

New Opportunities for PES of Condensed Matter Using FELs

S.L. Molodtsov European XFEL GmbH

XFEL Photoelectron analyzer

European

_ Quasiparticles properties (Kai Rossnagel)

Lead actor: The quasi-electron

XFEL Weak correlations

European

Lead actor: The quasi-electron

XFEL Moderate correlations

European

Lead actor: The quasi-electron

XFEL Strong correlations

European

Lead actor: The quasi-electron

strong interactions

European

XFEL Nobel prize to X-ray spectroscopy work

Angle-resolved photoemission - ARPES

European XFEL Correlated *f*-materials

fully relativistic band structure

13

XFEL ARPES, basics (Kai Rossnagel)

Angle-Resolved PhotoElectron Spectroscopy

14

XFEL ARPES, basics

Band mapping (seeing is believing)

 $h\nu = 106 \,\mathrm{eV}.\ T = 30 \,\mathrm{K}$

K. Rossnagel, et al. Uni Kiel

$$E - E_F = E_{\rm kin} + W - h\nu$$
$$\binom{k_{\parallel x}}{k_{\parallel y}} = \sqrt{\frac{2m}{\hbar^2}} E_{\rm kin} \begin{pmatrix} \sin \Theta_{\rm D} \\ \cos \Theta_{\rm D} \sin \Phi_{\rm S} \end{pmatrix}$$

Beamline 7, ALS, Berkeley

XFEL ARPES, basics

Fermi surface tomography

K. Rossnagel, et al. Uni Kiel

$$\mathbf{k}_{\parallel}^{2} + k_{\perp}^{2} = \frac{2m}{\hbar^{2}} \left(E_{\mathrm{kin},F} + V_{0} \right)$$
$$\mathbf{k}_{\parallel} = \sqrt{\frac{2m}{\hbar^{2}}} E_{\mathrm{kin},F} \left(\frac{\sin \Theta_{\mathrm{D}}}{\cos \Theta_{\mathrm{D}} \sin \Phi_{\mathrm{S}}} \right)$$
$$E_{\mathrm{kin},F} = h\nu - W$$

Beamline 7, ALS, Berkeley

School on SR & FEL Based Methods, 4-15 April, 2016, Trieste

European Light-polarized ARPES on heavy-fermion YbRh₂Si₂ XFEL (S. Molodtsov, et al.)

17

18

S.L. Molodtsov, European XFEL

European XFEL

European XFEL European

EEI

Spectral range and radiation sources

20

Excharge (He) lamps – VUV/Extreme Ultraviolet Röntgen (Cu) tubes – Soft/Hard X-rays

Disadvantages: (i) low intensity; (ii) discrete spectrum; (iii) no time structure

Revolution with synchrotron radiation !!!

Synchrotron Radiation

Synchrotrons/Storage Rings

P – radiated power; c – light velocity; q – particle charge; a – acceleration; v - normalized energy

24

SO2 dissociation on Ru(001)

F. Hennies et al., J.Chem. Phys. 127, 154709 (2007)

School on SR & FEL Based Methods, 4-15 April, 2016, Trieste

European XFEI Characterization of cleaved samples: YbRh₂Si₂ (S. Molodtsov, et al.)

XFEL Crystal-field split f-states in Kondo systems

- effective mass mapping (transport phenomena)
- crystal field-split
 4f states probing
 (magnetic properties)
- strength of electron states correlation (Kondo behavior)

S.L. Molodtsov, European XFEL

School on SR & FEL Based Methods, 4-15 April, 2016, Trieste

School on SR & FEL Based Methods, 4-15 April, 2016, Trieste

Dispersion of the 4f states around Γ where they hybridize to Rh d bands: Experiment & theory

What is missing?

Electron system dynamics that is of the time scale order < 0.1 ps

Probing dynamics one can decide, e.g. in favor of spin or phonon mediated mechanism of electron pairing both in superconducting and Kondo systems

XFEL Time scales for dynamics

Pha	Molecules		
electronic	vibrations		
transitions	Intramolecular vibra- tional redistribution	Electronic	
	Intermolecular energy	radiation	
	transport	lifetimes	
		10-9 c	

					10 - 5	, 	
10 fs	100 fs	1 ps	10 ps	100 ps	1 ns	Time	
Quantum kinetics (carriers & phonons)Energy transfer to lattice Hot phonon effects							
Phase relaxation interband continuum/excitons				Phonon propagation			
Intraband and intersubband redistribution of carriers					So	lids	

In 1 s light travels 300 000 km

Distance between earth and moon is 384 000 km

In 1 ps light travels 0,3 mm

XFEL Pump-probe experiment (K. Kummer, et al.)

School on SR & FEL Based Methods, 4-15 April, 2016, Trieste

35

probe beam (hv = 6.0 eV)

XFEL Proof of principle pump-probe experiment

Pump-probe delay maps of the photoemission intensity above E_F and results of fit analysis

S.L. Molodtsov, European XFEL

European

XFEL Lifetime of electrons above Fermi energy

Jump in electron lifetime around Γ points at deviation from Fermi liquid theory and can be related to strength of correlation between *d* and *f* electrons. Effect depends on energy gap between *d* and *f* states.

But is it really time scale of Kondo (*f-d*) interaction?

Cross sections of *d* and *f* electron excitations are extremely low at optical laser energies

Go to hv close (high harmonic generation, HHG) or above (XFEL) 100 eV!

European

L Photon sources for trARPES (Kai Rossnagel)

Sync. Rad. News 25:5, 12 (2012)

Strobe lights: FEL versus HHG

Nature of condensed matter phases

Time scale of different interactions

Time-domain classification (learning by destroying)

European

EL What can be done with HHG sources?

Nature 471, 490 (2011)

trARPES using HHG

Snapshots

European

XFEL What can be done with HHG sources?

46

Nature 471, 490 (2011)

European

L Examples of pump-probe research

Nature Commun. 3, 1069 (2012)

Hierarchy of quenching times

XFEL HHG and FELs: Complimentary tools

FEL photoemission

48

XFEL Problem

Problem to be solved:

Please outline core-level PES spectra (intensity versus kinetic energy of electrons relative to the Fermi level) of an elemental sample that is characterized by electron-energy levels: 3p - 18.3 eV (binding energy); 3s - 34.8 eV; 2p - 297.3 eVand 294.6 eV; 2s - 378.6 eV that are excited by radiation with wavelength 8.26 and 3.13 nm. Which element builds this sample?

Thank you for your attention and see you again today