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Discovery of superconductors: critical temperature vs. time

Conventional superconductors

liquid Nitrogen,  77 K

liquid Helium, 4.2 K
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Josephson junction: dc effect

IIc
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B

B. D. Josephson, 

Cambridge (1962)

J = Jc sin (j2 j1)



-junction: s-wave & d-wave superconductors

D.Wollman, Van Harlingen, W.Lee, D.M.Ginsberg, A.J.Leggett, Phys.Rev.Lett. 71, 2134 (1993)

I = – Ic sin (j2 j1) =Ic sin (j2 j1+)
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-junction & Qubits

L. B. Ioffe et al., Nature 398, 679 (1999)

Quantum computation: 

a qubit with 2 persistent 

current states



R.R.Schulz, B. Chesca, et al., Appl. Phys. Lett. 76, 912 (2000)

hole-doped YBa2Cu3O7

-junctions: d-wave superconductors only!
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B. Chesca et al., Phys. Rev .Lett. 90, 057004 (2003)
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-junctions: d-wave superconductors only!



Devices with hundreds/thousends of high-Tc junctions

Flux-flow MW/THz generators

Transistors

Magnetic sensors (SQUIDs, SQIFs)

Quantum computers ?



Flux-flow MW/THz generators

why superconducting generators?
natural

frequency is tunable (voltage, B field)



Superconductor

Barrier

Superconductor

MW/THz

IIc

0

U

supercurrent oscillates locally

natural MW/THz generator

B. D. Josephson, 

Cambridge (1962)

Josephson junction: ac effect



A vortex corresponds to a soliton propagating along the chain. Each pendulum hangs almost 

straight down for much of the time, but when the soliton passes by, the pendulum overturns 

rapidly and oscillates for the period between passing solitons. These oscillations are the analogue 

of the EM radiation excited by the vortex. A resonance occurs if the pendulum oscillates precisely 

an integer number of times (m) between successive passages of the soliton; 

JJ array = chain of N identical pendulums driven by a constant torque
each pendulum is damped & free to move transverse to the axis of the chain

coupled to its nearest neighbours by torsional springs

has an identical behaviour except for a constant shift in time. 

22 x 20 asymmetrical Josephson junction array



Flux-flow @ 77 K: MW is 0.1 W @ (1.5-25) GHz

B. Chesca, D. John, and C. Mellor, Supercond. Sci. Technol. 27, 085015 (2014)



Transistors

why superconducting transistors?
high switching speed

low power dissipation

low noise



Flux-flow resonances: ideal for high-gain transistors 

B. Chesca, et al, Appl. Phys. Lett. 103, 092601 (2013)



Ic(Ictrl) at 77K: highly asymmetric

B. Chesca, D. John, M. Kemp, J. Brown, and C. Mellor, Appl. Phys. Lett. 103, 092601 (2013)



Why superconducting magnetic sensors?
the best

getting less expensive: 

77K SQUID-arrays better than single-SQUID 4.2 K

Magnetic sensors: SQUIDs & SQIFs



SQUID arrays
SQUID 770 SQUID array

Noise                Noise
V                    V

=

flux coherent & non-interacting SQUID array 

NoiseArray = N1/2 NoiseSQUID

VArray = N VSQUID

[ [] ]
SQUIDArray N1/2

1

http://ashithka.blogspot.com/2014/10/squidssuperconducters.html
http://ashithka.blogspot.com/2014/10/squidssuperconducters.html
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SQUID arrays @ 77K better than SQUIDs @ 4.2 K

B. Chesca, J. Daniel, C. Mellor, Appl. Phys. Lett. 107, 162602 (2015)



2D 20000 SQUID arrays design

E. E. Mitchell et al,, Supercond. Sci. Technol. 29, 06LT01 (2016)



Quantum Computers?

why superconducting Quantum Computers?
D-wave produced 2 (Google and NASA)



1000 qubit processor 

with 128K low-Tc Josephson junctions



Conclusions

High-Tc junctions: very significant progress

simple and reliable fabrication: bicrystal, step-edge

high performance devices with hundreds/thousands junctions

quantum computing with high-Tc junctions worth a try !


