ICTP Workshop on Adiabatic Quantum Computers, 2016

Ground state expansion and the spectral gap of local Hamiltonians

Elizabeth Crosson

California Institute of Technology

$$\Delta_H \leq 2(\|H\| - E_0) \frac{\Psi^2(\partial S)}{\Psi^2(S)}$$

INSTITUTE FOR QUANTUM INFORMATION AND MATTER

- Isoperimetric inequality: relates the geometry of the ground state probability distribution to the spectral gap
- Constrains the kind of probability distributions that can be efficienctly sampled with adiabatic optimization
- Applies to non-stoquastic as well as stoquastic Hamiltonians
- Corroborates past results about small gaps arising from local minima that are far in Hamming distance
- Suggests speed ups from increased range k-local couplings

Isoperimetric inequalities

 $\frac{\text{Measure on the boundary of a set}}{\text{Measure inside a set}}$

Can be defined for graphs in terms of vertex expansion

 $S = \{000, 100, 010, 001\} \implies \partial S = \{100, 010, 001\} \implies \frac{|\partial S|}{|S|} = \frac{3}{4}$

Hilbert space graph $G_{\Omega,H}$

- Hamiltonian H and basis set Ω
- Vertices are elements of Ω
- Edges corresponding to non-zero off-diagonal matrix elements
- e.g. computational basis Ω = {0,1}ⁿ, transverse Ising Hamiltonian H, G_{Ω,H} is an n-dimensional boolean hypercube
- The boundary of a set of vertices S ⊆ Ω are the vertices in S connected to vertices outside of S,

$$\partial S = \{x \in S : \exists y \notin S \text{ with } \langle x | H | y \rangle \neq 0\}$$

Isoperimetric Inequality for Quantum Ground States

• Define
$$\Psi^2(S) := \langle \Psi | 1_S | \Psi \rangle := \sum_{x \in S} | \Psi(x) |^2$$

Theorem: If G_{Ω,H} is a connected graph, then any subset S ⊆ Ω with Ψ²(S) ≤ 1/2 satisfies

$$\Delta_H \leq 2(\|H\|-E_0)rac{\Psi^2(\partial S)}{\Psi^2(S)},$$

where $|\Psi\rangle$ is the ground state of *H* with energy E_0 , Δ_H is the spectral gap, and ||H|| is the operator norm.

Depends on locality of the Hamiltonian and geometry of the ground state, but not the details of the Hamiltonian couplings!

Example: Ferromagnetic Transverse Ising Model

Probability of M = 0 in the ferromagnetic phase is ~ e^{-Ω(n)}
 ^{Ψ²(∂S)}/_{Ψ²(S)} ≤ e^{-Ω(n)} ⇒ Δ_H ≤ n e^{-Ω(n)}

Proof in the stoquastic case: map *H* to a Markov chain

•
$$G_{\Omega,H}$$
 is connected $\implies \Psi(x) > 0 \ \forall \ x \in \{0,1\}^n$

Define Markov chain transition probabilities by

$$P(x,y) := rac{\langle \Psi | y
angle}{\langle \Psi | x
angle} \langle y | G | x
angle$$

 Slightly novel mapping, but mostly builds on past results [Bravyi and Terhal 08', Al-Shimary and Pachos 10', Jarret and Jordan 14', Nishimori, Tsuda, and Knysh 14']. ▶ *P* is a stochastic matrix because $P(x, y) \ge 0 \forall x, y \in \Omega$ and

$$\sum_{y \in \Omega} P(x, y) = \sum_{y \in \Omega} \frac{\langle \Psi | y \rangle}{\langle \Psi | x \rangle} \langle y | G | x \rangle = \frac{\langle \Psi | G | x \rangle}{\Psi | x \rangle} = 1$$

• Define $\pi(x) := |\Psi(x)|^2$, then $|\pi\rangle = \sum_{x \in \Omega} \pi(x) |x\rangle$ satisfies

$$egin{aligned} &\langle \pi | P = \sum_{x,y \in \Omega} \langle y | \pi(x) P(x,y) = \sum_{x,y \in \Omega} \langle y | \langle \Psi | x
angle \langle x | G | y
angle \langle y | \Psi
angle \ &= \sum_{y \in \Omega} \langle y | \langle \Psi | G | y
angle \langle y | \Psi
angle = \sum_{y \in \Omega} \langle y | | \Psi(y) |^2 = \langle \pi | \end{aligned}$$

• P satisfies detailed balance, $\pi(x)P(x,y) = \pi(y)P(y,x)$

▶ *P* has eigenfunctions $|\phi_k\rangle := \sum_{x \in \Omega} \Psi(x) \Psi_k(x)$ with eigenvalues $\alpha(1 - \beta E_k)$, so the gap is $\Delta_P = \alpha \beta \Delta_H$.

Conductance inequality for Markov chains

• Δ_P satisfies the conductance inequality for Markov chains,

$$rac{\Phi^2}{2} \leq \Delta_P \leq 2\Phi \quad, \quad \Phi = \min_{\mathcal{S} \subset \Omega} rac{1}{\pi(\mathcal{S})} \sum_{x \in \mathcal{S}, y \notin \mathcal{S}} \pi(x) P(x,y)$$

From Conductance to Vertex Expansion

• Applying the definitions of P and π ,

$$\sum_{x \in S, y \in S^c} \pi(x) P(x, y) = \sum_{x \in S, y \in S^c} \langle \Psi | y \rangle \langle y | G | x \rangle \langle x | \Psi \rangle = \langle \Psi | 1_{\partial S} G 1_{\partial S^c} | \Psi \rangle$$

Using the fact that H is stoquastic,

$$\langle \Psi | 1_{\partial S} G 1_{\partial S^c} | \Psi \rangle \leq \langle \Psi | 1_{\partial S} G | \Psi
angle = \Psi^2(\partial S)$$

which shows that $\Phi(S) \leq \Psi^2(\partial S)/\Psi^2(S)$.

Lower Bound for the Stoquastic Case

▶ $\forall x \in \Omega$, $\sum_{y \in \Omega} P(x, y) = 1$, and this can be used to show that

$$\frac{H_{\min}}{\|H\|} \leq \frac{\Psi_y}{\Psi_x} \leq 1 \quad \forall \ x, y \in \Omega \ s.t. \langle x|H|y \rangle \neq 0$$

where $H_{\min} := \min_{x,y:\langle x|H|y \rangle \neq 0} |\langle x|H|y \rangle|$.

This allows for a lower bound in terms of vertex expansion,

$$\frac{H_{\min}^2}{2\|H\|^2(\|H\|-E_0)}\Phi_V^2 \le \Delta_H \le 2(\|H\|-E_0)\Phi_V$$

where $\Phi_V := \min_{S:\Psi^2(S) \le 1/2} \frac{\Psi^2(\partial S)}{\Psi^2(S)}$.

Thanks to John Bowen, from the University of Chicago, who worked on these ideas during a Caltech SURF this Summer!

Proof in the Non-Stoquastic Case

- P retains many properties of a reversible transition matrix despite having complex entries of unbounded magnitude!
- Enables the use of similar techniques as those that are used to show the Markov chain conductance bounds
- **Obstacle:** $\Psi(x) = 0$ is possible even if $G_{\Omega,H}$ is connected.
- Solution: consider states close to Ψ with |Ψ(x)| ≥ ε > 0 for all x, and prove the main theorem by taking the limit ε → 0.
- ► Counterexamples for non-stoquastic H ⇒ Δ_H can be small even if the ground state is highly expanding.

- What if *H* is non-stoquastic, but $P(x, y) \ge 0$ for all $x, y \in \Omega$?
- e.g. the phases in $\langle y|G|x\rangle$ and $\langle \Psi|y\rangle/\langle \Psi|x\rangle$ could cancel
- Definition: if H appears to be non-stoquastic but P is non-negative then H is "secretly stoquastic."
- Observation: If G_{Ω,H} is a connected line graph, then H is secretly stoquastic in the basis Ω.

$${m H} = egin{bmatrix} {m a_1} & {m b_1} & {m 0} \ {m b_1^\dagger} & {m a_2} & {m b_2} \ {m 0} & {m b_2^\dagger} & \ddots \end{bmatrix}$$

Lesson: genuine non-stoquasticity requires frustration in the off-diagonal couplings!

Implications for Adiabatic Optimization

 Ground state distributions with low expansion are difficult to produce using local Hamiltonian adiabatic optimization

Small gap whenever the ground state is a mixture of modes centered on local minima far apart in Hamming distance

Optimism for *k*-local Couplings

• Increasing k increases $\Psi^2(\partial S)$ for every S!

Conclusion and Outlook

- Ground state bottlenecks slow down adiabatic optimization
- Limitations on improvement from non-stoquastic couplings for sampling target multimodal distributions
- Larger spectral gaps from path changes require reshaping the ground state throughout the evolution
- Diabatic transitions and thermal effects can escape these limitations on pure ground state adiabatic optimization
- Suggests benefit from k-local couplings for stoquastic systems
- Thank you for your attention! :)