 + v

c

�
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Quality killers: Doppler shift and recoil shift

source: Pdbailey at Wikipedia

� f (v) ∼ v
2

T3/2 e
−mv

2
2kT

� Doppler shift: ν = ν0

�
1 + v

c

�

� Distribution of the observed
frequencies:
Pν(ν)dν = Pv (vν) dv

dν dν
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Quality killers: Doppler shift and recoil shift

source: Pdbailey at Wikipedia

� f (v) ∼ v
2

T3/2 e
−mv

2
2kT

� Doppler shift: ν = ν0

�
1 + v

c

�

� Distribution of the observed
frequencies:
Pν(ν)dν = Pv (vν) dv

dν dν

� Pν(ν)dν ∼�
1

T2ν2
0

exp
�
−mc

2(ν−ν0)
2

2kTν2
0

�
dν
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Quality killers: Doppler shift and recoil shift

source: Pdbailey at Wikipedia

� f (v) ∼ v
2

T3/2 e
−mv

2
2kT

� Doppler shift: ν = ν0

�
1 + v

c

�

� Distribution of the observed
frequencies:
Pν(ν)dν = Pv (vν) dv

dν dν

� Pν(ν)dν ∼�
1

T2ν2
0

exp
�
−mc

2(ν−ν0)
2

2kTν2
0

�
dν

� ∆νFWHM =
�

8kT ln 2

mc2 ν0
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Quality killers: Doppler shift and recoil shift

source: Pdbailey at Wikipedia

� f (v) ∼ v
2

T3/2 e
−mv

2
2kT

� Doppler shift: ν = ν0

�
1 + v

c

�

� Distribution of the observed
frequencies:
Pν(ν)dν = Pv (vν) dv

dν dν

� Pν(ν)dν ∼�
1

T2ν2
0

exp
�
−mc

2(ν−ν0)
2

2kTν2
0

�
dν

� ∆νFWHM =
�

8kT ln 2

mc2 ν0 ∼ GHz

at room temperature
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Quality killers: Doppler shift and recoil shift

source: Pdbailey at Wikipedia

� f (v) ∼ v
2

T3/2 e
−mv

2
2kT

� Doppler shift: ν = ν0

�
1 + v

c

�

� Distribution of the observed
frequencies:
Pν(ν)dν = Pv (vν) dv

dν dν

� Pν(ν)dν ∼�
1

T2ν2
0

exp
�
−mc

2(ν−ν0)
2

2kTν2
0

�
dν

Sub-Doppler spectroscopy, or cool down atoms. . .
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Quality killers: Doppler shift and recoil shift
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Unperturbed Hamiltonian of the atom: H0 = �ωg |g� �g |+ �ωe |e� �e|

Zero point energy can be chosen at will: H0 = �ω0 |e� �e|

Monochromatic electromagnetic wave: �E(t,�r) = �E0e
−ı̂(ωt+φ(�r)) + c.c.

The interaction Hamiltonian under dipole approximation: Hint = −d̂ · �E

d̂ = er̂ due to parity can be expressed as d̂ = deg |e� �g |+ d
∗
eg |g� �e|

=⇒ Hint =
�
2
Ω(�r)e−ı̂ωt (|e� �g |+ |g� �e|) + �

2
Ω∗(�r)e ı̂ωt (|g� �e|+ |e� �g |)

where Ω(�r) = −2d · �E0e
−φ(�r)/� is the so-called Rabi frequency.



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Two-level atom in EM field

Unperturbed Hamiltonian of the atom: H0 = �ωg |g� �g |+ �ωe |e� �e|

Zero point energy can be chosen at will: H0 = �ω0 |e� �e|

Monochromatic electromagnetic wave: �E(t,�r) = �E0e
−ı̂(ωt+φ(�r)) + c.c.

The interaction Hamiltonian under dipole approximation: Hint = −d̂ · �E

d̂ = er̂ due to parity can be expressed as d̂ = deg |e� �g |+ d
∗
eg |g� �e|

=⇒ Hint =
�
2
Ω(�r)e−ı̂ωt (|e� �g |+ |g� �e|) + �

2
Ω∗(�r)e ı̂ωt (|g� �e|+ |e� �g |)

where Ω(�r) = −2d · �E0e
−φ(�r)/� is the so-called Rabi frequency.



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Two-level atom in EM field

Unperturbed Hamiltonian of the atom: H0 = �ωg |g� �g |+ �ωe |e� �e|

Zero point energy can be chosen at will: H0 = �ω0 |e� �e|

Monochromatic electromagnetic wave: �E(t,�r) = �E0e
−ı̂(ωt+φ(�r)) + c.c.

The interaction Hamiltonian under dipole approximation: Hint = −d̂ · �E

d̂ = er̂ due to parity can be expressed as d̂ = deg |e� �g |+ d
∗
eg |g� �e|

=⇒ Hint =
�
2
Ω(�r)e−ı̂ωt (|e� �g |+ |g� �e|) + �

2
Ω∗(�r)e ı̂ωt (|g� �e|+ |e� �g |)

where Ω(�r) = −2d · �E0e
−φ(�r)/� is the so-called Rabi frequency.



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Two-level atom in EM field

Unperturbed Hamiltonian of the atom: H0 = �ωg |g� �g |+ �ωe |e� �e|

Zero point energy can be chosen at will: H0 = �ω0 |e� �e|

Monochromatic electromagnetic wave: �E(t,�r) = �E0e
−ı̂(ωt+φ(�r)) + c.c.

The interaction Hamiltonian under dipole approximation: Hint = −d̂ · �E

d̂ = er̂ due to parity can be expressed as d̂ = deg |e� �g |+ d
∗
eg |g� �e|

=⇒ Hint =
�
2
Ω(�r)e−ı̂ωt (|e� �g |+ |g� �e|) + �

2
Ω∗(�r)e ı̂ωt (|g� �e|+ |e� �g |)

where Ω(�r) = −2d · �E0e
−φ(�r)/� is the so-called Rabi frequency.



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Two-level atom in EM field

Unperturbed Hamiltonian of the atom: H0 = �ωg |g� �g |+ �ωe |e� �e|

Zero point energy can be chosen at will: H0 = �ω0 |e� �e|

Monochromatic electromagnetic wave: �E(t,�r) = �E0e
−ı̂(ωt+φ(�r)) + c.c.

The interaction Hamiltonian under dipole approximation: Hint = −d̂ · �E

d̂ = er̂ due to parity can be expressed as d̂ = deg |e� �g |+ d
∗
eg |g� �e|

=⇒ Hint =
�
2
Ω(�r)e−ı̂ωt (|e� �g |+ |g� �e|) + �

2
Ω∗(�r)e ı̂ωt (|g� �e|+ |e� �g |)

where Ω(�r) = −2d · �E0e
−φ(�r)/� is the so-called Rabi frequency.



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Two-level atom in EM field

After rotating wave approximation (|∆| = |ω − ω0| � ω0):

H
RWA

int
= �

2
Ω(�r)e−ı̂ωt |e� �g |+ �

2
Ω∗(�r)e ı̂ωt |g� �e|

Using the abbreviation for the generalized Rabi frequency: Ω̃ =
√
∆2 + Ω2

the probability of finding the atom in the upper level state is:

Pe(t) = Ω
Ω̃

sin2(Ω̃t/2).

Pe(ω) ∼ sin
2(ωt/2)

(ωt/2)2
.

In the presence of sufficient decoherence, Pe(ω) becomes a Lorentzian line
shape whose width is the decoherence rate Γ divided by 2π.
Doppler shift across the atomic velocity distribution broadens the line shape
into a Gaussian or Voigt line shape.
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Two-level atom in EM field in a harmonic oscillator

In a harmonic potential the atomic motion is not a continuous variable, but is
restricted to the quantized motional states |n� of the system.

=⇒ New term in Hamiltonian: Hosc = �ωh

�
a
†
a+ 1

2

�
.

Modified Rabi rate of transitions in two-level atom from |g� |n� state to
|e� |m� state:

Ωmn = Ω̃�m|e ı̂η
�
a+a

†
�

|n� = Ω̃e
−η2/2

�
n<!
n>!η

|m−n|
L
|m−n|
n< (η2)

where η =
�

�k2
2mωh

= kx0√
2

is the so-called Lamb-Dicke parameter.

η � 1 required!
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Two-level atom in EM field in a harmonic oscillator

source: Ludlow et al. Rev. Mod. Phys. 87, 637 (2015)

η � 1 required!
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Optical lattice

Back to two-level atom (�ω0) in the EM field (ω).

Electric dipole moment: �p(�r , t) = α�E(�r , t), where α is the complex
polarizability of the atom.

Potential of interaction between the light and the dipole moment:
Udip = − 1

2

�
�p · �E

�
= − 1

2ε0c
Re(α)I (�r)

Scattering rate: Γsc =
��̇p·�E�
�ω Im(α)I (�r)

In the classical Lorentz Oscillator model of an atom
(ẍ + Γω ẋ + ω2

0
x = −eE(t)/me)

α = 6πε0c3 Γ/ω2
0

ω2
0−ω2−ı̂(ω3/ω2

0)Γ
, where Γ = (ω0/ω)2Γω .

After rotating wave approximation (|∆| = |ω − ω0| � ω0):

Udip = 3πc
2

2ω3
0

Γ
∆ I (�r)

Γsc = 3πc
2

2�ω3
0

�
Γ
∆

�2

I (�r)
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Udip = 3πc2

2ω3
0

Γ
∆ I (�r)

Γsc = 3πc2

2�ω3
0

�
Γ
∆

�2
I (�r)

� The interaction potential Udip is proportional to the light
intensity I (�r) and its sign depends on the detuning.

� ∆ < 0 — red detuned — force directed to potential
maxima

� ∆ > 0 — blue detuned — force directed to potential
minima

� Γsc/Udip ∝ 1/∆ =⇒ large detuning are better for us
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Optical lattice

The most basic optical lattice trap consists of two focused,
counter-propagating red-detuned laser beams (�k and −�k)

Intensity in the direction of propagation (z) becomes a
standing wave:

I (z) =
��� �E1(z , t) + �E2(z , t)

���
2
= 2 |E0 cos(ωt) cos(kz)|2 ≈

E
2
0 cos2(kz)

and the potential U(z) ∼ cos2(kz)
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Wannier-Stark regime

One-dimensional optical lattice:
U(r , z) = Uo

�
1 − e

−2r2/w2
0 cos2(kz)

�

Two-level atoms in the lattice probed by the clock laser (ωp, kp)
can be described by:

Ĥ = �ωeg |e��e|+ (�Ω cos(ωpt − kp ẑ)|e��g |+ H.C .) + Ĥext ,

Ĥext =
�2κ̂2

2m + U0(1 − e
−2(x̂2+ŷ

2)/w2
0 cos2(kẑ))

⇒ Bloch states!

source: PhD thesis Rodolphe Le Targat



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Wannier-Stark regime

One-dimensional optical lattice:
U(r , z) = Uo

�
1 − e

−2r2/w2
0 cos2(kz)

�
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2m + U0(1 − e
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⇒ Bloch states!

source: PhD thesis Rodolphe Le Targat
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Wannier-Stark regime
⇒ Bloch states ⇒ tunneling between sites ⇒ no longer in
L-D regime.

source: PhD thesis Rodolphe Le Targat



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Wannier-Stark regime

Solution: vertical lattice

Ĥext =
�2κ̂2

2m + U0(1 − e
−2(x̂2+ŷ

2)/w2
0 cos2(kẑ)) +mgẑ
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Resolved sidebands in 88Sr optical lattice clock
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Lattice depth

Typical depth of the lattice:
few tens of µK.

Atoms have to be cooled down to tens of µK before loading
into the lattice . . .
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Laser cooling

The basic idea - absorption and spontaneous emission

∆�p =
�

��kabs −
�

��kem = N��kabs − 0

Example:
Na atoms, λ = 590 nm, m = 23, v = 600 m/s at T = 400 K.
Absorption of 1 photon =⇒ ∆v = �k/m = 3 cm/s.
=⇒ it takes ∼20 000 photons to stop.
If I = 6 mW/cm2, then the atomic beam will stop in 1 ms at 0.5 m.
Deceleration: 106 m/s2.
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Laser cooling

The basic idea - absorption and spontaneous emission

∆�p =
�

��kabs −
�

��kem = N��kabs − 0

Example:
Na atoms, λ = 590 nm, m = 23, v = 600 m/s at T = 400 K.
Absorption of 1 photon =⇒ ∆v = �k/m = 3 cm/s.
=⇒ it takes ∼20 000 photons to stop.
If I = 6 mW/cm2, then the atomic beam will stop in 1 ms at 0.5 m.
Deceleration: 106 m/s2.
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Laser cooling

A complication: atoms will go off resonance due to the
Doppler shift.

source: WD. Phillips, Rev. Mod. Phys., 70, 721, (1998)
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Laser cooling

A complication: atoms will go off resonance due to the
Doppler shift.

Solutions:

� Tune the frequency of the laser.
� Tune the transition frequency in atoms.
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Laser cooling

A complication: atoms will go off resonance due to the
Doppler shift.

"Chirping" the laser frequency:

source: WD. Phillips et al., j. Opt. Soc. Am. B, 2, 1751 (1985)
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Laser cooling

A complication: atoms will go off resonance due to the
Doppler shift.

Zeeman slower
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Laser cooling — Zeeman slower
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Laser cooling — Optical molasses

Two counter propagating, red-detuned laser beams with
frequency ω < ω0

Atoms are more in resonance with counter-propagating beam.
Atoms loose energy when emitting
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Laser cooling — Optical molasses

For low velocities F ∝ v =⇒ cooling.
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Laser cooling — Magneto-Optical trap

Force which depends on position F ∝ x

=⇒ Magneto-Optical Trap
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Laser cooling — Magneto-Optical trap

source: TM Brzozowski PhD Thesis

Cooling limit — In emissions of photons �v2� �= 0
=⇒ Doppler limit: KBT = �Γ/2
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Vacuum System

And now back to Optical Lattice Clocks. . .

source: P. Morzynski PhD Thesis
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Alkaline earth-like

Two stages of magneto-optical trapping needed.
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Alkaline earth-like

Real atoms in vast majority are not two-level atoms. . .
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Alkaline earth-like

Solution:
Repumping lasers.
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Lamb-Dicke regime

Lamb-Dicke regime:
�

ωrec

ωV

�
(n + 1) � 1

Potential with depth 10Erec or more is needed to
neglect motions of atoms.

Strong trapping light
� huge light shift (AC Stark shift), at least

several tens of kHz,
� polarisation dependent effects
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Lamb-Dicke regime

Lamb-Dicke regime:
�

ωrec

ωV

�
(n + 1) � 1

Potential with depth 10Erec or more is needed to
neglect motions of atoms.
Strong trapping light

� huge light shift (AC Stark shift), at least
several tens of kHz,

� polarisation dependent effects
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Magic
U = −1

4α(�,ωL)E 2

Solution: "Magic" wavelength

Source: Katori, Nature Photonics 5, 203, (2011)

where polarizabilites, i.e. AC-Stark shifts, are equal for both
clock states
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Lasers for Sr optical lattice clock

source: PG. Westergaard PhD Thesis
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Clock laser
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Ultra-stable cavity



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Timing scheme of one cycle in 88Sr clock
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Bosons vs fermions

Source: Katori, Nature Photonics 5, 203, (2011)
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Timing scheme of one cycle in 87Sr clock
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Interrogation and detection

Fluorescence imaging with electron shelving technique probes directly the

probability of the transition Pc = Ne

Ne+Ng



Optical lattice

atomic clocks

Michał Zawada

KL FAMO,

Nicolaus

Copernicus

University

Time standards

Optical clocks 1

Lamb-Dicke
regime
Wannier-Stark
regime

Laser cooling

and trapping

Optical clocks 2

Magic wavelenght
Ultra-stable laser
Clock cycle

Stability and

accuracy

Stability
Accuracy

Detection

Remember Rabi oscillations?
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Rabi interrogation

Single clock laser π pulse.
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Ramsey interrogation

source: PG. Westergaard PhD Thesis
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Ramsey interrogation

source: MN Bishof PhD Thesis
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Lock to the clock line
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Stability

� noises of an oscillator (laser)
� noises of detection
� quantum projection noise
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Dick effect

Dead time in each clock cycle leads to degrading the long term clock stability
due to fast fluctuation of clock laser

source: PG Westergaard et al., IEEE Trans. Ultrason., Ferroelect., Freq. Control, 57, 623

(2010)
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Dick effect

Dead time in each clock cycle leads to degrading the long term clock stability
due to fast fluctuation of clock laser

Depends on:
� S(f): noise of the laser
� d: Duty cycle
� g(t): type of interrogation used
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� g(t): type of interrogation used
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due to fast fluctuation of clock laser

Depends on:
� S(f): noise of the laser
� d: Duty cycle
� g(t): type of interrogation used
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Dick effect

Dead time in each clock cycle leads to degrading the long term clock stability
due to fast fluctuation of clock laser

Depends on:
� S(f): noise of the laser
� d: Duty cycle
� g(t): type of interrogation used

Limitation of the fractional Allan variance:
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Dick effect - synchronous vs asynchronous
comparison

source: M. Takamoto et al. Nat. Photon. 5, 288, ((2011)
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Detection noise

How the fluctuations of the clock transition frequency
transfer into fluctuation of the locked clock laser

� An example - Ramsey interrogation, π/2 impulses τd long,
separated by T

� Probability of transition at frequency ν is
p(ν) = 1

2 (1 + cos (2πT ((ν − ν0)))

� Fluctuations of the probability measurements δp and
fluctuations of transition frequency δν0 are connected by:
δp = πT δν0

� For any measurement δp = π
�
cycle

g(t)δν0(t)dt, where g(t)
is an atomic sensivity function

� δp is applied as an error signal to the PI lock of the laser.
Therefore any noise in probability measurement induce noise
of the frequency of the locked laser δP/πTcycle < g(t) >
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Quantum projection noise

� A two-level system prepared as a linear superposition
|ψ� = cA|A�+ cB |B�

� We detect if the system is in |A� or |B�

� Probability of the system in state |A� is equal to pA = |cA|2

� Measurements can be predicted in certainty only when
cA = 0 or cB = 0
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Quantum projection noise

� A two-level system prepared as a linear superposition
|ψ� = cA|A�+ cB |B�

� We detect if the system is in |A� or |B�

� Probability of the system in state |A� is equal to pA = |cA|2

� Measurements can be predicted in certainty only when
cA = 0 or cB = 0

� N independent atoms, NA i NB are in |A� and |B� states,
respectively

� P(NB ,N, pB) =
N!

NB !(N!−NB !)
(pB)NB (1 − pB)N−NB

� variance of the binomial distribution: σ2 = NpB(1 − pB)
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State-of-the art - above QPN

source: BJ Bloom et al. Nature 506, 71, (2014)
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How well we can control shifts due to environment
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Zeeman effect: 1 and 2 order

linear

Optical pumping + interleaved
measurements mF = ±1/2

quadratic

source: P. Morzynski et al. Sci Rep, 5, 17495

(2015)

Measurement with different
value of total magnetic field
and interpolation to zero
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Linear AC Stark shift

Lattice light

source: M. Takamoto et al Nature 435, 321

(2005)

Probe light

source: P. Morzynski et al. Sci Rep, 5, 17495

(2015)
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Black body radiation

∆E|j> =

− 1
4hε0π3c3

�∞
0 α|j>(ω) ω3

e
�ω/k

B
T−1

dω

Room temperature ⇒ λ ∼ 10µm

87Sr: ∆ν|1S0>→|3P0>,E1 = −2.354 ± 0.032Hz
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How to fight?

� Fractional correction from BBR shift at 300 K
� Sr: −5.5 × 10−15

� Yb: −2.6 × 10−15

� Hg: −1.6 × 10−16
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Black body radiation

How to fight?

� Fractional correction from BBR shift at 300 K
� Sr: −5.5 × 10−15

� Yb: −2.6 × 10−15

� Hg: −1.6 × 10−16

� Measure surroundings as good as possible and do the ray-tracing

source: P. Morzynski et al. Sci Rep, 5, 17495 (2015)
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Black body radiation

How to fight?

� Fractional correction from BBR shift at 300 K
� Sr: −5.5 × 10−15

� Yb: −2.6 × 10−15

� Hg: −1.6 × 10−16

� Measure surroundings as good as possible and do the ray-tracing

source: TL Nicholson et al Nat. Commun.6, 6896 (2015)
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Black body radiation
How to fight?

� Fractional correction from BBR shift at 300 K
� Sr: −5.5 × 10−15

� Yb: −2.6 × 10−15

� Hg: −1.6 × 10−16

� Measure surroundings as good as possible and do the ray-tracing
� Cryogenic environment

source: I. Ushijima Nat. Photon. 9, 185, (2015)
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Higher-order light shifts

Accuracy of 10−18 ↔ light-shift control better than 10−8

� hyperpolarisability
∆ν = − 1

4h
∆α(ω, e)E2 − 1

16h
∆γ(ω, e)E4

� three contributions of electrical dipol polarisability α(ω, e): scalar,
vector and tensor
∆νE1

α =
�
∆κs +∆κv ξmF sinψ +∆κt

f (θ,ψ, ξ)
�
3m2

F
− F (F − 1)

��
U0

� higher multipoles besides E1
∆νM1/E2 = ζ(n + 1/2)

√
U0
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Other effects

� Line pulling
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Other effects

� Line pulling
� Collisions

In fermions cold-cold collisions are limited, since s-wave
scattering is forbidden (possible p-wave scattering of
3
P0 states)
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Other effects

� Line pulling
� Collisions
� DC Stark shift

Static charges on dielectrics inside the vaccum

Can be high (up to ∼ 40 Hz), but easy to remove.
(IEEE TUFFC 59, 411, 2012)
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Gravitational redshift

Clock raised by 33 cm.
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