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SOME OF THE PROPERTIES USERS EXPECT FROM A
LIGHT SOURCE

* High peak brilliance and full tunability in the spectral region of
interest

* Possibility of controlling pulse duration

* Full transverse and longitudinal coherence (diffraction imaging,
coherent control)

* Variable polarization (circular dichroism, surface science)

* Ultimate feature: the ability to arbitrarily shape the radiation

pulse in the temporal and spatial (longitudinal and transverse)

domains



YOU CAN'T ALWAYS GET WHAT YOU WANT?

In the IR to UV spectral region, the majority of
previously mentioned requirements are met by
conventional table-top lasers.

In the VUV to X-ray spectral domain, different
approaches must be used in order to achieve
laser-like properties of light. Seeded FELs are
currently the most promising candidates for
reaching this goal.



OUTLINE

* quick recap of bending magnet and undulator
radiation

* basic principles of FEL operation

* self-amplified spontaneous emission (SASE) vs.
seeded FELs

* advanced FEL concepts: longitudinal
(temporal) and transverse (spatial) shaping of
FEL pulses



BENDING MAGNET RADIATION
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UNDULATOR RADIATION
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UNDULATOR RADIATION ,,EXPLAINED*
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TIME STRUCTURE OF SYNCHROTRON RADIATION

Streak-camera image
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Time structure of synchrotron radiation is a
!’epllga of that of the glectron bunch, and is FWHM = 30 ps
invariant over the entire spectrum.




DECREASING THE PULSE DURATION

A femtosecond laser is used to imprint an energy modulation
onto a long electron bunch (femtoslicing).
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Drawback: strong reduction of photon flux (by a factor of 1000).

R. W. Schoenlien et al., Science, 2000



SYNCHROTRON RADIATION: TYPICAL PERFORMANCE

Tunability: Full (between IR and X-rays)
Shot-to-shot reproducibility: Very good
Polarization: Fully adjustable

Repetition rate: hundreds of MHz

Peak brilliance: = 102! ph/s/0.1%BW /mm?/mrad? (at 10 keV)

Pulse duration: tens of picoseconds
Natural spectral resolution: = few percent

Coherence: good transverse, poor longitudinal




INCREASING THE BRILLIANCE
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INCREASING THE BRILLIANCE, TRY NO. 2
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Is this a brute force approach? Yes and no...



WHAT IS A FEL ¢
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* electron bunch enters the undulator
= (uncorrelated) emission of

radiation by individual electrons

= partly correlated emission

* complete microbunching = the
emission is fully correlated

* interaction of electrons with previously
emitted waves leads to microbunching



FEL GAIN
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Exponential optical gain,

I(x)=1, exp(%)
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The electron beam and the emitted electromagnetic wave co-propagate in a
long undulator. Electrons couple with spontaneous emission, resulting in

exponential amplification (gain) of the intensity until saturation is reached.



A QUESTION OF COHERENCE
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WHY MORE BRILLIANCE? AREN'T SYNCHROTRONS
POWERFUL ENOUGH?

protein nanocrystallography coherent X-ray diffraction imaging (CXDI)

non-periodic objects = continuous diffraction
pattern = oversampling = phase retrieval
—> image reconstruction

CXDI of single mimivirus particles
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SELF-AMPLIFIED SPONTANEOUS EMISSION (SASE) FEL
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SASE SPECTRAL AND TEMPORAL CHARACTERISTICS
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SASE PULSE ENERGY STABILITY (FLASH)

Probability distribution for the energy of FLASH radiation pulses
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OVERCOMING SASE LIMITS T — SELF SEEDING
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OVERCOMING SASE LIMITS 2 — SEEDING BY AN EXTERNAL
COHERENT SIGNAL (HIGH GAIN HARMONIC GENERATION -
HGHG)
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FEL radiation properties are governed by the seed laser => PULSE SHAPING!



FERMI SEEDED FEL
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FERMI SEEDED FEL
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SHAPING FEL LIGHT:

TWO COLOR FEL SCHEMES

(FOR X-RAY PUMP-X-RAY PROBE
EXPERIMENTS)



TWO COLOR FEL SCHEMES

How can we generate two FEL pulses with different wavelengths?
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TWO COLOR SASE FEL: SPLIT UNDULATOR SCHEME
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A Egjectron (MeV)

TWO COLOR SASE FEL: TWIN-BUNCH SCHEME
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Advantage: full undulator available for
both colors -> more power

Maximum energy separation: ~1%,
tuned by compression in Chicane 1
Maximum delay: ~100 fs, tuned by
cathode delay and compression in
Chicane 2

Time delay jitter: ~5 fs



