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Eigenstate thermalization

Eigenstate thermalization hypothesis (ETH)

[J. Deutsch, PRA 43 2046 (1991); M. Srednicki, PRE 50, 888 (1994) & JPA 32 1163 (1999);
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).]

Matrix elements of observables in the basis of the Hamiltonian eigenstates

Omn = O
�
Ē
�
δmn + e−S(Ē)/2fO

�
Ē,ω

�
Rmn,

where Ē ≡ (Em + En)/2, ω ≡ En − Em, and S(Ē) is the thermodynamic
entropy at energy Ē. O

�
Ē
�

and fO
�
Ē,ω

�
are smooth functions of their

arguments, and Rmn is a random variable with zero mean and unit variance.

L. D’Alessio, Y. Kafri, A. Polkovnikov, and MR, From Quantum Chaos and Eigenstate
Thermalization to Statistical Mechanics and Thermodynamics, arXiv:1509.06411
(Advances in Physics, in press).
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Integrability to quantum chaos transition in 1D
Spinless fermions with nearest and next nearest neighbors in 1D

Ĥ =
L�

i=1

�
−J

�
f̂
†

i
f̂i+1 + H.c.

�
+ V n̂in̂i+1 − J

�

�
f̂
†

i
f̂i+2 + H.c.

�
+ V

�
n̂in̂i+2

�

Level spacing distribution (J = V = 1)

L. Santos and MR, PRE 81, 036206 (2010).
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Ĥ =
L�

i=1

�
−J

�
f̂
†

i
f̂i+1 + H.c.

�
+ V n̂in̂i+1 − J

�

�
f̂
†

i
f̂i+2 + H.c.

�
+ V

�
n̂in̂i+2

�

Level spacing distribution (J = V = 1)

0

0.5

1

P

0

0.5

1

P

0 2 4

ω

0 2 4

ω

0

0.5

1

P

0 2 4

ω

0.1 1

J’=V’

0

0.5

1

ω
max

L=21

L=24

J’=V’=0.00 J’=V’=0.02 J’=V’=0.04 J’=V’=0.08

J’=V’=0.16 J’=V’=0.32 J’=V’=0.64
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Matrix elements of Hermitian operators within RMT

Let Ô =
�

i Oi|i��i|, where Ô|i� = Oi|i�,

Oαβ ≡ �α|Ô|β� =
�

i

Oi�α|i��i|β� =
�

i

Oi(ψ
α
i )

∗ψβ
i

|α� and |β� are eigenstates of a random matrix. Averaging over |α� and |β�
(random orthogonal unit vectors in arbitrary bases): (ψα

i )
∗(ψβ

i ) =
1
D δαβ .

This means that:

Oαα =
1
D

�

i

Oi ≡ Ō, while Oαβ = 0 for α �= β.

With more work one can show that (η = 2 for GOE and η = 1 for GUE):

O2
αα −Oαα

2
= η|Oαβ |2 =

η
D2

�

i

O2
i ≡ η

DO2.

Combining these results one can write

Oαβ ≈ Ōδαβ +

�
O2

D Rαβ ,

where Rαβ is a random variable (real for GOE and complex for GUE).
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Oαβ ≈ Ōδαβ +

�
O2

D Rαβ ,

where Rαβ is a random variable (real for GOE and complex for GUE).

Marcos Rigol (Penn State) Quantum quenches and MBL July 26, 2016 5 / 26



Matrix elements of Hermitian operators within RMT

Let Ô =
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Diagonal part of ETH (2D AF-TFIM)
Hamiltonian: Ĥ = J

�

�i,j�

σ̂z
i σ̂

z
j + g

�

i

σ̂x
i + ε

�

i

σ̂z
i ,

R. Mondaini, K. R. Fratus, M. Srednicki, and MR, Phys. Rev. E. 93, 032104 (2016).
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Width of the energy density after a sudden quench

Initial state |ψI� =
�

m Cm|m� is an eigenstate of �H0. At τ = 0

�H0 → �H = �H0 + �H1 with �H1 =
�

j

ĥ(j) and �H|m� = Em|m�.

The width of the weighted energy density ∆E is then

∆E =

��

m

E2
m|Cm|2 − (

�

m

Em|Cm|2)2 =
�

�ψ0| �H2
1 |ψ0� − �ψ0| �H1|ψ0�2,

or
∆E =

��

j1,j2

�
�ψ0|ĥ(j1)ĥ(j2)|ψ0� − �ψ0|ĥ(j1)|ψ0��ψ0|ĥ(j2)|ψ0�

�
N→∞∝

√
N,

where N is the total number of lattice sites.
Since the width of the spectrum W ∝ N , then the ratio

∆E
W

N→∞∝ 1√
N

,

so, as in any thermal ensemble, it vanishes in the thermodynamic limit.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Model Hamiltonian and the MBL transition
Spinless fermion Hamiltonian in 1D

Ĥ =
�

ij

Jij

�
f̂
†

i
f̂j + H.c.

�
+ V

�

i

�
n̂i −

1

2

��
n̂i+1 −

1

2

�

E. Khatami, MR, A. Relaño, and A. García-García, PRE 85, 050102(R) (2012); arXiv:1103.0787.

Hopping amplitudes
Gaussian random distribution �Jij� = 0

�
(Jij)

2� =

�
1 +

�
|i− j|

β

�2α
�−1

V = 0

Properties depend on α but not on
β > 0

α < 1, eigenstates are delocalized

α > 1, eigenstates are localized

α = 1, eigenstates are multifractal

Mirlin et al., PRE 54, 3221 (1996).

Ergodic-MBL transition
η = [var− varWD ]/[ varP − varWD]

var: variance of level spacing distribution
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Breakdown of ETH
Eigenstate thermalization

Observables:

n̂(k) =
1
L

�

l,m

eik(l−m)f̂†
l f̂m

N̂(k) =
1
L

�

l,m

eik(l−m)n̂ln̂m

Maximal normalized difference:

∆Omax
αα =

�
k |O

max
αα (k)−OME(k)|�

k OME(k)

Disorder average:
�∆Omax

αα �dis

Constant effective temperature:
(T = 10)

EME =
1
Z

Tr[Ĥe−H/(kBT )]
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Experimental results
Hubbard Hamiltonian in 1D: [εi = ∆ cos (2πβi+ φ), and β ≈ 0.721]

Ĥ = −J
�

i,σ

(ĉ†iσ ĉi+1,σ + H.c.) + U
L�

i

n̂i↑n̂i↓ +
�

iσ

εin̂iσ

Schreiber et al., Science 349, 842 (2015).

We add: (J � = J/2, and also consider εi ∈ [−W/2,W/2], at quarter filling)

Ĥ � = −J �
L−2�

i,σ

(ĉ†iσ ĉi+2,σ + H.c.) + µb(n̂L,↑ + n̂L,↓) + hb(n̂1,↑ − n̂1,↓)

R. Mondaini and MR, Phys. Rev. A 92, 041601(R) (2015).
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Results for rn = min[δE
n−1, δ

E

n
]/max[δE

n−1, δ
E

n
]
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Dynamics and thermalization: |ψI� = | ↑ 0 ↓ 0 ↑ 0 ↓ . . .�
Relaxation Dynamics
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Linked-Cluster Expansions
Extensive observables Ô per lattice site (O) in the thermodynamic limit

O =
�

c

L(c)×WO(c)

where L(c) is the number of embeddings of cluster c

and WO(c) is the weight
of observable O in cluster c

WO(c) = O(c)−
�

s⊂c

WO(s).

O(c) is the result for O in cluster c

O(c) = Tr
�
Ô ρ̂

GC
c

�
,

ρ̂
GC
c

=
1

ZGC
c

exp−(Ĥc−µN̂c)/kBT

Z
GC
c

= Tr
�
exp−(Ĥc−µN̂c)/kBT

�

and the s sum runs over all subclusters of c.
In numerical linked cluster expansions (NLCEs) an exact diagonalization of
the cluster is used to calculate O(c) at any temperature.
MR, T. Bryant, & R. Singh, PRL 97, 187202 (2006).
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Finite size effects

In unordered phases, not all ensemble calculations of finite systems
approach the thermodynamic limit the same way
There is a preferred ensemble (the grand canonical ensemble) and preferred boundary
conditions (periodic boundary conditions, so that the system is translationally invariant) for
which finite-size effects are exponentially small in the system size. All others exhibit
power-law convergence with system size.

NLCEs convergence is also exponential, but a faster one!

Kinetic energy in the J-V model

D. Iyer, M. Srednicki, and MR, Phys. Rev. E 91, 062142 (2015).
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Diagonal ensemble and NLCEs
The initial state is in thermal equilibrium in contact with a reservoir

ρ̂
I

c
=

�
a
e
−(Ec

a−µIN
c
a)/TI |ac��ac|

ZI
c

, where Z
I

c
=

�

a

e
−(Ec

a−µ
I
N

c
a)/TI ,

|ac� (Ec

a
) are the eigenstates (eigenvalues) of the initial Hamiltonian Ĥ

I

c
in c.

At the time of the quench Ĥ
I

c
→ Ĥc , the system is detached from the

reservoir. Writing the eigenstates of ĤI

c
in terms of the eigenstates of Ĥc

ρ̂
DE
c

≡ limt�→∞

1

t�

�
t
�

0
dt ρ̂(t) =

�

α

W
c

α
|αc��αc|

where
W

c

α
=

�
a
e
−(Ec

a−µIN
c
a)/TI |�αc|ac�|

2

ZI
c

,

|αc� (εc
α

) are the eigenstates (eigenvalues) of the final Hamiltonian Ĥc in c.

Using ρ̂
DE
c

in the calculation of O(c), NLCEs allow one to compute
observables in the DE in the thermodynamic limit.

MR, PRL 112, 170601 (2014).
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Quenches in the XXZ model (Neel initial state)
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-0.35

-0.25

<
σ

1

z σ
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DE
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-0.88
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<
σ
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z σ
2

z >
sp

Resum
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l
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<
σ

1

z σ
2

z > ∆=7

∆=4

∆=1

B. Wouters et al., PRL 113, 117202 (2014); MR, PRE 90, 031301(R) (2014).
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Hard-core bosons with binary disorder

Hamiltonian with diagonal disorder

Ĥ =
�

i

�
−J(b̂†

i
b̂
i+1 + H.c.) + V

�
n̂i −

1

2

��
n̂i+1 −

1

2

�
+ hi

�
n̂i −

1

2

��

binary disorder (equal probabilities for hi = ±h).

Disorder average restores translational invariance (exactly!)

O(c) =
�

Tr[Ôρ̂c]
�

dis
,

where �·�dis represents the disorder average.

Initial state: JI = 0.5, VI = 2.5, hj = 0, and TI (no disorder)

Final Hamiltonian: J = 1, V = 2, and different values of h �= 0

B. Tang, D. Iyer, and MR, Phys. Rev. B 91, 161109(R) (2015).
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Disordered systems and many-body localization
Ratio of consecutive energy gaps

0.5 1 2 4 8
h

0.35
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r

L=14
L=14
L=15
L=16

J=1, V=2

r = 0.53

r = 0.39

Diagonal vs Thermal

Ratio between the smaller and the larger of two consecutive energy gaps

rn = min[δE
n−1, δ

E

n
]/max[δE

n−1, δ
E

n
], where δ

E

n
≡ En+1 − En

we compute r = ��rdis
n

�n�dis.
Continuous disorder: hc ≈ 7.4 [Luitz, Laflorencie & Alet, PRB 91, 081103 (2015).]

hc ≈ 9 [T. Devakul & R.R.P. Singh, PRL 115, 187201 (2015).]
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Scaling of the differences: δ(m)l =
�

k
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Summary

Signatures of MBL, no eigenstate thermalization and/or failure of
the system to thermalize after a quench, in three different models
involving spinless and spinful fermions, and hard-core bosons.

MBL for spinful fermions requires a disorder strength that is sev-
eral times the single-particle bandwidth. This might be hidden by
finite-time and finite-size effects in the experiments.

Numerical linked cluster expansions (NLCEs) provide an alterna-
tive way to look into these problems starting from a thermody-
namic limit formulation.
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