

Elettra Sincrotrone Trieste

Time-resolved XAS with FELs: recent advances at FERMI

Emiliano Principi – Elettra-Sincrotrone Trieste

EIS-TIMEX beamline at FERMI

The beamline is designed for studying subps dynamics in dense matter under extreme conditions

Pump-probe configuration with a FEL/laser jitter of 6 fs

Ellipsoidal mirror

An ellipsoidal mirror focus the FEL on spots of 5 um diameter

Pump-probe setup (FEL/laser)

Pump-probe setup (FEL/FEL)

Pump-probe longitudinal superposition Interference fringes on a YAG screen close to the sample are used to find the longitudinal superposition of the FEL pump-probe beam

Pump-probe setup

Experiments are carried out using a single-shot approach

XAS at EIS-TIMEX

M2,3-edge of Ti under ambient conditions measured at EIS-TIMEX

XAS theory

Under weak radiation field conditions, α_{core} is proportional to the transition rate between the initial state <i| and the final excited state |f>, provided by the Fermi golden rule.

Partial density of states

Dipole selection rules

Under the dipole approximation the matrix element is nonzero if the orbital quantum number of <i| differs by 1 from that one of |f> $(\Delta L = \pm 1)$

Absorption spectroscopy at the L2,3-edge of Si (p core electrons, L=1) provides sensitivity to the s-DOS and/or to the d-DOS (L=0, 2, respectively)

XAS at EIS-TIMEX

M2,3-edge of Ti under ambient conditions measured at EIS-TIMEX

XAS on nonequilibrium samples

www.elettra.eu