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∆H ≤ 2(‖H‖ − E0)
Ψ2(∂S)

Ψ2(S)



I Isoperimetric inequality: relates the geometry of the ground
state probability distribution to the spectral gap

I Constrains the kind of probability distributions that can be
efficienctly sampled with adiabatic optimization

I Applies to non-stoquastic as well as stoquastic Hamiltonians

I Corroborates past results about small gaps arising from local
minima that are far in Hamming distance

I Suggests speed ups from increased range k-local couplings



Isoperimetric inequalities

I
Measure on the boundary of a set

Measure inside a set

I Can be defined for graphs in terms of vertex expansion

S = {000, 100, 010, 001} =⇒ ∂S = {100, 010, 001} =⇒ |∂S |
|S |

=
3

4



Hilbert space graph GΩ,H

I Hamiltonian H and basis set Ω

I Vertices are elements of Ω

I Edges corresponding to non-zero off-diagonal matrix elements

I e.g. computational basis Ω = {0, 1}n, transverse Ising
Hamiltonian H, GΩ,H is an n-dimensional boolean hypercube

I The boundary of a set of vertices S ⊆ Ω are the vertices in S
connected to vertices outside of S ,

∂S = {x ∈ S : ∃y /∈ S with 〈x |H|y〉 6= 0}



Isoperimetric Inequality for Quantum Ground States

I Define Ψ2(S) := 〈Ψ|1S |Ψ〉 :=
∑

x∈S |Ψ(x)|2

I Theorem: If GΩ,H is a connected graph, then any subset
S ⊆ Ω with Ψ2(S) ≤ 1/2 satisfies

∆H ≤ 2(‖H‖ − E0)
Ψ2(∂S)

Ψ2(S)
,

where |Ψ〉 is the ground state of H with energy E0, ∆H is the
spectral gap, and ‖H‖ is the operator norm.

I Depends on locality of the Hamiltonian and geometry of the
ground state, but not the details of the Hamiltonian couplings!



Example: Ferromagnetic Transverse Ising Model

S = {x ∈ Ω : M(x) ≤ 0}

∂S = {x ∈ Ω : M(x) = 0}

00...0 11...1
State space

I Probability of M = 0 in the ferromagnetic phase is ∼ e−Ω(n)

I Ψ2(∂S)
Ψ2(S)

. e−Ω(n) =⇒ ∆H . n e−Ω(n)



Proof in the stoquastic case: map H to a Markov chain

I Define α := (‖H‖ − E0)−1 and β := ‖H‖−1 so that
G := α(I − βH) non-negative and satisfies G |Ψ〉 = |Ψ〉

I GΩ,H is connected =⇒ Ψ(x) > 0 ∀ x ∈ {0, 1}n

I Define Markov chain transition probabilities by

P(x , y) :=
〈Ψ|y〉
〈Ψ|x〉

〈y |G |x〉

I Slightly novel mapping, but mostly builds on past results

[Bravyi and Terhal 08’, Al-Shimary and Pachos 10’,
Jarret and Jordan 14’, Nishimori, Tsuda, and Knysh 14’].



I P is a stochastic matrix because P(x , y) ≥ 0 ∀x , y ∈ Ω and∑
y∈Ω

P(x , y) =
∑
y∈Ω

〈Ψ|y〉
〈Ψ|x〉

〈y |G |x〉 =
〈Ψ|G |x〉

Ψ|x〉
= 1

I Define π(x) := |Ψ(x)|2, then |π〉 =
∑

x∈Ω π(x)|x〉 satisfies

〈π|P =
∑
x ,y∈Ω

〈y |π(x)P(x , y) =
∑
x ,y∈Ω

〈y |〈Ψ|x〉〈x |G |y〉〈y |Ψ〉

=
∑
y∈Ω

〈y |〈Ψ|G |y〉〈y |Ψ〉 =
∑
y∈Ω

〈y ||Ψ(y)|2 = 〈π|

I P satisfies detailed balance, π(x)P(x , y) = π(y)P(y , x)

I P has eigenfunctions |φk〉 :=
∑

x∈Ω Ψ(x)Ψk(x) with
eigenvalues α(1− βEk), so the gap is ∆P = αβ∆H .



Conductance inequality for Markov chains

I ∆P satisfies the conductance inequality for Markov chains,

Φ2

2
≤ ∆P ≤ 2Φ , Φ = min

S⊂Ω

1

π(S)

∑
x∈S ,y /∈S

π(x)P(x , y)

S πx πy
P(x,y)



From Conductance to Vertex Expansion

I Applying the definitions of P and π,∑
x∈S ,y∈Sc

π(x)P(x , y) =
∑

x∈S ,y∈Sc

〈Ψ|y〉〈y |G |x〉〈x |Ψ〉 = 〈Ψ|1∂SG1∂Sc |Ψ〉

I Using the fact that H is stoquastic,

〈Ψ|1∂SG1∂Sc |Ψ〉 ≤ 〈Ψ|1∂SG |Ψ〉 = Ψ2(∂S)

which shows that Φ(S) ≤ Ψ2(∂S)/Ψ2(S).



Lower Bound for the Stoquastic Case

I ∀x ∈ Ω ,
∑

y∈Ω P(x , y) = 1, and this can be used to show that

Hmin

‖H‖
≤ Ψy

Ψx
≤ 1 ∀ x , y ∈ Ω s.t.〈x |H|y〉 6= 0

where Hmin := minx ,y :〈x |H|y〉6=0 |〈x |H|y〉|.
I This allows for a lower bound in terms of vertex expansion,

H2
min

2‖H‖2(‖H‖ − E0)
Φ2
V ≤ ∆H ≤ 2(‖H‖ − E0)ΦV

where ΦV := minS:Ψ2(S)≤1/2
Ψ2(∂S)
Ψ2(S)

.



Transverse Ising Spin Glass with n = 12 Qubits

lower bound

spectral gap

conductance bound

vertex expansion bound
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I Thanks to John Bowen, from the University of Chicago, who
worked on these ideas during a Caltech SURF this Summer!



Proof in the Non-Stoquastic Case

I P retains many properties of a reversible transition matrix
despite having complex entries of unbounded magnitude!

I Enables the use of similar techniques as those that are used to
show the Markov chain conductance bounds

I Obstacle: Ψ(x) = 0 is possible even if GΩ,H is connected.

I Solution: consider states close to Ψ with |Ψ(x)| ≥ ε > 0 for
all x , and prove the main theorem by taking the limit ε→ 0.

I Counterexamples for non-stoquastic H =⇒ ∆H can be small
even if the ground state is highly expanding.



I What if H is non-stoquastic, but P(x , y) ≥ 0 for all x , y ∈ Ω?

I e.g. the phases in 〈y |G |x〉 and 〈Ψ|y〉/〈Ψ|x〉 could cancel

I Definition: if H appears to be non-stoquastic but P is
non-negative then H is “secretly stoquastic.”

I Observation: If GΩ,H is a connected line graph, then H is
secretly stoquastic in the basis Ω.

H =

a1 b1 0

b†1 a2 b2

0 b†2
. . .


I Lesson: genuine non-stoquasticity requires frustration in the

off-diagonal couplings!



Implications for Adiabatic Optimization

I Ground state distributions with low expansion are difficult to
produce using local Hamiltonian adiabatic optimization

I Small gap whenever the ground state is a mixture of modes
centered on local minima far apart in Hamming distance



Optimism for k-local Couplings

I Increasing k increases Ψ2(∂S) for every S!

k

∂S

Interior of S

S



Conclusion and Outlook

I Ground state bottlenecks slow down adiabatic optimization

I Limitations on improvement from non-stoquastic couplings for
sampling target multimodal distributions

I Larger spectral gaps from path changes require reshaping the
ground state throughout the evolution

I Diabatic transitions and thermal effects can escape these
limitations on pure ground state adiabatic optimization

I Suggests benefit from k-local couplings for stoquastic systems

I Thank you for your attention! :)


