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Optimization via Quantum annealing

Objective: Finding global minimum of a function of N binary variables

”Problem Hamiltonian” encodes the optimization
problem

ĤP = −
K∑

k=1

N∑

j1,...,jk=1

Jj1,··· ,jkσ
z
j1 · · ·σzjk

”Driver Hamiltonian” −∑N
j=1 σ

x
j corresponds to

the spin coupling to transverse field. It gives rise to
quantum dynamics. Control functions A(s),B(s)
slow vary in time s ∈ (0, 1). Total Hamiltonian

Ĥ(s) = −A(s)

N∑

j=1

σxj +B(s)HP

2

the D-Wave Two chip at NASA Ames.

The performance of D-Wave’s quantum annealers
has been studied in a number of recent works [21,
25, 32–46]. Results from a D-Wave quantum annealer
chip are very different from models that do not quan-
tize the superconducting flux qubits [21, 32, 36]. It
has also been shown that under current noise param-
eters it is possible to prepare entangled states of eight
qubits, using static Hamiltonians with a gap much
bigger than the temperature [37]. A good correlation
with a classical-path model [47] (see Sec. III D) has
been observed for a benchmark of random Ising in-
stances [41], as well as differences in distributions of
excited states or degenerate ground states [42, 45].

Reference [33] makes the interesting observation
that for a problem instance with energy gap much
smaller than the temperature (and without false min-
ima) the probability of success increases with tem-
perature. In these conditions, noise effects are very
strong and they destroy coherent quantum superposi-
tions. The system actually resides in (classical) prod-
uct states making random hoppings between them. In
contrast, we will introduce instances where fast col-
lective tunneling processes of many qubits give rise to
correlated quantum superposition states [37]. Multi-
ple qubit tunneling will play a significant role both in
the formation of the dynamical states themselves and
in giving rise to a large transition rate between these
states. For these instances we obtain an opposite tem-
perature dependence behavior: decreasing probability
of success with increasing temperature. This is in con-
trast with the limit of incoherent tunneling or to the
classical-path model.

In this work we design an Ising model implementa-
tion with 16 qubits of a computational primitive, the
simplest non-convex optimization problem consisting
of just one global and one local minimum. The final
global minimum can only be reached by traversing an
energy barrier. We develop a NIBA Quantum Master
Equation which takes high and low frequency noise
into account. Our comprehensive open quantum sys-
tem modeling shows close agreement with experiments
conducted using the D-Wave device and demonstrates
how collective tunneling can exist and play a compu-
tational role in the presence of both Ohmic and strong
1/f noise affecting flux qubit coherence. Quite gen-
erally, our model predicts that the probability to find
the system in the lowest energy state should decrease
with temperature for a quantum system and increase
with temperature for a classical system. Consistent
with the quantum model, we show that temperature
and success probability are inversely related in a series
of 16 qubit D-Wave experiments. We compare with al-
ternative physically plausible models of the hardware
that only employ product states and do not allow for
multiqubit tunneling transitions. Experimentally, we
show that the D-Wave Two processor has a higher suc-
cess probability than any of these models for a series of
problems. We also explore larger problems embedded
on 200 qubits that contain multiple weak-strong clus-
ter pairs. We observe that the success probabilities of
quantum annealing outperform the models that, for
physically motivated parameter regimes, rely on clas-

sical paths to the solution.

II. A PRIMITIVE “PROBE” PROBLEM

A. The quantum Hamiltonian
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FIG. 1. Quantum annealing functions A(s) and B(s). The
function A(t) is defined as half the median energy differ-
ence between the two lowest eigenstates of the experimen-
tally superconducting flux qubit with zero bias. The func-
tion B(s) is defined as 1.41 pico henries times the square
of the persistent current I2p(s), as explained in App. II C
Eq. (A14).

The state evolution in transverse field quantum an-
nealing is governed by a time dependent Hamiltonian
of the form [23]

H0(s) = A(s)HD +B(s)HP (1)

HD = −
∑

µ

σxµ (2)

HP = −
∑

µ

hµσ
z
µ −

∑

µν

Jµνσ
z
µσ

z
ν . (3)

Here HD is the driver Hamiltonian, HP is the problem
Hamiltonian whose ground state is the solution of an
optimization problem of interest, {σxµ, σzµ} are Pauli
matrices acting on spin µ, s = t/tqa is the annealing
parameter, and tqa is the duration of the quantum
annealing process. The functions A(s) and B(s) used
in the rest of the paper are shown in Fig. 1. The
Hamiltonian path H0(s) describes an evolution of ef-
fective 2-level spin systems (qubits) from an initial
phase with a unique ground state to a final Hamilto-
nian with eigenstates aligned with the z quantization
axis. In the initial unique ground state all the qubits
are aligned with the effective transverse magnetic field
in the x direction. See Appendix A for a more com-
plete derivation of the single qubit Hamiltonian and
the parameters of the experimental system considered
in this paper.



Tunelling during Quantum Annealing

Basis of coherent spin states

|Ψ〉 =
⊗

j

[
cos

θj
2
|0〉+ e−iφj sin

θj
2
|1〉
]

Each qubit is represented by a unit
vector (point on Bloch sphere)

nj = (sin θj cosφj , sin θj sinφj , cos θj)

Effective potential

〈Ψ|Ĥ(s)|Ψ〉 = H(s, n1, . . . ,nN )

Mean-field time-dependent
energy landscape
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D-Wave tunnelling experiments
Weak-strong cluster pair: ferromagnetic Ising spin model with local fields in
z-direction

Ĥ(s) = −A(s)
∑

j

σxj −B(s)
∑

i<j

Jij σ
z
i σ

z
j −B(s)

∑

j

hjσ
z
j

Global bifurcation mechanism:
Boixo, Smelyanskiy, et al, Nature Communications (2015)

Initial stage of quantum annealing
A� B corresponds to all spins nearly
pointing in x-direction

〈σzj 〉 ∼ B/A, 〈σzi σzj 〉 ∝ (B/A)2 hj

h2 = -1h1

J = 1                                  
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Harris	criterion:	
	
correla'on-length	exponent	ν	of	a	d-
dimensional	uniform	system		sa'sfies	
	ν<	2/d,	then	the	cri'cal		behavior	of	the	
corresponding	disordered	system	(with	
random	couplings)	differs	from	that		of	its		
uniform	analog.	
	

Freezes	at	Γ3	 Freezes	at	Γ1	 Freezes	at	Γ2	 t	

Γ	 Γ1	

Γ2	

If	the	system	dimensionality	is	not	very	high	the	
interconnects	between	the	parts		of	the	system	
are	not	strong	and	the	system	parts	go	through	
the	spontaneous	symmetry	breaking	transi'ons		
at	different	'mes.	This	drives	the	system	to	a	
metastable		minimum		
	

Γ3	



Implementation on D-Wave device

(Denchev et al. PRX, 2016) 4

FIG. 3. Layout of the weak-strong cluster networks on the D-Wave 2X processor. Shown are three different sizes with 295, 490
and 945 qubits. Each cluster coincides with a Chimera cell with 8 qubits. Orange dots depict qubits subject to a strong local
field hR = −1 while the cyan dots represent the qubits with the weak field hL = 0.44. Blue lines correspond to −1 connections
and red lines to connections with a strength +1. Note that the graphs are somewhat irregular due to the fact that not all 1152
qubits are operational.

for this benchmark, which requires 109 independent runs
(with 945×5 ·104 spin updates each) to find the optimal
solution with 945 variables, in the median case. It has
also been observed that as more qubits are involved, more
hardware resources are brought to bear and therefore a
fair comparison needs to take this into account [9, 12].
In the extreme one could contemplate building special
purpose hardware that would update as many spins in
parallel as possible at state-of-the-art clock rates. Which
sets of spins can be updated in parallel is dependent on
the connectivity graph. While such careful accounting is
in principle justified, we do not engage in it here since
for future higher connected chips it will be less relevant.

When estimating the times for the SA algorithm we
followed the protocol laid out by Isakov et al. [9, 12, 25]
and tuned SA for every problem size and quantile. Tun-
ing means that the starting and end temperature as well
as the number of spin updates and the number of restarts
are optimized to achieve a short overall runtime. We first
measure the computational effort in units of sweeps (one
sweep attempts to updated all the spins). The time plot-
ted is nsweeps×N ×Tsu, where N is the number of spins.
We used a spin update time Tsu = 1/5 nano seconds (see
Ref. [9]).

The key finding is that SA performs very poorly on

the weak-strong cluster networks. The D-Wave 2X pro-
cessor is 1.8 · 108 faster at the largest size we measured
which consisted of 945 variables. This is by design: as ex-
plained above, the “weak-strong cluster networks” prob-
lem is intended to showcase the performance of annealers
in rugged energy landscapes that stand to benefit from
finite range cotunneling. In constrast, the random Ising
instances studied in Refs. [9, 12] have only low energy
barriers, as explained in Ref. [26].

B. D-Wave versus Quantum Monte Carlo

Next we compared the performance of path integral
Quantum Monte Carlo (QMC) with that of D-Wave for
the same benchmark. QMC samples the Boltzmann dis-
tribution of a classical Hamiltonian which approximates
the transverse field Ising model. In the case of a 2-spin
model, the discrete QMC classical Hamiltonian is

Hcl = −
M∑

l=1


∑

kj

Jij
M
sljs

l
k + J⊥(s)

∑

j

sljs
l+1
j


 , (9)

where slj = ±1 are classical spins, j, k are site indexes, l
is a replica index, and M is the number of replicas. The



Relative performance of D-Wave and classical algorithms

I D-Wave 2X quantum annealer achieves significant runtime
advantages relative to Simulated Annealing (SA) and Quantum
Monte Carlo (QMC) algorithms (up to O(108) times faster than
an optimized implementations on a single core).

I No scaling advantage was observed for QMC



I Quantum Monte Carlo (QMC) is a CLASSICAL algorithm providing reliable
solutions to quantum many-body problems with applications ranging from
materials science to complex biological systems.

I Can QMC simulate tunneling in Quantum Annealing (QA) efficiently?

I Results [Santoro et al., Science 295, 2427 (2002); Heim et al. Science 348,
215 (2015)] showed that QMC are useful for solving spin glass problems.

I Recent results by S. Issakov et al (arXiv:1510.08057) and Z. Jiang et al
(arXiv:1603.01293), provided numerical and analytical evidence, respectively,
that there is NO asymptotic speed up in quantum spin tunneling as compared
to QMC simulations in certain models.

I A recent result from Google (Denchev et al. PRX 2016) showed that there is
a substantial constant enhancement factor of QA compared to QMC in case
of multi-qubit cotunellign



Incoherent tunneling decay of the metastable state
Particle in the potential

H =
p2

2m
+ U(q)

I ∆ ∼ |Ψn(qbarrier exit point)| is tunneling
matrix element

I γ is dephasing rate

I Incoherent tunneling conditon γ � ∆

I Incoherent tunnelling rate W ∼ ∆2/γ

U	

		 En − i!Wn /2

		Ψn(q)

		q0 	q

En =⇒ En −
i~Wn

2

Z = Z0 +
i~

2kBT

∑

n

Wne
−En/kBT

2Im[F ]

~
= W =

1

Z0

∑

n

Wne
−En/kBT



Tunneling decay rate via instanton calculus

Z =

∫

q(0)=q(β)

Dq(τ)e−
1
~S[q(τ)]

S =

∫ β

0

dτ

(
mq̇2

2
+ U(q)

)
dτ, β =

~
kBT

U	
  

q	
  
a	
   b	
  

a	
  

b	
  

τ	
  

qb(τ)	
  
	
  

“Bounce solution”:

δS

δq(τ)
= −m d2

dτ2
qb(τ) + U ′(qn(τ)) = 0, qb(0) = qb(β) = 0

W =

(
1

2π~

∫ β

0

q̇2
b (τ)dτ

)1/2(
det[−m d2

dτ2 + U
′′
(qmin)]

det′[−m d2

dτ2 + U ′′(qb(τ))]

)1/2

e−
S[qb(τ)]

~ +βU(qmin)



QMC simulations of tunneling decay

Z =

∫

q(0)=q(β)

Dq(τ)e
−H[q(τ)]

kBT

H[q(τ)] =
1

β

∫ β

0

dτ

(
mq̇2

2
+ U(q)

)
dτ

QMC samples random periodic paths q(τ) with q(0) = q(β) whose stochastic
evolution in real time t is determined by the Metropolis algorithm for the Gibbs
probability measure P = Z−1 exp[−H[q(τ)]/kBT ]

Langevin equations (Model A of non-equilibrium dynamics)

∂q(τ, t)

∂t
= −µ∂H[q(τ, t)]

∂q(τ, t)
+ (2kBTµ)1/2 η(τ, t)

q(0, t) = q(β, t), η(0, t) = η(β, t), β =
~

kBT



Analog version of QMC
Consider analog device: a chain of tightly coupled over-damped nonlinear
oscillators coupled to thermal reservoir

Γ = β/(µm) − damping coefficient, [µ−1] = [mω2]

Γ
∂q(τ, t)

∂t
= − 1

m
U ′(q(τ, t)) +

∂2

∂τ2
q(τ, t) +

(
2 ~Γ

m

)1/2

η(τ, t)

q(0, t) = q(β, t)

There exists an analogy between the problem of tunneling decay of quantum
systems and classical Kramers escape problem from a metastable state

I J.S. Langer, Theory of Condensation point, Annals of Physics 41, 108 (1967).

I M.Buttiker and R.Landauer, Nucleation theory of overdamped soliton motion,
Phys. Rev. Lett. 43, 1457 (1979).

I Sidney Coleman, Fate of the false vacuum: Semiclassical theory, Phys. Rev.
D 15, 2929 (1977).



Tunneling decay as a Kramers escape problem

Metastable	region	

Stable	region	Region	of	validity	
of	saddle	point		
approxima7on	

 
!
ξ

!!q(τ )≈q0

!!q(τ )≈q1
!!qb(τ )

Transi7on	state	
		 
δH [qb(τ )]
δq(τ ) =0

!!
qt(τ ,t)= − dτ '

0

β

∫
δ 2H

δq(τ )δq( ′τ ) ⋅(q(τ ',t)−qb(τ ',t))

!!WQMC ~e
−(H[qb(τ )]−H[q0 ])/kBT

The system reaches the transition state via thermal fluctuation. Then with probability ∼ 1/2 it moves toward

the global minimum. Dynamical matrix δ2H/δq2 has one negative eigenvalue λ0 < 0 related to departure

from qb(τ) corresponding to a saddle point.



Kramers escape rate

WQMC = BQMC exp

(
−H[qb(τ)]

kBT

)
= BQMC exp

(
−S[qb(τ)]

~

)

WQMC

WQT
=
µ|λ0|
2π

λ0 is a single negative eigenvalue of the operator −m d2

dτ2 + U ′′(qb(τ))

V [q] = εq2 − αq4 =⇒ λ0 = −3ε, [ε] = [mω2]

WQMC

WQT
=

3µε

2π

I Classical quantities µ,ε, no quantum enchancement if analogue device is used.

I In digital implementation WQMC/WQT ∝ β (imaginary time)



Tunneling in spin systems

Natural model to study incoherent tunneling in multi-qubit systems is mean-field
spin−1/2 model in which system Hamiltonian is symmetric with respect to
permutation of individual qubit operators.

Lipkin, Meshkov and Glick model (nuclear physics, quantum spin systems,
Bose-Einstein, condensates, circuit QED)

H = −NΓm̂x −NU(m̂z)

m̂α =
1

N

N∑

i=1

σαi ≡
2Ŝα
N

, α = x, y, z

Here U(m) is a nonlinear energy term that
allows for co-existing local and global minima
for m ∈ (−1, 1)

	m	−1 	1

!U

!mz

!U

		
U(m)= −12m

2 −hm

Curie-Weiss	model	



WKB approach for multi-qubit thermally-assisted tunneling

A. Garg, J. Math. Phys. (1998), Bapst and Semerjian, JSP (2012), Kechedzhi, Smelyanskiy, PRX (2016)

Total spin of the system S conserves. We work in the basis of total spin and total
spin projection on z axis Ŝz|M,S〉 = M |M,S〉

Ψ =

N/2∑

S=0

N (N,S)∑

γ=1

S∑

M=−S
CS,γM |M,S, γ〉, Ω(N,S) =

(
N

N
2 − S

)
−
(

N
N
2 − S − 1

)

Wave-function amplitudes CS,γm obey the stationary Schrödinger equation

−Γ
∑

α=±

√
(S + αM)(S − αM + 1)Cm−α −NU(2M/N)Cm = ECm

WKB solution has usual form Cm = 1√
v(M,E)

exp
(
i
∫M
M1

dM ′ p(M ′, E)
)

. Here p

is classical momentum of the system with Hamiltonian

H(M,p) = −2Γ
√
S2 −M2 cos p−NU(2M/N) = E



WKB approach for multi-qubit tunneling (cont.)

2 integrals of motion: energy e = E
N/2 and total spin ` = S

N/2 ∈ (0, 1).

Rescaled coordinate m = M
N/2 ∈ (−`, `)

e`(m, p) = −2Γ
√
`2 −m2 cos p− U(m),

ueff(m) = e(m, 0)

Action and momentum under the barrier

p(e, `) = iarcsinh
v(e, `, q)

Γ
√
`2 − q2

A(e, `) =

∮

a0(e,`)

Im p(m, e, `)|dm

Number of states with a given total spin

Ω(N,S) ∼ exp[NQ(`)]
		a0(e) 		 ′a0(e)

tunneling	with	energy	e		
					and	total	spin	  ℓ

	 ueff

	m	−1 	1



Tunneling decay of metastable state: Partition function
approach

En =⇒ En − i~Wn/2

W = − 2

β

Im(Z0)

Re(Z0)
=

∑
nWne

−βEn/~
∑
n e
−βEn/~

I Number of states with a given total spin Ω(N,S) ∼ exp[NQ(`)]

Q(`) =
1 + `

2
log

2

1 + `
+

1− `
2

log
2

1− `

W ∝ exp

(
−N

2
α

)
, α = F− F0

F = min
`

min
e∈Ω`

[βe+A(e, `)−Q(`)] , F0 = min
`

min
e∈Ω`

[βe−Q(`)]

QA can scale better than SA (Kechedzhi, Smelyanskiy, PRX (2016))



W ∝ exp

(
−N

2
α

)
, α = F− F0

F = min
`

min
e∈Ω`

[βe+A(e, `)−Q(`)] , A0 = min
`

min
e∈Ω`

[βe−Q(`)]

N Extremal conditions for F

`∗ = tanh

∣∣∣∣
∂A`∗(e

∗)
∂`

∣∣∣∣ , β =

∣∣∣∣
∂A`∗(e

∗)
∂e

∣∣∣∣ = τ0(e∗, `∗)

N Extremal conditions for free energy F0

e = e0, ` = `0

energy and total spin that minimize mean-field free energy of the metastable state

∂α

∂β
= e∗(β)− e0(β)

Rising temperature will increase tun-
neling transition rate if the opti-
mal tunneling energy is greater then
the expectation value of energy in
metastable state



Path Integral formulation

Using the Suzuki-Trotter formula quantum problem is mapped onto a classical one
with one additional (imaginary time) dimension τ ∈ (0, β). In the limit of infinite
number of Trotter slices Z is given by an integral over the array of spin paths

s(τ) = {s1(τ), . . . , sN (τ)}, si(τ) = ±1/2, s(0) = s(β)

Each path is parametrized by the locations of points (“kinks”) at the imaginary
time axis where the sign of sj(τ) changes.

Z =

∫
Ds(τ)

N∏

i=1

Γκ[sj(τ)]e−N
∫ β
0
U(m(τ))dτ ,

m[s(τ)] =
2

N

N∑

i=1

si(τ)

I Here κ[sj(τ)] equals to the number of domain walls (kinks) in sj(τ)

I m[s(τ)] is an order parameter –z-component to total magnetization



QMC probability functional

QMC is a method to evaluate the path integrals defined above. It samples from a
Gibbs distribution corresponding to Z using the Metropolis-Hastings algorithm by
implementing a series of stochastic updates of the state vector of individual spin
paths s(τ).

s(τ) = {s1(τ), . . . , sN (τ)}, s(0) = s(β), sj(τ) = ±1/2

I each spin path is parametrized by domain walls along imaginary time axis

I new domain walls are generated via a Poisson process with decay time 1/Γ

I two domains from different path components si(τ), sj(τ) are updated
together with probability proportional to their overlap and coupling energy

Gibbs distribution

PG[σ(τ)] = Z−1
N∏

i=1

Γκ[σj(τ)]e−N
∫ β
0
U(m(τ))dτ



QMC probability functional in reduced space

Because of the mean-field character of the model it is possible to obtain in a closed
form a Gibbs probability measure P [m(τ)] = Z−1e−NβF [m(τ)] for the
magnetization per spin order parameter m(τ) (Bapst, Semerjian, 2012)

F [m(τ)] =
1

β

∫ β

0

[m(τ)U ′(m(τ))− U(m(τ))]dτ − 1

β
log Λ[U ′(m(τ))]

Here, m(0) = m(β) and the functional Λ[λ(τ)] equals

Λ[λ(τ)] = TrKβ,0[B(τ)], Kτ2,τ1 = T+e
−

∫ τ2
τ1

dτH0(τ)

H0(τ) = −B(τ) · σ, B(τ) = (Γ, 0, λ(τ))

where σ = (σx, σy, σz) is vector of Pauli matrices. The propagator K corresponds
to a spin 1/2 evolving in imaginary time under the action of the magnetic field
B(τ).



Instanton trajectory

δF [m(τ)]/δm(τ) = 0, m(0) = m(β)

Two types of solutions

I Static solution:

m(τ) = mi = const,
dF [mi]

dm
= 0

mi = m0,m1 (local and global minima of F0(m)

Free energy of Quantum ferromagnet

F [m] = mU ′(m)− U(m)− 1

β
log
(

2 cosh(β
√

(U ′(m))2 + Γ2)
)

I
Dynamic solution, mz(τ) 6= const. In-
stanton is a saddle point of F [m(τ)]

		F[m(τ )]

		m(τ )

		mz(τ )
Instanton trajectory



Kramers escape
We study the stochastic trajectories s(τ, t) by inspecting their projections m(τ, t).
The trajectory spends a long time near the metastable state m0. Occasionally, a
large fluctuation occurs corresponding to the escape event where the path m(τ, t)
moves away from m0 and arrives at the vicinity of the global minimum m1. The
free energy F [m(τ, t)] is increasing until it reaches the saddle point of the
functional F .

The quasi-stationary statistical distribu-
tion over m(τ) has the Gibbs form
PG[m(τ)] everywhere in the domain of the
local minimum except in the small vicinity
of the saddle point |F [m(τ)−F [mz(τ)| .
β−1, where deviations from PG[m(τ)] al-
low for the probability current flow away
from the metastable state

		m(τ )=m0

!!m(τ )=m1

		mz(τ )

W ∝ e−βN∆F

∆F = F [m∗(τ)]− F [m0]



QMC tunneling rate scales like quantum rate

We obtain numerically the QMC tunneling rate for a fully connected ferromagnetic
Ising model between the two orientations at low temperature. Gap ∆ obtained by
Exact Diagonalization (ED).
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Γ = 0.35
Γ = 0.4
Γ = 0.45
Γ = 0.5
Γ = 0.55

We find that QMC tunneling rate ∝ ∆−2, which is the incoherent quantum
tunneling rate.



Instantons in QMC
Variational equations δF = 0 take the form

mz(τ) =
δ log Λ(λ(τ))

δλ(τ)
=

Tr[Kβ,τσzK
τ,0]

TrKβ,0

λ(τ) =
dU [mz(τ)]

dmz

Λ[λ(τ)] = TrKβ,0[B(τ)], Kτ2,τ1 = T+e
−

∫ τ2
τ1

dτH0(τ)

H0(τ) = −B(τ) · σ, B(τ) = (Γ, 0, λ(τ))

To analyze these equation we introduce vector of magnetization components

m(τ) =
Tr[Kβ,τ σ̂Kτ,0]

TrKβ,0

Optimal trajectory is a classical rotator in nonlinear potential

dm(τ)

dτ
= −2i

∂H0[m(τ)]

∂m
×m(τ)

H0[m] = −Γmx(τ)− U [mz(τ)]



Instantons in QMC II
Two integrals of motion: H0[m] = e, m(τ) ·m(τ) = `2

mx =
√
`2 −m2

z cosh p(mz, e)

my = −i
√
`2 −m2

z sinh p(mz, e)

dmz

dτ
= v(e,mz)

e(mz, p) = −2Γ
√
`2 −m2

z cos p− U(mz), v =
∂e

∂p

N Equation for dmz(τ)/dτ is identical with that for the WKB instanton trajectory.
N Self-consistent equation for `

m(τ) =
Tr[Kβ,τ σ̂Kτ,0]

TrKβ,0
=⇒
τ=0

`2(TrKβ,0)2 =
∑

j=x,y,z

(
Tr(Kβ,0 σj)

)2

Kβ,0 = T+ exp

(∫ β

0

(Γσx + g′(mz(τ))σz)dτ

)



Solving self-consistent equation
We introduce a replica qubit and write the self-consistent condition as

`2(TrKβ,0)2 = Tr
(
Kβ,0 ⊗Kβ,0

∑

j=x,y,z

σj ⊗ σj
)

∑

j=x,y,z

σj ⊗ σj = PS − 3PA

PA is projector onto anti-symmetric
(singlet) subspace

PS is projector onto symmetric
(triplet) subspace

We use basis of Bell states

∣∣Ψ−
〉

=
1√
2

(|01〉 − |10〉)

∣∣Φ−
〉

=
1√
2

(|00〉 − |11〉)
∣∣Ψ+

〉
=

1√
2

(|01〉+ |10〉)
∣∣Φ+

〉
=

1√
2

(|00〉+ |11〉)



To analyze the double propagator Kβ ⊗Kβ , we consider the Hamiltonian

H
(2)
0 = −Γ(σ1

x + σ2
x)− g′(mz)(σ

1
z + σ2

z)

(σ1
x + σ2

x)PA = (σ1
z + σ2

z)PA = 0, H
(2)
0 PA = 0

Kβ,0 ⊗Kβ,0 = T+ exp

(
−
∫ β

0

H
(2)
0 (τ)dτ

)
, Kβ,0 ⊗Kβ,0 PA = 1

The anti-symmetric singlet state |Ψ−〉 is a dark state, and the triplet states are

closed under evolution with H
(2)
0 (τ)

`2 = 1− 4

Tr (Kβ ⊗KβPS) + 1
= 1− 4

κ0 + κ+ + κ− + 1

N Total spin ` is determined by the sum of eigenvalues κα of Kβ ⊗Kβ



Eigenvalues of the super-operator Kβ ⊗Kβ

Consider the time evolution of a state |Ξ(τ)〉 in the triplet subspace:

|Ξ(τ)〉 = Kτ,0 ⊗Kτ,0 |Ξ(0)〉 = −ξx(τ)
∣∣Φ−

〉
− iξy(τ)

∣∣Φ+
〉

+ ξz(τ)
∣∣Ψ+

〉

ξx, ξy, ξz take real values

dξ

dτ
= −2i

∂H0[m(τ)]

∂m
× ξ, H0[m(τ)] = −Γmx(τ)− U [mz(τ)], (1)

We compare this equation with the equation for instanton

dm(τ)

dτ
= −2i

∂H0[m(τ)]

∂m
×m(τ), m(0) = m(β)

N instanton trajectory m(τ ) is one of the 3 independent solutions of Eq.(1)

N it is periodic and corresponds to the eigenvalue κ0 =1 of Kβ,0 ⊗Kβ,0



Because the equation

dξ

dτ
= −2i

∂H0[m(τ)]

∂m
× ξ, (1)

corresponds to the “rotation” around the time-dependent magnetic field the
following bilinear form is a constant of motion

B
(
ξ(τ),η(τ)

)
= ξx(τ)ηx(τ) + ξy(τ)ηy(τ) + ξz(τ)ηz(τ) = const (2)

where ξ(τ),η(τ) are two solutions of Eq.(1).
Using Eq.(2) and the equation for the instanton we obtain remaining two
eigenvalues of Kβ,0 ⊗Kβ,0

ξα)(β) = κα ξ
(α)(0), κα = exp

(
2α

∣∣∣∣
∂S`(e)

∂`

∣∣∣∣
)
, α = 0,±1

`2 = 1− 4

κ0 + κ+ + κ− + 1
=⇒ ` = tanh

∣∣∣∣
∂S`(e)

∂`

∣∣∣∣



Tunneling decay of metastable state: Two-point Green
function approach

Quantum imaginary time propagator : analytical continuation in metastable domain

〈s|e−βH |s′〉 = Gβ(s, s′) =
∑

n

e−βEn Ψn(s)Ψ∗n(s′)

H|Ψn〉 = En|Ψn〉, Ψn(s) = 〈s|Ψn〉

Application to spin systems: |si〉 =
⊗N

k=1 |ski 〉, i = 1, . . . , N

lim
β→∞

− Gβ(s0, s
′
0)

β
= Ψ0(s0)Ψ0(s′0)

∝ e−NA

Only one of the wavefunction amplitudes
has an exponential decay in it!!

U	

s	

		 En − i!Wn /2

		Ψn(s)~exp[−N A(s , en)]

		s0 		 ′s0

Wave	func*on	under	the	barrier	



Corollary: Spike Hamiltonian. A popular model

	0 	mb	−1 	1
	m

	U
	ΔU

	Δm

U(m) = U0(m) + ∆U f

(
m−mb

∆m

)

∆U = cN−χ, ∆m = dN−δ,

0 < χ < δ < 1

∆m� 1/N for WKB to work

The WKB tunneling rate for a spike cost function is:

Wtunn = Btunn e
−κN1−δ−χ/2

.

The time complexity is polynomial in N when 1− δ − χ/2 < 0.
From our instanton analysis: both QA and QMC (with many replicas) scale
exponentially better than SA in this case.



Implications for instantons in more general systems

H(t) = −A(t)

N∑

j=1

σxj +B(t)HP

HP = −
K∑

k=1

N∑

j1,...,jk=1

Jj1,··· ,jkσ
z
j1 · · ·σzjk

m = (n1,n2, . . . ,nN )

nj = (sin θj cosφj , sin θj sinφj , cos θj)

|Ψm〉 =
⊗

j

[
cos

θj
2
|0〉+ e−iφj sin

θj
2
|1〉
]

U(m, s) = 〈Ψm|H(t)|Ψm〉



Action in imaginary time

A =
i~
2

D∑

i=1

ω[nj(τ)] +

∫ β

0

dτ V [n1(τ), . . . ,nN (τ)]

ω[n(τ)] =

∫ ∞

0

dτ(1− cos θ(τ))φ̇(τ), φj(τ)→ −iϕj(τ)

Purely imaginary azimuthal angle

Minima of U(m) give boundary conditions for instantons.
If Hamiltonian H contains only σjx and σjz.

Re[φαj ] = 2πn, Im[φαj ] = 0,
∂U(cos θαj )

∂θj
= 0


