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Isoperimetric inequality: relates the geometry of the ground
state probability distribution to the spectral gap

Constrains the kind of probability distributions that can be
efficienctly sampled with adiabatic optimization

Applies to non-stoquastic as well as stoquastic Hamiltonians

Corroborates past results about small gaps arising from local
minima that are far in Hamming distance

Suggests speed ups from increased range k-local couplings



Isoperimetric inequalities

Measure on the boundary of a set I

Measure inside a set

12 > 4rA
» Can be defined for graphs in terms of vertex expansion
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Hilbert space graph Gg 4

Hamiltonian H and basis set Q2
Vertices are elements of 2
Edges corresponding to non-zero off-diagonal matrix elements

e.g. computational basis Q = {0,1}", transverse Ising
Hamiltonian H, Gq p is an n-dimensional boolean hypercube

The boundary of a set of vertices S C 2 are the vertices in S
connected to vertices outside of S,

0S ={xe€S:3y ¢S with (x|H|y) # 0}



Isoperimetric Inequality for Quantum Ground States

» Define W?(S) := (V|15|V) := > oxes W (x)[?

» Theorem: If Gq 4 is a connected graph, then any subset
S C Q with W2(S) < 1/2 satisfies

W2(9S)

By < 2IHl — Eo) sy

where |W) is the ground state of H with energy Ey, Ay is the
spectral gap, and ||H|| is the operator norm.

» Depends on locality of the Hamiltonian and geometry of the
ground state, but not the details of the Hamiltonian couplings!



Example: Ferromagnetic Transverse Ising Model

S={xeQ:M(x) =<0}

0S = {xe Q: M(x) =0}

00...0 11...1
State space
» Probability of M = 0 in the ferromagnetic phase is ~ e~%(")
» V2005) < o9 ~9(n)
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Proof in the stoquastic case: map H to a Markov chain

» Define a := (||H|| — Eo)~! and 3 := ||H||~! so that
G := o/ — BH) non-negative and satisfies G|V) = |W)

» Gq y is connected = W(x) >0V x € {0,1}"

» Define Markov chain transition probabilities by

—~

Vly
V|x

~

P(x,y) = (y|Glx)

—~
-

» Slightly novel mapping, but mostly builds on past results

[Bravyi and Terhal 08’, Al-Shimary and Pachos 10’,
Jarret and Jordan 14’, Nishimori, Tsuda, and Knysh 14’].
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P is a stochastic matrix because P(x,y) > 0Vx,y € Q and

_ N M) _ (VIGkx)
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Define 7(x) := |W(x)|?, then |7) = 3", .o m(x)|x) satisfies

(mlP =Y Ir(x)Px,y) = D (Y{WIx)(xIGly){y|V)

x,y€Q X,y €Q
=Y HVIGIY) (W) = > yIW()P? = (x|
yeQ y€eQ

P satisfies detailed balance, 7w(x)P(x,y) = 7(y)P(y, x)

P has eigenfunctions |¢y) 1= cq V(x)Wk(x) with
eigenvalues a(1 — BEy), so the gap is Ap = afAy.



Conductance inequality for Markov chains

» Ap satisfies the conductance inequality for Markov chains,
P2 1

— < < — min ——
, <Ap<20 @ min —8) > m(x)P(x,y)
xE€S,y¢S



From Conductance to Vertex Expansion
> Applying the definitions of P and ,

Yo mPGGy) = D0 (WInYIG)(x|W) = (W]1ps Glose| W)

x€S,yeSe x€S,yeSe

» Using the fact that H is stoquastic,

(W[19sGlasec|W) < (W]195G|W) = W2(DS)

which shows that ®(S) < W2(9S)/W2(S).



Lower Bound for the Stoquastic Case

> Vx €Q,3° cqP(x,y) =1, and this can be used to show that

Hmin wy
<+ <1 Vx,yeQ s.tx|Hly) #0
IH]| — Wy
where Hiin := miny . H|y)20 | (XIH[Y)].
» This allows for a lower bound in terms of vertex expansion,
H2

min 2, < Ay < 2(||H|| — Eo)dv
2|H|2(|H| - Eo)
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where ®y = ming.y2(5)<1/2 lI5112(72955))'



Transverse Ising Spin Glass with n = 12 Qubits

— lower bound
spectral gap

— conductance bound

— vertex expansion bound

| | adiaBatic parameter (é) |
» Thanks to John Bowen, from the University of Chicago, who
worked on these ideas during a Caltech SURF this Summer!



Proof in the Non-Stoquastic Case

P retains many properties of a reversible transition matrix
despite having complex entries of unbounded magnitude!

Enables the use of similar techniques as those that are used to
show the Markov chain conductance bounds

Obstacle: W(x) = 0 is possible even if Gg y is connected.

Solution: consider states close to W with |W(x)| > ¢ > 0 for
all x, and prove the main theorem by taking the limit ¢ — 0.

Counterexamples for non-stoquastic H — Ay can be small
even if the ground state is highly expanding.



What if H is non-stoquastic, but P(x, y) > 0 for all x,y € Q?
e.g. the phases in (y|G|x) and (V|y)/(W|x) could cancel

Definition: if H appears to be non-stoquastic but P is
non-negative then H is “secretly stoquastic.”

Observation: If Gq 4 is a connected line graph, then H is
secretly stoquastic in the basis Q.

al b1 0
H = bI an b2
0 by -

Lesson: genuine non-stoquasticity requires frustration in the
off-diagonal couplings!



Implications for Adiabatic Optimization

» Ground state distributions with low expansion are difficult to
produce using local Hamiltonian adiabatic optimization

» Small gap whenever the ground state is a mixture of modes
centered on local minima far apart in Hamming distance



Optimism for k-local Couplings

» Increasing k increases W2(9S) for every S!

S K
S 4



Conclusion and Outlook
Ground state bottlenecks slow down adiabatic optimization

Limitations on improvement from non-stoquastic couplings for
sampling target multimodal distributions

Larger spectral gaps from path changes require reshaping the
ground state throughout the evolution

Diabatic transitions and thermal effects can escape these
limitations on pure ground state adiabatic optimization

Suggests benefit from k-local couplings for stoquastic systems

Thank you for your attention! :)



