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USC-Lockheed Martin Quantum Computation Center

• (May 2011) D-Wave Systems announced sale of first 128-

qubit D-Wave One™ to Lockheed Martin.

• (Oct 2011) USC-Lockheed Martin Quantum Computing 

Center unveiled at USC Information Sciences Institute, 

Marina del Rey, CA.

• (Mar 2013) System upgraded to 512-qubit D-Wave Two™ 

(“Vesuvius”) chip.

© Copyright 2012-2013 D-Wave Systems Inc. 

© Copyright 2012-2013 D-Wave Systems Inc. 

• (Mar 2016) System upgraded to 1152-qubit D-Wave 2X™ 

(“Washington”) chip. 
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D-Wave hardware overview

Qubit implementation

• rf SQUID Flux Qubit

• Compound-Compound

Josephson Junction

8-qubit unit cellNiobium on silicon

Pulse tube dilution refrigerator

1152-qubit “Washington” chip

Magnetically shielded enclosure (10-9 Tesla)

Images © Copyright 2012-2016 D-Wave Systems Inc. 



© 2016 Lockheed Martin Corporation.  All rights reserved. 6

Questions

• Can a quantum annealing device be used to sample from a Boltzmann distribution?

• Can a quantum annealer assist in training a Restricted Boltzmann Machine?

Similarities
Quantum Annealer
(Ex. D-Wave Device)
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• Stochastic binary variables

• Quadratic energy functional

• Joint Boltzmann distribution

???

• Final states (in computational basis)

are stochastic binary variables

• Quadratic energy functional

• Real device returns distribution of states

(not 100% ground state) – can this be

approximated as a Boltzmann distribution?

𝑃 ~
𝑒−𝛽𝑒𝑓𝑓𝐸′

𝑍′
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Idea: How quantum sampling is applied to training of RBMs

• Restricted Boltzmann Machine model: 

• Weight updates are determined by the formula

• Second term is intractable; this has motivated approximate schemes such as 

Contrastive Divergence (CD):

• However, CD can take many iterations to converge (related to slow mixing of Gibbs sampling)

• We attempt to use quantum sampling to estimate the “intractable” term directly

 Quantum sampling has the potential to mix faster (e.g. due to tunneling)
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Energy functional

Joint probability distribution
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Challenges using actual QA hardware for Boltzmann sampling

• Limited physical connectivity between qubits

 Not a complete graph

 Not a bipartite graph

 “Chimera” graph (square lattice of 𝐾4,4 unit cells)

 Small number of faulty qubits

• Parameter setting noise (aka Intrinsic Control Error (ICE))

 Multiple sources of error – some random, some systematic

 Programmed coefficients  actual coefficients

• Approx. 4 bits of precision (D-Wave 2); higher on D-Wave 2X 

• Determination of 𝜷𝒆𝒇𝒇 (equivalently, the effective temperature)

 We used a simple empirical rule of thumb based on RBM size

 For a more systematic approach, see the talk by A. Perdomo-Ortiz
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Mapping RBM bipartite graphs onto D-Wave chip

• Map each visible/hidden node to a chain of qubits:

• Can map up to 32x32 RBM this way on a 504-qubit Vesuvius chip

• How we handle faulty qubits:

 Constrain RBM weights 𝑤𝑖𝑗 = 0 for missing couplers

 Use voting on qubit chains to decide logical node values

• Tunable voting threshold from 0.5 (majority) to 1.0 (consensus)
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Mitigating Control Errors – Gauge Transformations

• D-Wave is an analog device

 “Vesuvius” system has 4 bits precision

 Net of various sources of random & systematic error

 Example: “J-dependent h-offset”

• Ferromagnetic chains (added to do the mapping on previous slide) can 

exacerbate some of these effects

• Control errors can be partially mitigated by “gauge transformations”

 Re-define the meaning of problem variables by flipping a subset of the 𝑆𝑖

 Flipping 𝑆𝑖 induces a flip of the associated ℎ𝑖and 𝐽𝑖𝑗

 Gauge transformation shown below (“basket weave”) is particularly helpful in 

mitigating J-dependent h-offset errors

RED qubits flipped

BLUE qubits unchanged



12© 2016 Lockheed Martin Corporation.  All rights reserved.

Test Case: “Coarse Grained” MNIST

MNIST data set (http://yann.lecun.com/exdb/mnist )

• Handwritten digits 0-9

• 60,000 training and 10,000 test set images with truth labels

• Each image consists of 784 greyscale pixels (28x28)

To fit the problem on Vesuvius, we “coarse-grained” the images:

• We discarded 2 pixels on each edge, leaving a 24x24 image

• We computed the average pixel value over each 4x4 block, resulting in a coarse-

grained 6x6 image

• We discarded the 4 corners, resulting in 32 super-pixels

• A more challenging recognition problem than the real MNIST!

original

image

(28x28)

coarse-grained

image

(6x6)

Original and coarse-grained versions of image from MNIST data set (handwritten digit 5) 

http://yann.lecun.com/exdb/mnist
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Results for CG-MNIST Data Set

100 post-training iterations

400 post-training iterations

200 post-training iterations

800 post-training iterations
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Conclusions
• In this experiment, the quantum sampling-based training approach 

achieved higher accuracy than CD-1 training with fewer iterations of 

generative training 

• More investigation needed to understand whether this is due to:

 Better estimation of gradient  can this also be efficiently estimated classically?

 Quantum effects

• Work in progress:

 Larger quantum annealing devices (e.g. D-Wave 2X)

 More sparsely connected RBMs

• Concept of using a quantum annealer for sampling/inference instead 

of optimization could lead to new applications for these devices

 Also for circuit/gate based QC
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Details of Quantum Sampling formulation

𝐸 𝑣, ℎ = −𝑏𝑣 − 𝑐ℎ − 𝑣𝑊ℎ

Original RBM

𝑄 𝑥 =
1

𝛽𝑒𝑓𝑓

𝑏 𝑊
0 𝑐

QUBO  (n+m) x (n+m)

𝐸′ 𝑆 = −𝐻𝑆 − 𝑆𝐽𝑆

Ising model

𝐸′′ 𝑆 = −𝐻𝑆 − 𝑆𝐽𝑆 − 𝑆𝐽𝐹𝑚𝑆

Embedded Ising model

𝐸′′′  𝑆 = − 𝐻  𝑆 −  𝑆  𝐽  𝑆 −  𝑆  𝐽𝐹𝑚
 𝑆

Gauge transformed Ising model

𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙 = 𝑣𝑖ℎ𝑗
𝛽𝑒𝑓𝑓,𝐸′

≅ 𝑣𝑖ℎ𝑗
𝛽𝑒𝑓𝑓,𝐸′′

≅ 𝑣𝑖 ℎ𝑗

 NOTE: Don’t use auto-scaling

assuming quantum samples are “Boltzmann-like”

assuming contributions

from JFm terms are negligible

average over 4 gauges

QUESTION: With the D-Wave hardware noise and all the approximations we are making, this is going to be a noisy estimate 

of the log-likelihood gradient.  But, could it be less noisy than Contrastive Divergence?
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CG-MNIST experimental details

Modeled as a [ 32 32 32 10 ] network

Generated coarse-grained versions of all 60,000 training and 10,000 test images

 “CG-MNIST” data set

Generative training (pre-training)

• Divided CG-MNIST training set into 5 sets of 12,000 images each

• Classical: for N=1,2,3,…100 

 Trained a 32/32/32/10 DBN on each of the 5 12,000-image sets for N pre-training iterations

 For each N and for each training set, we trained 20 networks (total 100 for each N)

• Quantum: for N=1,2,3,…40, 50, 60, 70, 80, 90, 100

 Trained a 32/32/32/10 DBN on each of the 5 12,000-image sets for N pre-training iterations

 For each N and for each training set, we trained 1 network (total 5 for each N)

 For each pre-training iteration we issued one solver call in each of 4 gauges w num_reads = 100 (total 

400 samples), annealing_time=20, 𝛽𝑒𝑓𝑓=2 , voting threshold = 0.5, no mini-batching, learning rate = 0.1

Discriminative training

• Same for classical and quantum:

 Applied truth labels and set last RBM layer coefficients using linear mapping

 10, 25, or 100 iterations of backpropagation using mini-batches of size 100


