X-ray Photon Correlation Spectroscopy (XPCS)

at Synchrotron and FEL sources

Christian Gutt

Department of Physics, University of Siegen, Germany

gutt@physik.uni-siegen.de

Outline

- How to measure dynamics in condensed matter systems
- Coherence
- X-ray speckle patterns
- How to exploit X-ray intensity fluctuations
- Examples for slow dynamics
- XPCS at FEL sources

How to measure dynamics in condensed matter systems

timet time t+Z Z

How to measure dynamics in condensed matter systems

 $F(Q,\tau) = \frac{1}{N} \sum \sum \exp(iQ(r_j(t) - r_k(t+\tau)))$ **Time domain** intermediate scattering function

 $S(Q,\omega) = \int F(Q,\tau) \exp(i\omega\tau) d\tau$

Frequency domain

dynamic structure factor

Elastic processes – waves, phonons...

Restoring force – the system goes back to its previous configuration

t,

Relaxational processes – diffusion, viscosity...

No restoring force –
 the system evolves with time and does not come back

An example – molecular dynamics simulation of liquid water

Intermediate scattering function is complex (many correlation processes) and spans many orders of magntiude -> experiments in the time domain

Optical Speckles

Incoherent light

Coherent light

Close up

VLC movie

Coherent scattering from disorder: Speckle

sample with disorder (e.g. domains)

- Incoherent Beam:
 Diffuse Scattering
 - Measures averages

•Coherent Beam: Speckle

•Speckle depends on exact arrangement

•Speckel statistics encodes coherence properties

O. G. Shpyrko et al., Nature 447, 68 (2007)

XPCS – Theory

$$\langle I(t)I(t+\tau)\rangle = \langle E(t)E^{*}(t)E(t+\tau)E^{*}(t+\tau)\rangle$$

Gaussian momentum theorem

$$= \left\langle E(t)E^{*}(t)\right\rangle \left\langle E(t+\tau)E^{*}(t+\tau)\right\rangle + \left|\left\langle E(t)E^{*}(t+\tau)\right\rangle\right|^{2}$$

$$\left\langle I(t)\right\rangle \qquad \left\langle I(t)\right\rangle \qquad g_{1}(\tau)$$

$$\frac{\left\langle I(t)I(t+\tau)\right\rangle}{\left\langle I(t)\right\rangle^2} = 1 + \left|g_1(\tau)\right|^2$$

XPCS Theory $E(t) = A \sum_{j=1}^{N} b_j \exp(iqr_j(t))$

$$g_1(q,\tau) = A^2 \sum_{j,k=1}^N b_k b_j \exp(iq(r_j(t) - r_k(t+\tau)))$$

Time dependent density correlation function

Experiment

$$\frac{\left\langle I(t)I(t+\tau)\right\rangle}{\left\langle I(t)\right\rangle^{2}} = 1 + \beta \left|g_{1}(\tau)\right|^{2}$$

Speckle contrast < 1

Speckle blurring leads to small contrast

Partial coherence of the x-ray source

Detector pixels P larger than speckle size S

$$S \approx \frac{\lambda}{D} \times L$$

High coherence Low coherence

Coherence

Spatial coherence

Temporal coherence

A. L. Schawlow "Laser Light" Scientific American, 219 (3), p. 120, (1968)

Young's Double Slit Experiment

Thomas Young's Double Slit Experiment

Thomas young

Thomas Young, 1773-1829

- Light is a wave
- Visibility (coherence)

$$v = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$$

Spatial coherence in Young's Double-Slit experiment

Born and Wolf, Optics

Fringe visibility as a function of distance between the pinholes

 $\Gamma(r_1, r_2, \tau) = \langle V^*(r_1, t) V(r_2, t + \tau) \rangle$

No fringes visibility: "coherence length exceeded"

Young's experiment with X-rays

Leitenberger et al. J. Synchrotron Rad. 11, 190 (2004)

Young's experiment at an XFEL (here LCLS)

Vartaniants et al. PRL 2012

Vartaniants et al. PRL 2012

Vartaniants et al. PRL 2012

Coherent X-rays

third generation synchrotron sources (ESRF, APS, Spring-8,...) (and soon : Diamond, Soleil, SLS, Petra-III)

 $\begin{array}{|c|c|} \hline \underline{Longitudinal \ coherence \ length} \ \xi_{L} \\ \hline \xi_{L} = \lambda \cdot \left(\frac{\lambda}{\Delta \lambda}\right) \approx l \mu m \\ \hline \lambda = 1.55 \text{\AA} \ , \ \text{Si}(111) \ \Delta \lambda / \lambda = 1.4 \ \cdot 10^{-4} \end{array}$

Selectioning coherent part of the beam

💠 beam size ≈ ξ_τ× ξ_τ

A. Robert, SLAC

Contrast (Visibility) $\beta(Q)$ of a speckle pattern is determined by the coherence properties of the X-ray beam

$$\beta(Q) = \frac{1}{V^2 \langle |E|^2 \rangle^2} \int_V \int_V |\Gamma(\vec{r_2} - \vec{r_1}, \vec{Q} \cdot (\vec{r_2} - \vec{r_1}) / ck_o)|^2 d\vec{r_1} d\vec{r_2}$$

 $\Gamma(\mathbf{r},\tau)$ mutual coherence function (MCF)

Speckle size needs to match pixel size of detector

Brilliance of X-rays Sources

Coherent Flux: $F_0 = B \lambda^2 (\Delta \lambda / \lambda)$ (ESRF: ID10A $F_0 \sim 10^{10}$ ph/s)

Examples

Antiferromagnetic domain fluctuations in Chromium

Time

Correlation functions

Quantum rotation of spin blocks

Blue line: Thermally activated jumps over an energy barrier

Red line: Quantum tunneling through an energy barrier

How Solid are Glasses ?

PABLO G. DEBENEDETTI AND FRANK H. STILLINGER, Nature 410, 259 (2001)

Atomic dynamics in metallic glasses

B. Ruta et al. Phys. Rev. Lett. 109, 165701 (2012)B. Ruta et al. Nature Comm. 5, 3939 (2014)

Reality check for glasses

- Fast relaxation dynamics exists below the glass transition temperature Tg.
- Glasses are not completely frozen in
- Stress dominates dynamics below Tg

B. Ruta et al. Phys. Rev. Lett. 109, 165701 (2012)B. Ruta et al. Nature Comm. 5, 3939 (2014)

XPCS at diffraction limited strorage rings (DLSR)

Coherent Flux: $F_0 = B \lambda^2 (\Delta \lambda / \lambda)$

Increase of B by factor 50 - 100

up to 10.000 times faster time scale accessible in XPCS

$$\tau \sim 1/B^2$$

unusual scaling because XPCS correlates pairs of photons

Problems that can be adressed at DLSR

- Dynamics in the supercooled state
- Dynamics in confinement
- Domain fluctuations in hard condensed matter
- Protein diffusion in cells
- Kinetics of biomineralization processes
- Liquids under extreme conditions (e.g. pressure)
- Driven dynamics under external (B,E,T) fields
- Local structures and their relaxations

•

XPCS at **XFELs**

Serial mode

Temporal resolution depends on rep rate of the machine

Ultrafast XPCS using a split and delay line

Delay times between 100 fs and 1 ns

Measure speckle contrast as a function of pulse separation

Ultrafast XPCS at XFEL dynamics in extreme conditions

Dynamics on time-scales ranging from 100 fs to 1000 ps

J.A. Sellberg et al. Nature 510, 381 (2014)

THz Excitation of Water

Ultrafast Energy Transfer to Liquid Water by Sub-Picosecond High-Intensity Terahertz Pulses: An Ab Initio Molecular Dynamics Study**

Pankaj Kr. Mishra, Oriol Vendrell,* and Robin Santra

Pump-probe XPCS in Plasma Physics

Kluge, Gutt et al. Plasma Physics 2014

The end