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USC-Lockheed Martin Quantum Computation Center

* (May 2011) D-Wave Systems announced sale of first 128-
gubit D-Wave One™ to Lockheed Martin.

° (Oct 2011) USC-Lockheed Martin Quantum Computing
Center unveiled at USC Information Sciences Institute,

Marina del Rey, CA.
USC Viterbi

School of Engineering

Information Sciences Institute

* (Mar 2013) System upgraded to 512-qubit D-Wave Two™
(“Vesuvius”) chip.

* (Mar 2016) System upgraded to 1152-qubit D-Wave 2X™
(“Washington”) chip.
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Questions ]

« Can a quantum annealing device be used to sample from a Boltzmann distribution?
« Can a quantum annealer assist in training a Restricted Boltzmann Machine?

Similarities

RBM Quantum Annealer
v::xlre hli:vd:rn @. D'Wave DeVlce)
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-E » Final states (in computational basis)
P(v,h) = — are stochastic binary variables
Z * Quadratic energy functional
«  Stochastic binary variables * Real device returns distribution of states
«  Quadratic energy functional (not 100% ground state) — can this be
« Joint Boltzmann distribution approximated as a Boltzmann distribution?
e—ﬂeffE'
b=
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ldea: How quantum sampling is applied to training of RBMs ﬂ/fy

Restricted Boltzmann Machine model:

Energy functional W = weights; b,c = biases

E(v, h) = —Zbivi — chh] — Z Wijvihj
J ij

i
Joint probability distribution

Hidden layer

Visible layer

P(v,h) = 67 where Z =}, e E

Weight updates are determined by the formula

dlogP
AWij x awij =< vihj Zdata — < Vihj >model

Second term is intractable; this has motivated approximate schemes such as
Contrastive Divergence (CD): H
1 “Contrastive Divergence” (CD-1)

Ho
Gibb Gibb
sampl)lin;/ \ Amp;lin; Aw;j < (HV;) — (HoVp)
Vi,

Training é VO

Data

However, CD can take many iterations to converge (related to slow mixing of Gibbs sampling)
We attempt to use quantum sampling to estimate the “intractable” term directly
= Quantum sampling has the potential to mix faster (e.g. due to tunneling)
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Challenges using actual QA hardware for Boltzmann sampling

* Limited physical connectivity between qubits
= Not a complete graph
= Not a bipartite graph
= “Chimera” graph (square lattice of K, , unit cells)
= Small number of faulty qubits

* Parameter setting noise (aka Intrinsic Control Error (ICE))
= Multiple sources of error — some random, some systematic

= Programmed coefficients # actual coefficients
» Approx. 4 bits of precision (D-Wave 2); higher on D-Wave 2X

* Determination of B.rr (equivalently, the effective temperature)

= We used a simple empirical rule of thumb based on RBM size
= For a more systematic approach, see the talk by A. Perdomo-Ortiz

© 2016 Lockheed Martin Corporation. All rights reserved.




Mapping RBM bipartite graphs onto D-Wave chip

* Map each visible/hidden node to a chain of qubits:

visible hidden
layer layer

hidden node 1
hidden node 2
hidden node 3

hidden node 4

hidden node 5
hidden node 6
hidden node 7

hidden node 8

* Can map up to 32x32 RBM this way on a 504-qubit Vesuvius chip

* How we handle faulty qubits:
= Constrain RBM weights w;; = 0 for missing couplers

= Use voting on qubit chains to decide logical node values
» Tunable voting threshold from 0.5 (majority) to 1.0 (consensus)

© 2016 Lockheed Martin Corporation. All rights reserved.
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Mitigating Control Errors — Gauge Transformations ]

* D-Wave is an analog device

= “Vesuvius” system has 4 bits precision +5h v <5h
L8 .
= Net of various sources of random & systematic error -6h OTO -5h

= Example: “J-dependent h-offset”

J=-1

°* Ferromagnetic chains (added to do the mapping on previous slide) can
exacerbate some of these effects

* Control errors can be partially mitigated by “gauge transformations”
= Re-define the meaning of problem variables by flipping a subset of the S;
= Flipping §; induces a flip of the associated h;and J;;

= Gauge transformation shown below (“basket weave”) is particularly helpful in
mitigating J-dependent h-offset errors

1 2 3 4 g 10 11 12
5 13
6 14 RED qubits flipped
7 15 BLUE qubits unchanged

© 2016 Lockheed Martin Corporation. All rights reserved.
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Test Case: “Coarse Grained” MNIST ]

MNIST data set (http://yann.lecun.com/exdb/mnist )

* Handwritten digits 0-9

* 60,000 training and 10,000 test set images with truth labels

* Each image consists of 784 greyscale pixels (28x28)

To fit the problem on Vesuvius, we “coarse-grained” the images:
* We discarded 2 pixels on each edge, leaving a 24x24 image

°* We computed the average pixel value over each 4x4 block, resulting in a coarse-
grained 6x6 image

original coarse-grained
image image
(28x28) (6x6)

‘ :
T
[T

[
[

]
|
Original and coarse-grained versions of image from MNIST data set (handwritten digit 5)

* We discarded the 4 corners, resulting in 32 super-pixels
* A more challenging recognition problem than the real MNIST!

© 2016 Lockheed Martin Corporation. All rights reserved.

12


http://yann.lecun.com/exdb/mnist

Percent comect

Percent carect

Results for CG-MNIST Data Set

100 post-training iterations

Post-raining 100 iterations

LASSICAL TRAN
LASSICAL TEST

Percent comect

Post-training 100 iterations

Percent comect

200 post-training iterations

Post-training 200 iterations

Post-training 200 fterations

LASSICAL TEST

1k

o8t )
0sF F

04F

02F

ol

L L L 1 1

Percent comect

20 0
Pretraining terations

UBTUM TRAN
QueNTUM TEST
b
osf
0B =
04t A E
H
02F
[———
ol
L L I’ -7:\ L L L L 1
v 5 w15 E

20 0
Pretraining terations

400 post-training iterations

Post-training 400 fterations

Postraining 400 iterations

LASSICAL TRAIN
CLASSICAL TEST

Percent carrect

Percent corect

Pretraining iterations

L i ~
] 5 0 1/ 20 2% W H

. L
15 20 25 30 3B 40 45 &)
Pretraining iterations

=}
@
=

800 post-training iterations

Post-training 800 iterations

LASSICAL TRAIN
LASSICAL TEST
4 L
oA .
06 [ [ Tl ] 1
04
13 Lo | =
02 L
. ] L
. , . . , . \

Percent corect

Post-training 800 iterations
UIANTUM TRAIN
UANTUM TEST |17

1k

061 [
04

0zp L
ol L

L =
20 5 30
Pretraining iterations

D;
@
S
@

1 1 1
20 25 30 35 40
Pretraining iterations

ol
=
=
@

Pretraining iterations

© 2016 Lockheed Martin Corporation. All rights reserved.

L . .
0 5 W0 15 220 25 30 3 40 45 &0
Pretraining iterations

13



A4

Conclusions >
° In this experiment, the quantum sampling-based training approac'/
achieved higher accuracy than CD-1 training with fewer iterations of
generative training
°* More investigation needed to understand whether this is due to:
= Better estimation of gradient - can this also be efficiently estimated classically?
= Quantum effects
°* Work in progress:
= Larger quantum annealing devices (e.g. D-Wave 2X)
= More sparsely connected RBMs
* Concept of using a quantum annealer for sampling/inference instead
of optimization could lead to new applications for these devices
= Also for circuit/gate based QC

© 2016 Lockheed Martin Corporation. All rights reserved. 14
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Details of Quantum Sampling formulation

Original RBM QUBO (n+m) x (n+m)
E(v,h) = —bv —ch —vWh B guy=_1 [0 W
IBe‘ff 0 c

Ising model

E'(S) = —HS — SJS

Embedded Ising model

E"(S)=—-HS —SJ]S — S]pS €& NOTE: Don't use auto-scaling

Gauge transformed Ising model

E"(S) = —HS = ST S - ST

/average over 4 gauges

(Vihj)moder = (Vihj)ﬁeff’E = (Vihj)ﬁeff’E

=v; hj \J Uassuming quantum samples are “Boltzmann-like”

assuming contributions
from JFm terms are negligible

QUESTION: With the D-Wave hardware noise and all the approximations we are making, this is going to be a noisy estimate
of the log-likelihood gradient. But, could it be less noisy than Contrastive Divergence?

© 2016 Lockheed Martin Corporation. All rights reserved.
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CG-MNIST experimental details ﬂ/{7

Modeled as a[ 32 32 32 10 ] network
Generated coarse-grained versions of all 60,000 training and 10,000 test images
-2 “CG-MNIST” data set

Generative training (pre-training)
* Divided CG-MNIST training set into 5 sets of 12,000 images each

* Classical: for N=1,2,3,...100
» Trained a 32/32/32/10 DBN on each of the 5 12,000-image sets for N pre-training iterations
» For each N and for each training set, we trained 20 networks (total 100 for each N)

* Quantum: for N=1,2,3,...40, 50, 60, 70, 80, 90, 100
» Trained a 32/32/32/10 DBN on each of the 5 12,000-image sets for N pre-training iterations
= For each N and for each training set, we trained 1 network (total 5 for each N)

» For each pre-training iteration we issued one solver call in each of 4 gauges w num_reads = 100 (total
400 samples), annealing_time=20, g,rs=2 , voting threshold = 0.5, no mini-batching, learning rate = 0.1

Discriminative training

e Same for classical and quantum:
= Applied truth labels and set last RBM layer coefficients using linear mapping
= 10, 25, or 100 iterations of backpropagation using mini-batches of size 100

© 2016 Lockheed Martin Corporation. All rights reserved. 18



