Spin-Glass Bottlenecks in Quantum Annealing

Sergey Knysh
SGT Inc., NASA Ames Research Center

Nature Communications 7, 12370 (2016).

| AR P A

BE THE FUTURE




Quantum Adiabatic Annealing

Heuristic algorithm for tackling NP-complete problems.
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| spin-flip dynamics
objective function pPin-tlip dynami

Transverse field I'(¢)slowly decreased to zero.

Ground state interpolates from |1P(0)>:2]£,2 Y. Isito |W(T)=|s
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Adiabatic condition
dI'/dt<AE-AT

For Landau-Zener crossing AE~AT
Gap closes at QCP in thermodynamic limit.
Finite-size scaling gives average-case complexity.

Example: 1st order phase transition in REM AE ~27""



Continuous Phase Transition

= Critical scaling at 24 order QCP

A finite-size
Normalized GSE :
(singular component): Ei)smg)/N"’ |ya| AT,
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Gap in PM phase: E—-E,~y  [Fe- oy s
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Polynomial annealing rate avoids QCP bottleneck.
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Exceptions to Polynomial Scaling

Disorder Tt Tastnns ceeneene

1D chain with i.i.d. random J, ,., - @@@. |

“Finite-size” critical field ' ,~|J,,J,5-+-J AE Ne—cm
C

= Different parts of the system become critical at different times
= Slow dynamics as clusters of spins are flipped
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= Not an issue with all-to-all connectivity
= “Fixable” by synchronizing phase transitions with local T,
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1D loop with odd number of I
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= “Competition” between solutions

= Develops exponentially small gap | _
in the ordered phase, I'<T" Polynomial gap at T'.=K
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Exponential gap at F*z%



Spin-Glass Bottlenecks

= Spin-glass phase characterized by many valleys Santoro et al., Science '02

Altshuler et al.,, PNAS '10
= Energy levels “reshuffled” as I' changes Farhi et al., PRE "12

= But: Ground state is less sensitive (extreme value)

Effect of the Transverse Field L \
d spin flips
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= “Smoothes out” energy landscapes on scales ~I'
= Lowers energy of wide valleys

= Deep-and-narrow and shallow-and-wide valleys
can come into resonance

e
tunneling

Fractal Energy Landscapes

= No intrinsic scale (I' <T) N,, =aln I,
= Expected # of hard bottlenecks - I in
Nh.b.[rl,rz]:f(r2lrl) F Nl r . Ni
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= Additivity: Ny [T o= Ny, [T T+ Ny, [T T N



Associative Memory: Hopfield Network

Nishimori & Nonomura, JPSJ '96
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Barriers are O(N)
Classical (I'=0) gap is O(1)

QCP is the only bottleneck: AE.~N " AT, ~N" attractors, +0(1)

Capacity limit: p=0O(N)
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Spurious states become globally stable: s =+sgn Y a, &"
m

Smaller barriers; classical gap vanishes asymptotically



Hopfield Model with Gaussian Patterns

Spurious states appear for p=2 b
Classical gap is O(1/N) 3?

Barriers are O(VN) A |
¢ 05 | '
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Mean Field Theory 07 l— )
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Finite-temperature partition function W '
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Rewrite as a path integral using Hubbard-Stratonovich N
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Single-site partition function
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Mapping to Ordinary Quantum Mechanics

Saddle-point solution is stationary

m:_z S h,=gm
2 2 I I
N5 <V I'+h;
replace sum by
disorder average

Finite-N corrections: path integral is dominated by m(t)~m
3(¢t) is slow-varying

p
Inz,=[ [VT?+R(t)+0((dh/d¢ ) de

Disorder realization — dependent partition function non-adiabatic
corrections

B
— [ (M(d9/de)/2+V . (9))dt

z(B)=e """ [ [d3(e)]e °

Low energy spectrum is equivalent to that of a particle on a ring

Vi(8)==2 VT +mi & sin®(8—6)+N (V---)



Evolution of Random Potential

—_Z \/r2+[mF§iSin(9_6i)]2+N<F>

Scales as /N (central limit theorem)

Smooth near critical point
L
VN

Becomes increasingly rugged for small I

Vi(9)=C+> (A, cos2k9+B,sin2k9)
k

Continuous Process ozl N

Orthogonalize correlated 2D random process

Z f f 9 6 ) 0)do white n()'lse

Choose f,(9) to match covarlance (V.(9 )VF.(S')>

Use orthogonal polynomials (Laguerre) fi”(¢)ec [ VT4 xE%e S LIV (E%/2)dE
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Evolution of Random Potential (cont'd)
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smoothing kernel classical potential brownian motion
of width I

= Convolution with F.($) raises energy of narrow valleys
= 2" term vanishes for [=0; comparable contribution for >0

Classical potential

Neglect near a global minimum

(9)

d2x
d9’

Condition on the fact that x(3)=x(0.)=x.

Without losing generality 9,=0,%.=0



Classical Potential near Global Minimum

dy
d

Markov process (x,v) in ‘time' ¢ (v= is the “velocity')

Only include paths with x>0 lim p(6;%,v)=0 for v>0

x=>+0

Renormalize probability so that it is conserved

q(9;%,v)ep(9;%,0) [ P(O;X,Y[9;%,v)dXdY

X>0

survival prdbability Py(x,v)
Before: p(Av>0)=p(Av<0)=1/2
After: p(Av>0)>1/2>p(Av<0) (the process withv'>v more likely to survive)

1 0Pg
p, Ov q

Probability is conserved but adds repulsion: + O (



“Stationary” Solution

Green's function satisfies time-reversed PDE
P(@;X,Y|9;x,v):P(9;x,—v|®;X,—Y)
Asymptotic form (independent of initial conditions):

p(9;x,v)~Ap*<§a’U)

Dimensional analysis: [x]=[9]"*.[v]=[9]"

1/3)

p.(5,v)=%""" p.(v/y

ODE for p.(v) yields quantized eigenvalues a:%+3—2” for n>0

= Dimensionless ‘time' dt=y"d$9
= Dimensionless “velocity'  v=uv/y"”
= Dimensionless “coordinate' uw=Iny

Regard (%,%,v) as a Markov process in ‘time' t



Langevin Process

PDE after the change of variables

Describes a solution to a stochastic differential equation
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dv
==—U"'(v)sgn(t)+C(t
o= (v)sgn 1)+ (1)
L a2U(v)
Further integrated twice p(v(0))~e
d<lnX)=i\/ @Zi 2/3
dt = dw

To yield a parametric representation (x(t),%(t))
of function % (9)

X~ 9
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but can drop by arbitrarily large percentage
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Energy landscape is a self-similar random process

Results

(every realization happens on some scale)

Numerically integrate stochastic equations

Typical gap
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Minimum gap
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Discussion

AE . '
= Bottlenecks progressively easier -&nin ~N &F-("" R o
toward the end of the algorithm
(problem solved for r<1/N) o(2=) o(5) fom)

= Only become relevant for large
problems
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N, ,~alnN>1
0o = - & >
= Crossover from polynomial to T I I, r
exponential complexity a~0.15 " N_~1000
Cf. Sherrington-Kirkpatrick model:
time_to A |
solution » Classical gap scales as 1/VN
| = Barrier heights scale as N’
“easy” . "hard”
- = Stronger disorder fluctuations, J,~1/VN
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