

School on Synchrotron and Free-Electron-Laser Based Methods: Multidisciplinary Applications and Perspectives | (smr 2812) | 4-15 April 2016

High resolution RIXS: introduction and applications to strongly correlated systems

Giacomo Ghiringhelli

Dipartimento di Fisica - Politecnico di Milano

giacomo.ghiringhelli@polimi.it

8 April, 2016

Summary

POLITECNICO

MILANO 1863

- Introducing resonant x-ray inelastic scattering
 dd excitations
- \checkmark Cu L_3 RIXS and spin excitations in cuprates

Transition metal oxides

matwww.technion.ac.il

Introduction to Resonant X-ray Scattering

From XRD to X-ray Scattering

Reciprocal lattice Laue condition: q=G(0,2) (0,1) (1,1) (0,1) (1,1) (0,0) (1,0)

ELS: from Raman to Inelastic X-ray Scattering

Resonant X-ray Absorption

Photoelectric effect dominates x-ray absorption below 100,000 eV 106 Cross section (barns/atom) otot, experiment 104 σ_{coh} 10² ĸ 100 incoh 10-103 109 1011 10 105 107 Photon energy (eV)

Core level binding energies and edges

XAS of 3d transition metals

Resonant Inelastic X-ray Scattering

The choice of the resonance: $2p \rightarrow 3d$, L_3 edge

3d Transition Metal oxides: a lucky coincidence for soft x-rays

L₃ RIXS

L edge RIXS : energy and momentum transfer

Photon momentum and kinematics

Photons vs Neutrons: energy and momentum

Wavevector of particles used in inelastic scattering

L_{2,3} edge RIXS: intermediate and final states

The potential of soft RIXS (for 3dTM systems)

Site selective, q resolved probe of elementary excitations

- charge excitations across the gap
- dd excitations
- magnetic excitations

phonons

$$3d^n \longrightarrow 2p^5 3d^{n+1} \longrightarrow -$$

3dn: elastic, magnetic and phonons3dn: dd excitations3dn : Charge Transfer excitations

Cuprates: the "easy" case

In cuprates Cu is divalent: $Cu^{2+} \iff 3d^9$

This makes XAS almost trivial: 1 peak only

 $3d^9 \longrightarrow (2p_{3/2})^3 3d^{10}$

RIXS can be calculated even by hand:

 $3d^9 \longrightarrow (2p_{3/2})^3 3d^{10} \longrightarrow (3d^9)^*$

Even for magnetic excitations (spin waves), because fast collision approximation is a very good approximation

dd excitations in Cu²⁺ systems

Cu L₃ RIXS of cuprates: mainly *dd* excitations

Giacomo Ghiringhelli 2016

Cu L₃ edge: CuO, La₂CuO₄, Malachite

Cu²⁺ in square approximately planar coordination

Cu-O distances: CuO 1.7 – 2-2 Ang LCO 1.9 – 2.4 Ang Malachite 1.9 – 2.6 Ang

> Different Cu²⁺ coordination, symmetry, hybridization

Different dd excitations

G. Ghiringhelli, A. Piazzalunga, X. Wang, A. Bendounan, H. Berger, F. Bottegoni, N. Christensen, C. Dallera, M. Grioni, J.-C. Grivel, M. Moretti Sala, L. Patthey, J. Schlappa, T. Schmitt, V. Strocov, and L. Braicovich, Eur.Phys. J. Special topics **169**, 199 (2009)

This is a very direct way of measuring the *dd*-excitation energies

dd-excitation energies from fitting using atomic cross sections

Crystal field trends in cuprates

3 3	La_2CuO_4	$\mathrm{Sr_2CuO_2Cl_2}$	$CaCuO_2$
$J \; [meV]$	$130^{34,35}$	130^{35}	130^{35}
$E_{3z^2-r^2} (\Gamma_{3z^2-r^2}) [eV]$	1.70 (.14)	1.97(.10)	2.72 (.12)
$E_{xy} (\Gamma_{xy}) [eV]$	1.80 (.10)	1.50 (.08)	1.75 (.09)
$E_{xz/yz} (\Gamma_{xz/yz}) [eV]$	2.12 (.14)	1.84 (.10)	2.10 (.18)

M. Moretti Sala, et al New J. Phys. 13, 043026 (2011)

CASSCF: complete-active-space self-consistent-field method

Liviu Hozoi, Liudmila Siurakshina, Peter Fulde & Jeroen van den Brink, SCIENTIFIC REPORTS 1 : 65 (2011)

[14] M. Moretti Sala, et al New J. Phys. 13, 043026 (2011)

dd excitations: Cu L₃ vs M_{2,3} edges

Ni L₃ edge: NiO, NiCl₂

dd and CT excitations in simple oxides

G. Ghiringhelli, A. Piazzalunga, X. Wang, A. Bendounan, H. Berger, F. Bottegoni, N. Christensen, C. Dallera, M. Grioni, J.-C. Grivel, M. Moretti Sala, L. Patthey, J. Schlappa, T. Schmitt, V. Strocov, and L. Braicovich, Eur.Phys. J. Special topics **169**, 199 (2009)

RIXS of NiO: incident photon energy depencence ...

G. Ghiringhelli A. Piazzalunga, C. Dallera, L. Braicovich, T. Schmitt, V.N. Strocov, J. Schlappa, L. Patthey, X. Wang, H. Berger, and M. Grioni, PRL **102**, 027401 (2009)

... and magnetic excitations in NiO

Interatomic exchange splitting : ~115 meV Main peak Satellite H pol V pol 6 6 RIXS intensity (ph. s⁻¹ eV⁻¹) |q (A⁻¹) q (A ' 0.36 0.36 2 2 0.61 0.61 0.78 0.78 0.0 -2 0.2 0.1 -0.1 0.2 0.1 0.0 -0.1 -3 0.4 0.3 0.4 0.3 -4 Energy loss (eV) Energy loss (eV) Energy loss (eV) No evident dispersion of these magnetic excitations

G. Ghiringhelli A. Piazzalunga, C. Dallera, L. Braicovich, T. Schmitt, V.N. Strocov, J. Schlappa,

L. Patthey, X. Wang, H. Berger, and M. Grioni, PRL 102, 027401 (2009)

Many excited states

Crystal field model: Sugano-Tanabe diagrams

transferred energy (eV)

Mn L₃ edge: MnO, LaMnO₃

dd of Mn²⁺: Sugano-Tanabe, Single ion, Single Ion Impurity Model

An application to thin film: Mn^{2+} in $La_{x}MnO_{3}$

P. Orgiani, A. Galdi, C. Aruta, V. Cataudella, G. De Filippis, C.A. Perroni, V. Marigliano Ramaglia, R. Ciancio, N.B. Brookes, M. Moretti Sala, G. Ghiringhelli, and L. Maritato, Phys. Rev. B **82**, 205122 (2010)

An application to thin film: Mn^{2+} in $La_x MnO_3$

RIXS shows that Mn^{2+} is at site A, ie, it replaces La^{3+}

The Mn^{2+} in site A allows new Double Exchange paths, increasing T_{MI}

P. Orgiani, A. Galdi, C. Aruta, V. Cataudella, G. De Filippis, C.A. Perroni, V. Marigliano Ramaglia, R. Ciancio, N.B. Brookes, M. Moretti Sala, G. Ghiringhelli, and L. Maritato, Phys. Rev. B **82**, 205122 (2010)

STO/LAO superlattice: RIXS at Ti L₃

PHYSICAL REVIEW B 83, 201402(R) (2011)

Localized and delocalized Ti 3d carriers in LaAlO₃/SrTiO₃ superlattices revealed by resonant inelastic x-ray scattering

What about the "quasi-elastic" spectral features?

Phonons: up to 90meV

Magnons (2J at BZB): up to 300 meV ($J_{eff} \approx 140$ meV)

Multi mangons...

High Tc superconductors

High Tc superconducting cuprates

Spin excitations in HTcS: undoped AF

The mysteries of HT_cS

Giacomo Ghiringhelli 2016

Spin excitations in HTcS: doped SC

J.M. Tranquada, in *Handbook of High-Temperature Superconductivity: Theory and*

Experiment, J.R. Schrieffer and J.S. Brooks, eds., Springer, 2007,

V. Hinkov et al, Eur. Phys. J. Special Topics 188, 113–129 (2010) Giacomo Ghiringhelli 2016

RIXS: Experimental conditions

Wavevector of particles used in inelastic scattering

Cu L₃ resonance:

- $E_0 = 930 \text{ eV}$
- q_{max} = 0.86 Ang⁻¹
- confined inside a region around Γ
- 2p core hole: spin-orbit interaction

INS

- E resolution: 120-240 meV
- q resolution: 0.005 rlu
- ¹/₂ 1 hour per spectrum

spin-flip excitations and the 2p S-O coupling

Linear polarization of x-rays and orbital orientation

3d hole symmetry in cuprates

Linear polarization of x-rays and orbital orientation (2)

The same rules hold for emission (radiative de-excitation)

Polarization dep. of Cu L₃ RIXS intensity

Polarization dependent cross-sections

M. Hashimoto, L.Braicovich, M. Minola, GG et al. unpublished helli 2016

First demonstration: La₂CuO₄

Salluzzo, T. Schmitt, and G. Ghiringhelli CR. 104 07 2002 (2010)

La₂CuO₄, RIXS vs INS

L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L. Ament, N.B. Brookes, G.M. de Luca, M. Salluzzo, T. Schmitt, and G. Ghiringhelli PRL **104** 077002 (2010)

M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L. Braicovich, H. Berger, J.N. Hancock, D. van der Marel, T. Schmitt, V.N. Strocov, L.J.P. Ament, J. van den Brink, P.-H. Lin, P. Xu, H. M. Rønnow, and M. Grioni. Phys. Rev. Lett. **105**, 157006 (2010)

AF NdBa₂Cu₃O_{$6+\delta$}: magnon optical branch

Comparing RIXS with INS

NBCO AF

RIXS

0.5

0.4

0.1

0

100 nm thick film NdBa₂CuO_{6.2}. BW 55meV, ΔQ =0.02 Ang⁻¹.

(a) 100

> "YBa₂Cu₃O_{6.15} with mass 96 g. [...]the resolution in energy was 2 meV and in Q was 0.05 Å^{-1} ."

S. Hayden et al PRB 54 R6905 (1996)

YY Peng, GG et al, unpublished

Magnons at Fe L₃ edge in BaFe₂As₂

Ke-Jin Zhou, Yao-Bo Huang, Claude Monney, Xi Dai, Vladimir N. Strocov, Nan-Lin Wang, Zhi-Guo Chen, Chenglin Zhang, Pengcheng Dai, Luc Patthey, Jeroen van den Brink, Hong Ding & Thorsten Schmitt, Nature Comm. **4**, 1470 (2013)

Magnetic and orbital excitations in Sr₂IrO₄

Giacomo Ghiringhelli 2016

Magnetic excitations in bilayer iridates

M. Moretti Sala, et al, PRB 92, 024405 (2015)

Superconductors: LSCO, YBCO and NdBCO

LSCO & NdBCO: 100 nm films on STO. YBCO: detwinned single crystals

Dispersing magnetic excitations are almost as strong in SC as in the AF parent compounds: they can be involved in Cooper pairing

L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L. Ament, N.B. Brookes, G.M. de Luca, M. Salluzzo, T. Schmitt, and G. Ghiringhelli PRL **104** 077002 (2010)
 M. Le Tacon, G. Ghiringhelli, J. Chaloupka, M. Moretti Sala, V. Hinkov, M.W. Haverkort, M. Minola, M. Bakr, K. J. Zhou, S. Blanco-Canosa, C. Monney, Y. T. Song, G. L. Sun, C. T. Lin, G. M. De Luca, M. Salluzzo, G. Khaliullin, T. Schmitt, L. Braicovich and B. Keimer, Nat. Phys. **7**, 725 (2011)

YBCO: doping dependence of χ''

Imaginary part of the spin susceptibility $\chi''(Q;w)$ resulting from exact diagonalization of the t–J model with J/t=0.3 on small cluster. (G. Khaliullin)

а

cluster (normalized) for 7 accessible non-equivalent Q vectors. *(G. Khaliullin)*

Peristent magnetic excits in overdoped cuprates

M. P. M. Dean,, . G. Dellea, R. S. Springell, F. Yakhou-Harris, K. Kummer, N. B. Brookes, X. Liu, Y.-J. Sun, J. Strle, T. Schmitt, L. Braicovich, G. Ghiringhelli, I. Bozovic, and J. P. Hill, Nat. Mater. **12**, 1019 (2013)

M. Le Tacon, M. Minola, D. C. Peets, M. Moretti Sala, S. Blanco-Canosa, V. Hinkov, R. Liang, D. A. Bonn, W. N. Hardy, C. T. Lin, T. Schmitt, L. Braicovich, G. Ghiringhelli, and B. Keimer, Phys. Rev. B 88, 020501 (2013)

Spin excitations in e-doped SC

K. Ishii, M. Fujita, T. Sasaki, M. Minola, G. Dellea, C. Mazzoli, K. Kummer, G. Ghiringhelli, L. Braicovich, T. Tohyama, K. Tsutsumi, K. Sato, R. Kajimoto, K. Ikeuchi, K. Yamada, M. Yoshida, M. Kurooka & J. Mizuki, Nat. Comm. **5**, 3714 (2014)

RIXS revealed Charge Order in HTcS

G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N.B. Brookes, G.M. De Luca, A. Frano, D. G. Hawthorn, F. He, T. Loew, M. Moretti Sala, D.C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer, L. Braicovich, Science **337**, 821 (2012)

RXS (at Cu L_3 and O K) in combination with STM, XRD and NMR has demonstrated that CO is ubiquitous in cuprates

UD Bi2201, Bi2212, Hg1201 and OPD Bi2212

W. Tabis et al, Nat. Comm. 6875 (2014)

ENERGY RESOLUTION: progress in the last 20 years

Combined resolving power has increased by a factor 30

Soft x-ray RIXS instrumentation

High resolution mono, small x-ray spot on the sample Grating spectrometer: optimized efficiency, high resolution

The main limiting factor is INTENSITY!!!!

From AXES (ESRF, ID08) to SAXES (SLS, ADRESS)

Since 1994: AXES at beam line ID08 of the ESRF L = 2.2 mDesign: $E/\Delta E = 2,000 \text{ at Cu } L_3$ (930 eV) 2010: $E/\Delta E = 5,000 \text{ at Cu } L_3$

C. Dallera *et al.* J. Synchrotron Radiat. **3**, 231 (1996)
G. Ghiringhelli *et al.*, Rev. Sci. Instrum. **69**, 1610 (1998)
M. Dinardo *et al.*, Nucl, Instrum. Meth A **570**, 176 (2007)

Giacomo Ghiringhelli 2016

Since 2007: SAXES at beam line ADRESS of the SLS L = 5.0 mDesign: $E/\Delta E = 12,000 \text{ at Cu } L_3$ 2011: $E/\Delta E = 11,000 \text{ at Cu } L_3$

G. Ghiringhelli, et al Rev. Sci. Instrum. **77**, 113108 (2006) V. Strocov, T. Schmitt, L. Patthey et al, J. Synch. Rad., 17, 631 (2010).

POILIFCNICO DI MILANO

New ID32 at the ESRF

<u>ERIXS</u> spectrometer at the new ID32

FEATURES:

- $E/\Delta E$ > 20,000 below 1000 eV from day one (50 meV at Cu L₃) and $E/\Delta E$ > 30,000 ultimate
- continous variation of scattering angle,
- full control of sample orientation (almost a diffractometer),
- measurement the linear polarization of the scattered photons (when needed)
- optionally in high magnetic field

POLITECNICO

MILANO 186

 flexible sample environment: possibility of liquid and gas phase experiments ESRF Upgrade program, N.B. Brookes, F. Yakhou, GG et al

Commissioning:

Beamline: started operations in Dec 2014 ERIXS: first experiment 1st July 2015 Full ERIXS user operation – fall 2015

12m

ERIXS@ID32, ESRF, 27/04/2014

ERIXS: Expected resolving power

A polarimeter for RIXS spectrometer

Yakhou, G. Ghiringhelli, and N. B. Brookes, Rev. Sci. Instrum. **85**,115104 (2014) Giacomo Ghiringhelli 2016

AXES Polarimeter

M. Minola, G. Dellea, H. Gretarsson, Y. Y. Peng, Y. Lu, J. Porras, T. Loew, F. Yakhou, N. B. Brookes,

Y. B. Huang, J. Pelliciari, T. Schmitt, G. Ghiringhelli, B. Keimer, L. Braicovich, and M. Le Tacon, Phys. Rev. Lett. 114, 217003 (2015)
ERIXS Polarimeter

Covering with 2 ML mirrors most of the 520-1000 eV range An evolution of the prototype made for AXES@ESRF that was used for real measurements

L. Braicovich, M. Minola, G. Dellea, M. Le Tacon, M. Moretti Sala, C. Morawe, J.-Ch. Peffen, R. Supruangnet, F. Yakhou, G. Ghiringhelli, and N. B. Brookes, Rev. Sci Instrum. 85, 115104 (2014)

ERIXS and the other HR soft-RIXS projects

SR FACILITY	E/ Δ E (combined)	Length	YEAR	NOTES
ESRF, ERIXS@ID32	30,000	11 m	2015	With Polarimeter
DIAMOND, IXS	40,000	14 m	2017	
MAX IV, Veritas	40,000	?	2017	Rowland Geometry
NSLS II, Centurion@SIX	70,000	15 m	2017	Hettrick-Underwood, 50 nrad slope error, 1 um spot on sample
European XFEL	20,000	5 m	2018	For non linear RIXS and pump- probe time-resolved RIXS

Heisenberg RIXS: SCS beam line of European XFEL

BRIXS consortium

The Heisenberg RIXS project at the European XFEL

Giacomo Ghiringhelli, Dip. Fisica, Politecnico di Milano

Marco Grioni, Ecole Polytechnique Fédérale de Lausanne

Rafael Abela, Paul-Scherrer-Institute

Torsten Schmitt, Paul-Scherrer-Institute

Bernhard Keimer, Max-Planck-Institut für Festkörperforschung Stuttgart

Simone Techert, Max-Planck-Institut für biophysikalische Chemie Göttingen

Jan-Erik Rubensson, Uppsala University

Joseph Nordgren, Uppsala University

Hao Tjeng, Max-Planck-Institut für Chemische Physik fester Stoffe Dresden

Matias Bargheer, Uni Potsdam

Jeroen van den Brink, IFW Dresden

Simo Huotari, Oulu, Finland

Maurits W. Haverkort, Max-Planck-Institut für Festkörperforschung Stuttgart

Frank de Groot, Utrecht University

Stefan Eisebitt, Technische Universität Berlin

Andrea Cavalleri, CFEL Hamburg, Oxford U.

Marc Simon, Laboratoire Chimie-Physique-Matière et Rayonnement, SOLEIL, Paris

Alexei Erko, Helmholtz-Zentrum Berlin

Alexander Föhlisch, Helmholtz-Zentrum Berlin and Uni Potsdam

BRIXS working group

DESY Hamburg: Tim Laarmann, Wilfried Wurth, Simone Techert European XFEL: Andreas Scherz Politecnico Milano: Ying Ying Peng, Giacomo Ghiringhelli Uni Potsdam: Alexander Föhlisch

hRIXS: boundary conditions

hRIXS: boundary conditions

5-6 m scattering arm

- Continuous rotation in backscattering ($2\theta = 60^{\circ} 150^{\circ}$)
- Possibility of full forward scattering ($2\theta = 0^{\circ} 20^{\circ}$)

We privilege flexibility

hRIXS will have to work with

- different source size (defocusing on sample to reduce beam damage in some cases)
- different detector resolution (from 10 micron for high resolution CCD to 100-200 micron for pixelated fast detectors)
- 5 m maximum length, that gives at least 5 mrad horizontal acceptance with 1" detectors

Therefore we abandoned the option of the collimating/refocusing mirror, to keep strictly

Bibliography

REVIEWS OF MODERN PHYSICS, VOLUME 83, APRIL-JUNE 2011

Resonant inelastic x-ray scattering studies of elementary excitations

Luuk J. P. Ament

Institute-Lorentz for Theoretical Physics, Universiteit Leiden, 2300 RA Leiden, The Netherlands

Michel van Veenendaal

Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA and Department of Physics, Northern Illinois University, De Kalb, Illinois 60115, USA

Thomas P. Devereaux

Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

John P. Hill

Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA

Jeroen van den Brink Institute for Theoretical Solid State Physics, IFW Dresden, 01069 Dresden, Germany

Insights into the high temperature superconducting cuprates from resonant inelastic X-ray scattering M.P.M. Dean Journal of Magnetism and Magnetic Materials Volume 376, 15 February 2015, Pages 3–13

