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These notes have been written in the hope that they will provide a useful
preliminary understanding of how the band structure of carbon nanotubes arises
from that of the two-dimensional “parent material” graphene. This treatment is
based on the tight-binding description of non-interacting electrons in graphene,
and on the “zone-folding” scheme for carbon nanotubes. The purpose of the
Monte Carlo calculations of Ref. [1] is to study how such band structure is
modified in the presence of strong electron-electron interactions.

1 Graphene

The electronic structure of graphene serves as a starting point to forming an
understanding of the electronic band structure of carbon nanotubes. As the
nearest-neighbor distance of two carbon atoms, aC−C ≃ 1.42Å is significantly
larger than the ∼ 3.35Å distance between adjacent layers of graphite, the elec-
tronic structure of graphene also provides a useful first approximation to that
of graphite.

Figure 1: (from Ref. [2]) Unit cell (dotted rhombus) and Brillouin zone (shaded
hexagon) of graphene. The unit vectors are denoted by a⃗i, and the reciprocal

lattice vectors by b⃗i. The two triangular sub-lattices of carbon atoms are de-
noted A and B, and the high-symmetry points in the Brillouin zone by Γ, M
and K, respectively.
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In terms of the x, y coordinates of Fig. 1, the real-space unit vectors of the
hexagonal lattice are given by

a⃗1 ≡

(√
3

2
ã,

ã

2

)
, a⃗2 ≡

(√
3

2
ã,− ã

2

)
, (1)

with
ã = |⃗a1| = |⃗a2| =

√
3a ≃

√
3× 1.42Å = 2.46Å, (2)

where a ≃ 1.42Å is the lattice constant of graphene. Similarly, the unit vectors
of the reciprocal lattice are

b⃗1 ≡
(

2π√
3ã

,
2π
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)
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(
2π√
3ã

,−2π
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)
, (3)

with a reciprocal lattice constant of 4π/
√
3ã. Note that the reciprocal lattice

vectors are rotated by 90◦ with respect to the lattice vectors in real space. The
conventional choice of the first Brillouin zone is the shaded hexagon shown in
Fig. 1, which gives the highest symmetry for the Brillouin zone of graphene. We
define the three “high symmetry points” Γ, K and M as the center, corner, and
center of the zone edge, respectively.

A simple and useful approximation for the dispersion of graphene can be
obtained from the tight-binding description of an isolated sheet of graphite (see,
for instance, Chapter 2 of Ref. [2]), giving

E2D(kx, ky) = ±t
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, (4)

where t ≃ 2.8 eV is the nearest-neighbor hopping amplitude in graphene. The
band energies in the Brillouin zone assume the values ±3t, ±t and 0 at the
points Γ, M and K, respectively.

We note that the Brillouin zone contains two inequivalent “valleys” K and
K ′, where the conduction and valence bands meet. In this non-interacting pic-
ture, graphene is a zero-gap semiconductor. This situation may change when the
atoms on the sub-lattices A and B are unequal, or in the presence of substantial
electron-electron interactions.

2 Chiral and translational vectors

The chiral vector C⃗h can be expressed in terms of the real space unit vectors of
Eq. (1) according to

C⃗h ≡ na⃗1 +ma⃗2 ≡ (n,m), 0 ≤ |m| ≤ n, (5)

where n,m are integers. We denote the special cases of C⃗h = (n, n) as “arm-

chair” nanotubes and C⃗h = (n, 0) as “zigzag” nanotubes. The general case is
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Figure 2: (from Ref. [2]) The unrolled honeycomb lattice of a carbon nanotube.
The rectangle OAB′B defines the unit cell of the nanotube. The chiral vector
C⃗h and the translational vector T⃗ are defined by OA and OB, respectively. The
figure shows a “chiral nanotube” with C⃗h = (4, 2), d = dR = 2, T⃗ = (4,−5),
and N = 28.

referred to as a “chiral” nanotube. Because of the hexagonal symmetry, we only
need to consider chiral nanotubes with 0 < |m| < n.

If we denote by L the length of the nanotube circumference, the diameter dt
of the tube is given by

dt =
L

π
, L = |C⃗h| = ã

√
n2 +m2 + nm, (6)

where it should be noted that the real space unit vectors of Eq. (1) satisfy

a⃗1 · a⃗1 = a⃗2 · a⃗2 = ã2, a⃗1 · a⃗2 =
ã2

2
, (7)

and are hence not mutually orthogonal. Here, the lattice constant ã of Eq. (2)
is given by ã ≃

√
3 × 1.44Å = 2.49Å in a carbon nanotube (compared with

2.46Å in graphene or graphite). We also define the “chiral angle” as the angle

θ between the vectors C⃗h and a⃗1,

cos(θ) ≡ C⃗h · a⃗1
|C⃗h||⃗a1|

=
2n+m

2
√
n2 +m2 +mn

, 0 ≤ |θ| ≤ 30◦, (8)

where the restriction on θ is again due to the hexagonal symmetry. We note
that θ = 0 for zigzag nanotubes, and θ = 30◦ for armchair nanotubes.

The translation vector T⃗ is defined as the unit vector of a 1D carbon nan-
otube, such that T⃗ is parallel to the nanotube axis and normal to the chiral
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vector C⃗h as shown in Fig. 2. In terms of the basis vectors (1), we have

T⃗ ≡ t1a⃗1 + t2a⃗2 ≡ (t1, t2), (9)

where t1 and t2 are integers. Clearly, the translation vector T⃗ corresponds to the
first lattice point of the 2D graphene sheet through which the line OB normal
to the chiral vector C⃗h passes. Thus, t1 and t2 do not have a common divisor
except for unity. By means of the relationship C⃗h · T⃗ = 0, the definitions (5)
and (9), and the relations (7), we find

t1 =
2m+ n

dR
, t2 = −2n+m

dR
, (10)

where we introduce the notation

dR ≡ gcd(2m+ n, 2n+m), d ≡ gcd(n,m), (11)

with “gcd” denoting the greatest common divisor. This can be shown to equal
the statement that dR = d if n−m is not a multiple of 3d, and dR = 3d if n−m
is a multiple of 3d.

The length T of the translation vector T⃗ is

T ≡ |T⃗ | =
√
3L

dR
, (12)

in terms of the circumferential length given in Eq. (6). It should be noted that
T is greatly reduced when (n,m) have a common divisor or when n − m is a

multiple of 3d. For instance, for the chiral (4, 2) nanotube, we have T⃗ = (4,−5).

In contrast, for the armchair (5, 5) nanotube, we have T⃗ = (1,−1), and for the

zigzag (9, 0) nanotube, T⃗ = (1,−2).
The number of hexagons N per (nanotube) unit cell is obtained by dividing

the area of the nanotube unit cell by the area of the hexagonal unit cell of
graphene,

N ≡ |C⃗h × T⃗ |
|⃗a1 × a⃗2|

=
2(m2 + n2 + nm)

dR
=

2L2

ã2dR
, (13)

with L given by Eq. (6) and dR by Eq. (11). Note that the area of the rhombus
spanned by the unit vectors a⃗1 and a⃗2 is

|⃗a1 × a⃗2| =
√
3ã2

2
, (14)

and equals that of the hexagon. Since each hexagon contains two carbon atoms,
there are 2N carbon atoms in each unit cell of the nanotube.

3 Nanotube unit cells and Brillouin zones

The unit cell of a carbon nanotube in real space is given by the rectangle spanned
by the chiral vector C⃗h and the translational vector T⃗ , as shown in Fig. 2. The
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expressions for the nanotube reciprocal lattice vectors K⃗2 along the nanotube
axis and K⃗1 in the circumferential direction are obtained from the relation

R⃗i · K⃗i = 2πδij , (15)

where the R⃗i and K⃗i are, respectively, lattice vectors in real and reciprocal
space. Using the relations

C⃗h · K⃗1 = 2π, C⃗h · K⃗2 = 0, (16)

and
T⃗ · K⃗1 = 0, T⃗ · K⃗2 = 2π, (17)

and Eqs. (10) and (13), one finds

K⃗1 ≡ k⃗⊥ =
1

N
(−t2⃗b1 + t1⃗b2), K⃗2 ≡ k⃗|| =

1

N
(mb⃗1 − n⃗b2), (18)

in terms of the reciprocal lattice vectors of graphene, given in Eq. (3). We have
also shown the equivalent notation used in Ref. [1]. In Fig. 3, the reciprocal

lattice vectors K⃗1 and K⃗2 are shown for a C⃗h = (4, 2) chiral nanotube. The line
segment WW′ is the first Brillouin zone of this one-dimensional material.

Figure 3: (from Ref. [2]) The Brillouin zone of a carbon nanotube is given by

the line segment WW′ parallel to K⃗2. Note that the vectors K⃗1 and K⃗2 are
reciprocal lattice vectors corresponding to C⃗h and T⃗ , respectively. The figure
shows the case of the chiral C⃗h = (4, 2) nanotube with T⃗ = (4,−5) and N = 28,

giving K⃗1 = (5⃗b1 + 4⃗b2)/28 and K⃗2 = (4⃗b1 − 2⃗b2)/28.

Since NK⃗1 = −t2⃗b1 + t1⃗b2 corresponds to a reciprocal lattice vector of
graphene, it follows that two wave vectors which differ by NK⃗1 are equivalent.
Also, since t1 and t2 lack a common divisor other than unity, none of the N − 1
vectors µK1 (with µ = 1, . . . , N − 1) are reciprocal lattice vectors of graphene.
Thus, the N wave vectors µK1 (with µ = 0, . . . , N − 1) give rise to N discrete
k vectors, as shown by the N = 28 parallel line segments in Fig. 3. These
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arise from the quantized wave vectors associated with the periodic boundary
conditions on C⃗h.

The length of the parallel lines in Fig. 3 equals 2π/T , which is the length of
the (one-dimensional) first Brillouin zone. Because of the translational symme-

try of T⃗ , we have continuous wave vectors in the direction of K⃗2 for a carbon
nanotube of infinite length. For a nanotube of finite length Lt, the spacing
between wave vectors is 2π/Lt.

If the energy dispersion relations of graphene E2D(kx, ky), for instance that

of Eq. (4), at line segments shifted from WW′ by µK⃗1 are “folded” such that

wave vectors parallel to K⃗2 coincide with WW′ (see Fig. 3), N pairs of one-
dimensional dispersion relations Eµ(k) are obtained, given by

Eµ(k) = E2D

(
k
K⃗2

|K⃗2|
+ µK⃗1

)
, (19)

where
µ = 0, . . . , N − 1, − π

T
< k <

π

T
. (20)

The N pairs of energy dispersion curves given by Eq. (19) correspond to
cross-sections of the two-dimensional energy dispersion surface of Eq. (4), where

cuts are made along the lines kK⃗2/|K⃗2| + µK⃗1. If, for a particular (n,m)
nanotube, such a cutting line passes through a K point of the two-dimensional
Brillouin zone, the one-dimensional energy bands will show a vanishing energy
gap, and hence the nanotube is metallic. On the other hand, if the cutting line
does not pass through a K point, the nanotube is semiconducting with a finite
energy gap between the valence and conduction bands.

In practice, roughly one third of the possible carbon nanotubes are metallic
and the rest semiconducting. Notably, the (n, n) armchair nanotubes are always
metallic, and the zigzag (n, 0) nanotubes are metallic when n is a multiple
of 3. Empirically, the metallic nanotubes are prime candidates for interaction-
induced gaps (such as a Mott insulating state) due to the lack of gap in the non-
interacting picture. For this reason, the preliminary Monte Carlo calculations
of Ref. [1] have focused on the (3, 3) nanotube.
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