
Itay Hen Aug 23, 2016Trieste, Italy

Quantum-Classical Hybrid Monte Carlo 
Algorithm with Applications to AQC

Itay Hen
Information Sciences Institute, USC

Workshop on Theory and Practice of 
AQC and Quantum Simulation

Trieste, Italy
August 23, 2016

Joint work with TameemAlbash
and Gene Wagenbreth



Itay Hen Aug 23, 2016Trieste, Italy

q motivation

q a different decomposition of 
the quantum partition function

q quantum-classical Monte Carlo algorithm

q some (preliminary) results

q applications to AQC

q conclusions and outlook

Outline



Itay Hen Aug 23, 2016Trieste, Italy

Motivation
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q for most large quantum many body systems, quantum Monte Carlo 
(QMC) is the only approach to get any results.  

q still, QMC is inefficient under certain circumstances.

Motivation

sign problem 
(negative weights)

small energy gaps 
(phase transitions)

classical glassiness

q quantum many-body systems that are almost classical tend to freeze: 
quantum fluctuations driving the simulations are too small but 
algorithms do not properly converge to thermal classical algorithms. 
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Standard methods

q path integral Monte Carlo methods are prone to Trotterization errors. 

q at low temperatures (high   ), imaginary time
slices must be made smaller and smaller,  
leading to low acceptance rates of updates. 

q other schemes are immune to Trotterization
errors:

q continuous-time Monte Carlo 
[Prokof’ev et al].

q stochastic series expansion (SSE) 
[Sandvik]. 

q these however too have other issues.  

𝛽

im
ag

in
ar

y 
tim

e

spatial direction



Itay Hen Aug 23, 2016Trieste, Italy

Standard stochastic series expansion

q SSE: no Trotterization. first, the trace in the partition functions is 
replaced by an explicit sum over computational basis states:

q then, in lieu of slicing 𝛽, one Taylor-expands the exponent

q as a next step, the Hamiltonian is written as a sum of local operators.

some of those are diagonal, some are off-diagonal. 

where 
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Standard stochastic series expansion

q the partition function can then be written as a 
triple sum of weights:

where 𝑆#	 is the set of all products of local 
operators 𝐻& of size n:

a typical segment of a 
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q to interpret                 as weights, the 
diagonal operators must have positive eigenvalues, 
which creates a (curable) diagonal sign problem.  
constants must be added to rectify that. sometimes 
significantly affects the efficiency of the algorithm.

0
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Issues with standard SSE

q for many systems, SSE is found to be very effective (e.g., the 
Bose-Hubbard model). good global update moves. 

q for other systems such as the transverse field Ising model, there’s the 
possibility of `freeze-out’ inside the glassy phase.

q if quantum fluctuations are small, they do not appear often enough to 
generate new configurations
with plausible acceptance 
rates.

q some sort of percolation 
threshold. 

q can this freezing be cured? 
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A different decomposition of 
the quantum partition function
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A different decomposition

q what if we do not break apart the classical part? 
let us write the Hamiltonian as a diagonal 
(highly non-local) operator and a sum of local 
off-diagonal operators:

q initially proceed with standard SSE approach.  
we still obtain sequences of the form:

q now however the operators are

q since the operators are non-local, standard SSE 
does not work (acceptance rates are low). 

a typical segment of a 
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q in the new formalism, we proceed by evaluating all the diagonal  
𝐻89:;;<8:9 operators inside the products: 

q the off-diagonal terms modify the classical configurations. 

q the diagonal terms each generate a factor of classical energy

that can be pulled out of the bra-ket.  

A different decomposition
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q the next step is: group together of all `standard SSE’ 
weights 𝑧 𝑆# 𝑧 that have the same ‘off-diagonal backbone’ :

q formally, this is a sum of infinitely many terms.

q this gives (for simplicity we set 𝑡& = 𝑡):

A different decomposition
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q as it turns out, this infinite sum

can be regrouped to give

this is the divided difference of the Boltzmann factor 
of sequences (multi-sets) of intermediate classical 

energies along the imaginary time direction. 

A different decomposition

=
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Digression: divided differences

𝑥

𝐹(𝑥)

𝐹 𝑥D = 𝐹(𝑥D)

𝑥D

𝐹(𝑥D)

q the divided difference of a 
function with an input 
multi-set of size one, is simply

q the divided differences of a function 𝐹(𝑥) with respect to the input multi-set 
	 𝑥D, … 𝑥G 	is given by:
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Digression: divided differences

𝑥

𝐹(𝑥)

𝐹 𝑥D, 𝑥H =
𝐹(𝑥H)− 𝐹(𝑥D)

𝑥H − 𝑥D
≈ 𝐹′(𝜉)

𝑥D

𝐹(𝑥D)

𝑥H

𝐹(𝑥H)

q the divided differences of a function taking as input a multi set with two 
elements is:
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Digression: divided differences

𝑥

𝐹(𝑥)

𝐹 𝑥D, 𝑥H, 𝑥M =
𝐹[𝑥D, 𝑥H] − 𝐹[𝑥H, 𝑥M]

𝑥D − 𝑥M
≈
1
2𝐹′′(𝜉)

𝑥D

𝐹(𝑥H)

𝑥H

𝐹(𝑥M)

𝑥M

𝐹(𝑥D)

q the divided differences of a function taking as input a multi set with three
elements is:
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Digression: divided differences

q in the general case, the evaluation of the
divided differences of a function with 𝑞 + 1 inputs

𝐹 𝑥D, … , 𝑥G =
𝐹[𝑥D, … , 𝑥GSH ] − 𝐹[𝑥H, … , 𝑥G ]	

𝑥D − 𝑥G

is done via the recursion relation:

q also:

q the computational cost of calculating this
infinite sum scales as 𝑞M in the worst case.

𝐹 𝑥D, … , 𝑥G =
𝐹 # (𝜉)	
𝑛!
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Final form of partition function

q in terms of divided differences of the Boltzmann factor, 
the partition function ends up looking like:

note! 𝑧 𝑆G 𝑧 = 𝑧 𝑧′ = 𝛿W,WX. we can therefore simply write:

𝑍 is therefore a series expansion of `generalized Boltzmann weights’ 
with respect to the quantum strength parameter 𝑡.  
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Generalized Boltzmann weights

q as a series in the `quantumness parameter’ 𝑡, the partition 
function can be written as:

q if the quantum parameter is zero,  the partition function 
decomposition reduces to that of the classical one: 
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Generalized Boltzmann weights

q interim summary: we have a decomposition of the partition 
function of the form

q the weights are:

q the sequence (multi-set) of energies 𝐸D, 𝐸H, … , 𝐸G is generated by the 
action of the sequence 𝑆G on the classical state |𝑧⟩: 

where 
classical state

a product of off-
diagonal operators
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Generalized Boltzmann weights

q other interesting properties of the GBWs:

q always positive for systems with no sign problem.     
never a `diagonal sign problem’. no artificial parameters required.

q doesn’t solve the sign problem. 

q invariance of weight ratios under a constant energy shift:

with Ω: 𝑡7 ≥ 0, Σ𝑡7 = 1

q a connection to continuous-time MC via the 
Hermite-Genocchi formula
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Quantum-classical 
Monte Carlo algorithm
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A trivial example first: 

q consider the case of the “off-diagonal” Hamiltonian:

with

q here, the partition function is:

with classical energies 𝐸D = ⋯ = 𝐸G = 0

q in this case

q so the partition function reduces to

being the number of nonzero weights per size 𝑞

q evaluates to the correct expression:



Itay Hen Aug 23, 2016Trieste, Italy

Quantum-classical Monte Carlo algorithm

q for more complicated systems, we can use the decomposition to 
form a quantum-classical MC algorithm. 

q we generate a Markovian process on the configurations

classical state
a product of local 

off-diagonal operators

q initial configuration: the empty product, i.e.,  𝑆G = 1, 
and a randomly chosen classical state |𝑧⟩:

this corresponds to starting with a classical system.
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q generic updates that mildly perturb the GBW:

q a simple swap (changes 𝑆G):

q classical moves (change |𝑧⟩):

q a block swap (changes 𝑆G, |𝑧⟩):

q creation/annihilation (changes 𝑞, 𝑆G):

Quantum-classical Monte Carlo algorithm
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q measurements are easily done:

q arbitrary diagonal operators. 

q thermal averages of off-diagonal operators and products thereof.

q haven’t worked out correlation functions yet.

q issues: 

q precision required for calculation 
of weights is high.

q haven’t figured out global updates yet.

q weight calculation is somewhat costly
requiring sometimes ~q operations. 
however corresponds to the sum 
of very many standard weights.

Measurements and issues
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Some (preliminary) results
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q the size of 𝑆G, namely 𝑞, is the dynamical size of periodic
imaginary time.

q 𝑞	varies dynamically 
and levels off (but 
fluctuates) as the 
simulation evolves.

q remains zero for 
classical systems 
(probability for 
pair creation is zero).

q also, no Trotterization
errors.

Dynamical imaginary time
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q size of imaginary time dimension:

q 𝑞 scales linearly with inverse temperature 𝛽 and 

q 𝑞 scales linearly with problem size 𝑛.

Dynamical imaginary time
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q size of imaginary time dimension:

q 𝑞 grows with the “quantumness” (quadratically it seems).

Dynamical imaginary time
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Preliminary results
q comparison against exact diagonalization. 

q fully connected anti-ferromagnet. system size is 𝑛 = 16. 
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Preliminary results

0 20 40 60 80 100 120 140

n

-200

-150

-100

-50

0

⟨H
d
ia
g
⟩

PI

SSSE

q comparison against path integral MC. 

q instances are random 3-regular max-2-sat. here, 𝑡 = 0.1 (”mostly” 
classical). 
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Applications to AQC
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Applications to AQC

q experimental quantum annealers

q explore the full spectrum of purely quantum to purely classical 
dynamics. 

q trace curves in the quantum-classical, or transverse field-temperature, 
parameter space. 

that implement the transverse-field Ising model:
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Applications to AQC

q may benefit from such quantum-classical MC method.

q for example quantum-classical parallel tempering which would mimic 
experimental quantum annealers.

q bridges quantum and classical (thermal) evolution in a natural way. 
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Conclusions and outlook
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Conclusions and outlook

q preliminary results are positive.

q technique is “clean”; has no free parameters whatsoever.  

q more work to be done. 

q decomposition of the partition function seems to indicate certain 
important ”natural” qualities. 

q perhaps this decomposition of the quantum partition function may be 
useful in other applications. 

q connection to continuous-time QMC should be resolved.  
some indications of a profound relation. 
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