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Conclusions and outlook

Performance

Quantum computers are not
known to be able to solve
NP-complete problems in
polynomial time.
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Performance determined by minimum spectral gap during adiabatic
evolution
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Universal AQC

Ground state is History state
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Universal AQC

How do we simulate time evolution in a ground 


state?

Ground state is History state

System state

ψ hist = 1
T +1

ψ (t)
t=0

T

∑ ⊗ t

Clock state

Probability to observe               is ψ T ⊗ T 1
T +1



Universal AQC - the clock construction

Clock Register

Logical register

t

H = Hclock + Hinit + (1
t=0
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†⊗ t t +1
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Universal AQC - gap

Apply change of basis:

W = Uj…U0 ⊗ j
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Hamiltonian becomes independent of circuit:
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Gap goes like 1/T2
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Desiderata

Biamonte, J. D. & Love, P. J. Realizable Hamiltonians for universal adiabatic quantum 
computers. Phys Rev A 78, 012352 (2008). 

Gap scaling - 1/T2 implies many repetitions, or requires a quadratic 
Moore’s Lawfor refrigerators, or quadratically increasing 


connectivity. Need gadgets to increase norm 



Types of Coupling - build XZ or XX and ZZ, or build multiple 


types of coupling. With fixed coupling types need gadgets.



Locality: clock constructions vary from 5-local to 2-local 



Complexity proofs: polynomial scaling of Hamiltonian norm is OK


Buildable devices: fixed coupling strength and connectivity.



Universal Quantum Computation with a Time-Independent 
Hamiltonian
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Abstract
We showhow to performuniversal Hamiltonian and adiabatic computing using a time-independent
Hamiltonian on a 2D grid describing a systemof hopping particles which string together and interact
to perform the computation. In this construction, themovement of one particle is controlled by the
presence or absence of other particles, an effective quantumfield effect transistor that allows the
construction of controlled-NOT and controlled-rotation gates. The construction translates into a
model for universal quantum computationwith time-independent two-qubitZZ andXX+YY
interactions on an (almost) planar grid. The effectiveHamiltonian is arrived at by a single use offirst-
order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral
properties of the effectiveHamiltonian can be fully determined as it corresponds to a particular
realization of amapping between a quantumcircuit and aHamiltonian called the space–time circuit-
to-Hamiltonian construction. Because of the simple interactions required, and because no higher-
order perturbation gadgets are employed, our construction is potentially realizable using super-
conducting or other solid-state qubits.

1. Introduction

Thefirst proposals for quantum computers used time-dependentHamiltonians to enact unitary quantum logic
gates [1–5] and the first prototype quantum computers were realized using such time-dependentmethods via
electromagnetic resonance [6, 7]. In 1986, Feynman proposed amethod for performing quantum computation
using a time-independentHamiltonian [8]. Hismotivationwas tomake amodel of quantum computation that
resembledmore closely the time-independentHamiltonian dynamics of the fundamental laws of physics.
Feynman’s trickwas to adjoin a global clock variable that regulated the pace of the computation. In 1987,
Margolus constructed amodel forHamiltonian quantum computation that was spatially homogeneous,
eliminating the pointer variable by embedding the computation in an asynchronous cellular automaton [9]. In
theMargolusmethod, the role of the pointer variable is subsumed in the positions of clock particles or
‘chronons’ that carry quantumbits with them as they progress through the computation. The global clock
variable is thus replaced by a local clock variable, one for each degree of freedom in the computation.

The Feynman andMargolusmodels were originally conceived as dynamicmodels inwhich the clock or the
chronons are prepared in a travelingwave state that propagates through the computation. Later analyses of these
models have shown that it is not necessary to prepare the initial state in travelingwave state: one can just initialize
the input state at fixed initial clock time (see e.g. [10]).

It was also noted that the FeynmanHamiltonian allows quantum computation to be embedded in the
ground state of the quantum system; it provides ameans formapping the time-dynamics of a quantum system
or a quantum circuit onto the ground-state of amaster ‘circuit’Hamiltonianwhich includes the dynamics of the
clock variable [11]. This ground state can then be reached via adiabatic quantum computation [12]. The
practical disadvantage of the universal circuit Hamiltonian obtained through this construction is that it involves
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Two local Adiabatic QC!



Gap scales as 1/n3



Also consider ballistic 


implementation - no problem 


with gap

Norman Margolus1990 Parallel quantum computation, Complexity, Entropy,and the Physics of Information, SFI Studies in the Sciences of  Complexity 
(Reading, MA: Addison-Wesley) pp 273–287 



Gadgets
Generate k-local interactions in an effective Hamiltonian at 
kth order in perturbation theory using k-ancilla 
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Generate k-local interactions in an effective Hamiltonian at 
kth order in perturbation theory using k-ancilla 
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Gadgets
Generate k-local interactions in an effective Hamiltonian at 
kth order in perturbation theory using k-ancilla 

Heff = Old terms + New terms

Flow of parameters Terms not


Physically realizable



Quantum 


Annealing

Gate 


Model

Universal 


AQC

2

where ↵ = a
min

/~ and a
min

is the rescaled instanton ac-
tion (see Eqs. (21) and (24)). In SA, the system escapes
from a local minimum via thermal fluctuations over an
energy barrier �E separating the minima. The time re-
quired for such events scales as

T
SA

= B
SA

e
�E

k

B

T , (4)

which is exponentially long with respect to �E. How-
ever, for su�ciently tall and narrow barriers such that

�E

k
B

T
> ↵D , (5)

QA can overcome barriers exponentially faster than SA.
This situation was studied in Ref. [38] and it also occurs
in the benchmark problems studied in this paper.

Path integral Quantum Monte Carlo (QMC) is a
method for sampling the quantum Boltzmann distri-
bution of a d dimensional stoquastic Hamiltonian as a
marginalization of a classical Boltzmann distribution of
an associated d+1 dimensional Hamiltonian. For specific
cases, it was recently shown that the exponent ↵ for phys-
ical tunneling is identical to the corresponding quantity
for QMC [39]. However, in the present work we find a
very substantial computational overhead associated with
the prefactor B

QMC

in the expression for the runtime of
QMC, T

QMC

= B
QMC

e↵D. In other words, B
QMC

can
exceed B

QA

by many orders of magnitude. The role of
this prefactor becomes essential in the situations where
the number of cotunneling qubits D is finite, i.e., is in-
dependent of the problem size N (or depends on N very
weakly).

Because tunneling is more advantageous when energy
barriers are tall and narrow, we expect this resource to
be most valuable in the upper part of the energy spec-
trum. For instance, a random initial state is likely to
have an energy well above the ground state energy for a
di�cult optimization problem such as the one in Eq. (1).
However, the closest lower energy local minimum will of-
ten be less than a dozen spin flips away. Nevertheless,
the energy barriers separating these minima may still be
high. In such situations, if the transverse field is turned
on to facilitate tunneling transitions, the transition rate
to lower energy minima will often increase. By contrast,
once the state reaches the low part of the energy spec-
trum, the closest lower local minimum is asymptotically
N spin flips away [2, 40–42]. There, finite range tunneling
may assist by e↵ectively “chopping o↵” narrow energy
ridges near the barrier top but the transition probabil-
ity is still largely given by the Boltzmann factor. This
description illustrates that finite range tunneling can be
useful to quickly reach an approximate optimization, but
will not necessarily significantly outperform SA when the
task is to find the ground state (see Fig. 1).

The canonical QA protocol initializes the system in
the symmetric superposition state, |+i⌦N , which is the
ground state at t = 0. By a similar argument, we expect
that finite range tunneling will drive the system adiabati-
cally across energy gaps associated with narrow barriers,

A
B

C
D

V
(q
(ᶦ
))

FIG. 1. Upper: quantum annealer dynamics are dominated
by paths through the mean field energy landscape that have
the highest transition probabilities. Shown is a path that
connects local minimum A to local minimum D. Lower: the
mean field energy V (q(⌧)) along the path from A to D, as
defined by Eqs. (12) and (15). Finite range, thermally as-
sisted tunneling can be thought of as a transition consisting
of three steps: I. The system picks up thermal energy from
the bath (red arrow up); II. The system performs a tunneling
transition between the entry and exit points (blue arrow); III.
The system relaxes to a local minimum by dissipating energy
back into the thermal bath (red arrow down). In transitions
A ! B or B ! C finite range tunneling considerably reduces
the thermal activation energy needed to overcome the barrier.
For long distance transitions in the lower part of the energy
spectrum, such as C ! D, the transition rate is still domi-
nated by the thermal activation energy and the increase in
transition rate brought about by tunneling is negligible.

preventing transitions to higher energies. However, in
general, finite range tunneling will not be able to prevent
Landau-Zener diabatic transitions for very small gaps re-
sulting from emerging minima in the energy landscape
separated by a wide barrier. This will often include the
gap separating the ground state from the first excited
state [2, 40–42].

The paper is organized as follows: In Section II we
present our main results consisting of benchmarking the

Add XX, 
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- Simplest Non-stoquastic term
- Powers gadgets, simulation, universal AQC
- Useful for annealing? See Hormozi, Nishimori, Farhi
- Removes QMC talks from agenda
- It’s what’s next!
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preventing transitions to higher energies. However, in
general, finite range tunneling will not be able to prevent
Landau-Zener diabatic transitions for very small gaps re-
sulting from emerging minima in the energy landscape
separated by a wide barrier. This will often include the
gap separating the ground state from the first excited
state [2, 40–42].
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Molecular electronic Hamiltonian

To represent as a qubit problem we must discretize
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Discretize in a basis of Molecular orbitals

{aj ,ak} = 0 {a†j ,a
†
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For each orbital define     and     satisfying:  ak a†k



Discretize in a basis of Molecular orbitals

{aj ,ak} = 0 {a†j ,a
†
k} = 0 {aj ,a

†
k} = δ jk1

Write the second-quantized Hamiltonian: 

H = hij
ij
∑ ai

†aj + hijkl
ijkl
∑ ai

†a†jakal

For each orbital define     and     satisfying:  ak a†k



n orbitals

n-local 
Hamiltonian

Jordan


Wigner

Bravyi


Kitaev

log n-local 
Hamiltonian

Couplings scale as



Not scalable.
 Δn

Couplings scale as 


      



Scalable.
 Δ logn

S. Bravyi and A. Yu. Kitaev,  Annals of Physics, 298 210-226 (2002)


J. T. Seeley, M. Richard, P. J. Love J. Chem. Phys. 137, 224109 (2012), 


Adiabatic Quantum Simulation of Quantum Chemistry, Ryan Babbush, Peter J. Love Alan 
Aspuru-Guzik arXiv:1311.3967, Scientific Reports, 4, 6603, (2014) 



Fermionic analog simulator



What couplings are needed?

Gadgets reduce locality - they can also reduce the types of 
interaction to XX, ZZ and XZ



This quantum simulator has the same couplings as a 
Universal AQC, but not the clock



Intermediate between quantum annealing and Universal AQC

Biamonte, J. D. & Love, P. J. Realizable Hamiltonians for universal adiabatic quantum computers. Phys Rev A 78, 012352 
(2008). 



Babbush, R., Love, P. J. & Aspuru-Guzik, A. Adiabatic Quantum Simulation of Quantum Chemistry. 1311.3967v2 (2013).



Validation by inefficient simulation of 
elementary quantum systems

If we think we will need gadgets and clocks 
in the future, what could we be doing now to 
make sure they work? 



Can we display properties of simple single 
particle QM - superposition, dispersion, 
energy quantization in an AQC?



Can we show evidence that superposition 
states exist in an AQC between logical basis 
states with widely different hamming 
weights?



In gate model requirements for validation 
(tomography) are the same as the 

requirements for computation



In restricted models of QC validation is a 
separate problem
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With a hammer, everything looks like….
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Quantum Criticality in an Ising Chain:
Experimental Evidence for
Emergent E8 Symmetry
R. Coldea,1* D. A. Tennant,2 E. M. Wheeler,1† E. Wawrzynska,3 D. Prabhakaran,1
M. Telling,4 K. Habicht,2 P. Smeibidl,2 K. Kiefer2

Quantum phase transitions take place between distinct phases of matter at zero temperature. Near
the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of
the system. A symmetry described by the E8 Lie group with a spectrum of eight particles was long
predicted to appear near the critical point of an Ising chain. We realize this system experimentally by
using strong transverse magnetic fields to tune the quasi–one-dimensional Ising ferromagnet
CoNb2O6 (cobalt niobate) through its critical point. Spin excitations are observed to change character
from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the
critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a
ratio that approaches the golden mean predicted for the first two meson particles of the E8 spectrum.
Our results demonstrate the power of symmetry to describe complex quantum behaviors.

Symmetry is present in many physical sys-
tems and helps uncover some of their funda-
mental properties. Continuous symmetries

lead to conservation laws; for example, the in-
variance of physical laws under spatial rotation
ensures the conservation of angular momentum.
More exotic continuous symmetries have been
predicted to emerge in the proximity of certain
quantum phase transitions (QPTs) (1, 2). Recent
experiments on quantum magnets (3–5) suggest
that quantum critical resonances may expose the
underlying symmetries most clearly. Remarkably,
the simplest of systems, the Ising chain, prom-
ises a very complex symmetry, described math-
ematically by the E8 Lie group (2, 6–9). Lie
groups describe continuous symmetries and are

important in many areas of physics. They range
in complexity from the U(1) group, which ap-
pears in the low-energy description of super-
fluidity, superconductivity, and Bose-Einstein
condensation (10, 11), to E8, the highest-order
symmetry group discovered in mathematics (12),
which has not yet been experimentally realized
in physics.

The one-dimensional (1D) Ising chain in trans-
verse field (10, 11, 13) is perhaps the most-studied
theoretical paradigm for a quantum phase transi-
tion. It is described by the Hamiltonian

H ¼ Si − JS z
i S

z
iþ1 − hS x

i ð1Þ
where a ferromagnetic exchange J > 0 between
nearest-neighbor spin-½magnetic moments Si ar-

ranged on a 1D chain competes with an applied
external transversemagnetic field h. The Ising ex-
change J favors spontaneous magnetic order along
the z axis ðj↑↑↑ ⋯ ↑〉 or j↓↓↓ ⋯ ↓〉Þ, whereas
the transverse fieldh forces the spins to point along
the perpendicular +x direction ðj→→→ ⋯ →〉Þ.
This competition leads to two distinct phases, mag-
netically ordered and quantum paramagnetic, sepa-
rated by a continuous transition at the critical field
hC = J/2 (Fig. 1A). Qualitatively, the magnetic field
stimulates quantum tunneling processes between
↑ and ↓ spin states and these zero-point quantum
fluctuations “melt” themagnetic order at hC (10).

To explore the physics of Ising quantum crit-
icality in real materials, several key ingredients
are required: very good one-dimensionality of the
magnetism to avoid mean-field effects of higher
dimensions, a strong easy-axis (Ising) character,
and a sufficiently low exchange energy J of a few
meV that can be matched by experimentally at-
tainable magnetic fields (10 T ~ 1meV) to access
the quantum critical point. An excellent model
system to test this physics is the insulating quasi-
1D Ising ferromagnet CoNb2O6 (14–16), where
magnetic Co2+ ions are arranged into near-isolated
zigzag chains along the c axis with strong easy-
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The kink basis - clock states

HF =  J(1 - ZZ)/2

Ferromagnetic 


penalty on adjacent



pairs

HP =  P(1 - Z1)/2


    +  P(1 - ZN)/2

Boundary


penaltyE = 0

E = P

1

2

3

4

5

6



The transverse field in the kink basis

Xi
i=1
∑ k = uniform superposition of all states 



  Hamming distance one from k

Xi
i=1
∑ = +

Projecting back onto the kink basis:

P Xi
i=1
∑ k⎛

⎝⎜
⎞
⎠⎟
= k +1 + k −1

P 1
L2

Xi
i=1
∑ k − 1

L2
k⎛

⎝⎜
⎞
⎠⎟
=
k +1 − 2 k + k −1

L2
= D d 2

dx2
⎡

⎣
⎢

⎤

⎦
⎥

Or:

Can build a 1-D kinetic energy from this:



The local field in the kink basis

k

hiZi
i=1

L

∑ k = hi
i=k+1

L

∑ − hi
i=1

k

∑⎛
⎝⎜

⎞
⎠⎟
k = hi

i=1

L

∑ − 2 hi
i=1

k

∑⎛
⎝⎜

⎞
⎠⎟
k

Can interpret this as a potential, where up to a constant:

V (k) = −2 hi
i=1

k

∑

Obvious case: linear potential, constant field, kink confinement.



Polynomial potentials
Find hi such that

V (k) = −2 hi
i=1

k

∑ = k p

Straightforward: use Pascal’s Identity:

k +1( )p = 1+ p
l

⎛

⎝⎜
⎞

⎠⎟
il

i=1

k

∑
l=0

p−1

∑

hi = − 1
2

p
l

⎛

⎝⎜
⎞

⎠⎟l=0

p−1

∑ il = i
p − (1+ i)p

2

Up to a constant:

Maximum required local field grows exponentially with polynomial


degree - recall the goal here is validation not simulation.



Errors

Discretization error:

lim
n→∞

P H( ) = Hcont

Leakage error:

Standard numerical analysis

Gadget analysis tells you corrections to P(H). 


These corrections tell you about virtual excitations in your 


system.

lim
J→∞

H = P H( )



If simple kink basis simulations work at 


all then you can make clock states.



Leakage Errors in simple simulations tell 
you whether Gadgets 



will work in your system.



First error can be used to detect XX

Inefficient elementary simulations are probes of 


requirements for post-annealing AQC



0

J

2J

3J

P
Zero Kinks

Two Kinks

Four Kinks

Six Kinks

Eight Kinks

Potential is diagonal - doesn’t couple states 


with different numbers of kinks.



Error analysis is same for all potentials.

Heff = P H( )+ V−+G+ V+G+( )k−2V+−
k=2

∞

∑Gadgets

G+ = −
E,r E,r

Er=1

dE

∑
E>0
∑

Π− projector onto two kink space

V±∓ =Π±VΠ∓

Π+ = Ι −Π−

V±± =Π±VΠ±



Heff = P(H )−
λ 2 (L − 3)
2J

Ι − 3λ
2

4J
1 1 + L L⎡⎣ ⎤⎦ −

λ 2

2J
P XiXi+1

i=1

L−1

∑⎛⎝⎜
⎞
⎠⎟

0

J

2J

3J

P
Zero Kinks

Two Kinks

Four Kinks

Six Kinks

Eight Kinks

Two kinds of term: 



Terms that are already  present - flow of 


coefficients. 



Terms that are new. Errors.



Heff = P(H )−
λ 2 (L − 3)
2J

Ι − 3λ
2

4J
1 1 + L L⎡⎣ ⎤⎦ −

λ 2

2J
P XiXi+1

i=1

L−1

∑⎛⎝⎜
⎞
⎠⎟

0

J

2J

3J

P
Zero Kinks
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Four Kinks
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Two kinds of term: 



Terms that are already  present - flow of 


coefficients. 



Terms that are new. Errors.

Stoquastic XX
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8, 10, 12 qubits should be sufficient to detect the scaling of the 


eigenvalues with penalty strength. Renormalizing coefficients should 


improve accuracy.



If you can engineer further terms (specifically XX) you should be


able to see the scaling change. 



Experiments observing these effects would fail to invalidate the 
presence of effects necessary for gadgets to work

8 qubits



Entanglement and delocalization

xy<x y>x

What is the entanglement of y<x with y>x?



Define reduced state:



And linear entropy (also Meyer-Wallach measure):

ρx = Try>xρ

ρx =
2L

2L −1
1−Tr ρx

2( )⎡⎣ ⎤⎦



Entanglement and delocalization

xy<x y>x

For kink states entanglement is really a measure of 
delocalization.



ρx =
2L

2L −1
1−Tr ρx

2( )⎡⎣ ⎤⎦

Tr ρx
2( ) = qψ

4

q=1

N

∑ + 2 qψ
2

l=1

q−1

∑
q=1

x

∑ l ψ
2
+ 2 qψ

2

l=x+1

q−1

∑
q=x+1

x

∑ l ψ
2

Participation ratio



Entanglement and delocalization
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Summary

Non-scalable simulation is a good probe of 
properties relevant to post-quantum annealing 
AQC.



Lets do some XX experiments!



We will always be at war with eurasia need 
better locality reduction tecniques



Case for quantumness in AQC will likely rely on 
many forms of indirect evidence.



Worry: can techniques from fermion QMC be 
adapted to non-stoquastic XX?



Thanks!


