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Optimization via Quantum annealing

Objective: Finding global minimum of a function of N binary variables

" Problem Hamiltonian” encodes the optimization
problem

& _— . . z .« .. z 0
Hp = — E E , Y N A

" Driver Hamiltonian” —Z;.V:la;” corresponds to
the spin coupling to transverse field. It gives rise to
quantum dynamics. Control functions A(s),B(s)
slow vary in time s € (0,1). Total Hamiltonian

N
H(s) = —A(s) Y _o¥ + B(s)Hp
j=1



Tunelling during Quantum Annealing

Basis of coherent spin states

Each qubit is represented by a unit
vector (point on Bloch sphere)

n; = (siné, cos ¢;,sin d, sin ¢;, cos §,)

Effective potential

(U|H(s)|U) = H(s, ny,...,ny)

Mean-field time-dependent
energy landscape




D-Wave tunnelling experiments

Weak-strong cluster pair: ferromagnetic Ising spin model with local fields in
z-direction

H(s)=—A(s)> o¥ = B(s)Y_ Jijoio; — B(s) > hjos
J 1<j J
Global bifurcation mechanism:

Boixo, Smelyanskiy, et al, Nature Communications (2015)

Initial stage of quantum annealing
A > B corresponds to all spins nearly
pointing in x-direction

(0F) ~ B/A, (ofoF) o (B/A)? by

Thl
J h—hy<J /2

h2 Ferromagnetic ground state
Spins aligned in the same direction




If the system dimensionality is not very high the
interconnects between the parts of the system
are not strong and the system parts go through
the spontaneous symmetry breaking transitions
at different times. This drives the system to a
metastable minimum

Freezesatl,  Freezesatl, Freezesatl
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Harris criterion:

correlation-length exponent v of a d-
dimensional uniform system satisfies

v< 2/d, then the critical behavior of the
corresponding disordered system (with
random couplings) differs from that of its
uniform analog.



Implementation on D-Wave device
(Denchev et al. PRX, 2016)

FIG. 3. Layout of the weak-strong cluster networks on the D-Wave 2X processor. Shown are three different sizes with 295, 490
and 945 qubits. Each cluster coincides with a Chimera cell with 8 qubits. Orange dots depict qubits subject to a strong local
field hg = —1 while the cyan dots represent the qubits with the weak field hy = 0.44. Blue lines correspond to —1 connections

and red lines to connections with a strength +1. Note that the graphs are somewhat irregular due to the fact that not all 1152
qubits are operational.




Relative performance of D-Wave and classical algorithms
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» D-Wave 2X quantum annealer achieves significant runtime
advantages relative to Simulated Annealing (SA) and Quantum
Monte Carlo (QMC) algorithms (up to O(10%) times faster than
an optimized implementations on a single core).

» No scaling advantage was observed for QMC



v

Quantum Monte Carlo (QMC) is a CLASSICAL algorithm providing reliable
solutions to quantum many-body problems with applications ranging from
materials science to complex biological systems.

Can QMC simulate tunneling in Quantum Annealing (QA) efficiently?

Results [Santoro et al., Science 295, 2427 (2002); Heim et al. Science 348,
215 (2015)] showed that QMC are useful for solving spin glass problems.

Recent results by S. Issakov et al (arXiv:1510.08057) and Z. Jiang et al
(arXiv:1603.01293), provided numerical and analytical evidence, respectively,
that there is NO asymptotic speed up in quantum spin tunneling as compared
to QMC simulations in certain models.

A recent result from Google (Denchev et al. PRX 2016) showed that there is
a substantial constant enhancement factor of QA compared to QMC in case
of multi-qubit cotunellign



Incoherent tunneling decay of the metastable state

Particle in the potential

2

D
H=-—+U
2m+ (9)

A~ ‘\Iln(qbarrier exit point)l is tunneling
matrix element

v

v

v is dephasing rate
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ihw, /2

» Incoherent tunneling conditon v > A q,
> Incoherent tunnelling rate W ~ A2 /v
E,— FE, — Zm;/"
Z=7o+ ——= QkBT ZW e~ En/ksT
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Tunneling decay rate via instanton calculus

u
Z :/ Dq(T)e*%S[q(T)]
(0)=a(B)
s=[a (M v v)an -
“Bounce solution”:
S = () + U D) =0, (0) = a(9) =0

1/2 ) , y
. ? —m LU .
L / ql% (T)dT de‘f[ mddg'z _ (len)] e_w_;'_ﬁ(](qmm)
27h Jo det'[-m5 + U (gu(7))]




QMC simulations of tunneling decay

_ Hla()]
Z:/ Dq(r)e *8T
q(0)=q(B)

,8/ dT(”“)

QMC samples random periodic paths ¢(7) with ¢(0) = ¢(8) whose stochastic
evolution in real time t is determined by the Metropolis algorithm for the Gibbs
probability measure P = Z~! exp[—H[q(7)]/kBT]

Langevin equations (Model A of non-equilibrium dynamics)

8q(87; t) _ —Malggg:—;;)] + (QkBTM)l/Q 77(7_’ t)

q(0,t) = q(B,t), n(0,t) =n(B,t), B=-—




Analog version of QMC

Consider analog device: a chain of tightly coupled over-damped nonlinear
oscillators coupled to thermal reservoir

I'=p8/(pm) — damping coefficient, (11 = [mw?]

q(0,t) = q(B, 1)
There exists an analogy between the problem of tunneling decay of quantum
systems and classical Kramers escape problem from a metastable state
» J.S. Langer, Theory of Condensation point, Annals of Physics 41, 108 (1967).

» M.Buttiker and R.Landauer, Nucleation theory of overdamped soliton motion,
Phys. Rev. Lett. 43, 1457 (1979).

» Sidney Coleman, Fate of the false vacuum: Semiclassical theory, Phys. Rev.
D 15, 2929 (1977).



Tunneling decay as a Kramers escape problem

orla, (0 _
Region of validity 6q()

of saddle point Transition state
approximation \ ——~—
N

Stable region

\\%\q(ﬂ ~q,

\\ 62
7)8q(7")

(q(z'6)=q,(7"t))

q(r)=q, \&\\\\

Metastable region QMC

The system reaches the transition state via thermal fluctuation. Then with probability ~ 1/2 it moves toward
the global minimum. Dynamical matrix 62H/6q2 has one negative eigenvalue Ao < 0O related to departure

from ¢, (7) corresponding to a saddle point.



Kramers escape rate
Waome = Bouc exp <—H[Qb(7)]) = Bqguc exp <—S[qb(7—)]>

kT h
Waome _ plhol
Waqr 2

Ao is a single negative eigenvalue of the operator fm% +U"(gp(T))

Vgl = e¢” — aq" = X = =3¢, [e] = [mw?]
Wame _ 3pe
WQT 2

» Classical quantities j,e, no quantum enchancement if analogue device is used.

> In digital implementation Wqwmc/War o S (imaginary time)



Tunneling in spin systems

Natural model to study incoherent tunneling in multi-qubit systems is mean-field
spin—1/2 model in which system Hamiltonian is symmetric with respect to
permutation of individual qubit operators.

Lipkin, Meshkov and Glick model (nuclear physics, quantum spin systems,
Bose-Einstein, condensates, circuit QED)

H = —NTi, — NU (1)
1L 28, U
Mo =— Y 0F=—+, a=uzy,2 ie-Wei
«a= N — i N Y Curie-Weiss model
U(m):—%mz—hm
Here U(m) is a nonlinear energy term that ) m 1

allows for co-existing local and global minima
form € (—1,1)



WKB approach for multi-qubit thermally-assisted tunneling

A. Garg, J. Math. Phys. (1998), Bapst and Semerjian, JSP (2012), Kechedzhi, Smelyanskiy, PRX (2016)

Total spin of the system S conserves. We work in the basis of total spin and total
spin projection on z axis S,|M,S) = M|M, S)

NJ/2 N(N,S) 8

v=>" 3" > CyIM,S,y), Q(N,S):(NNS)—(NA;J

S=0 ~=1 M=-S 2 2

Wave-function amplitudes C2:7 obey the stationary Schrédinger equation

—I'Y V(S+aM)(S—aM+1)Cp_o — NU@2M/N)Cpy = ECy,
a=+

WKB solution has usual form C,, — \/ﬁ exp (z St am pr, E)). Here p

is classical momentum of the system with Hamiltonian

H(M,p) = —2T'\/S2 — M2 cosp — NU(2M/N) = E



WKB approach for multi-qubit tunneling (cont.)
2 integrals of motion: energy e = NL/Q and total spin ¢ = Ni/z € (0,1).
Rescaled coordinate m =

N/2 € (—£,0)

ee(m,p) = =2/ 2 —m2cosp — U(m

ueg(m) = e(m, 0)

Action and momentum under the barrier

(e,4,q) \%‘U

==

\

v
e, ) = jarcsinh————
ple, ) N/

Ale,t) = 74 Im p(m, e, €)|dm
ao(e,l)

tunneling with energy e
and total spin £ |

Number of states with a given total spin 3
a() e |

Q(N, S) ~ exp[NQ(0)] -1 m 1




Tunneling decay of metastable state: Partition function
approach

E, = E, — ihW,,/2

B Re(Zo) Yo, e PEn/h

> Number of states with a given total spin Q(N,S) ~ exp[NQ(¢)]

14 2 1/ 2

_ 1 1
Q) = - log 7+ ——log

Wocexp(—Za), a=F5—3Fo
§ = minmin (3 + Ae,6) —~ Q0] So = min min [3e — Q(0)

QA can scale better than SA (Kechedzhi, Smelyanskiy, PRX (2016))



Wo<exp<1;[a), a=F5—3o

§ = min min [Be + A(e,0) ~ Q(O)], Ao = min min [5e — Q(¢)

A Extremal conditions for §

814@* (e*)
ol

814@* (6*)

* h
/ tan ’ 9

) ﬁ:‘ ):TO(€*7€*)

A Extremal conditions for free energy §o

€ = €y, K:EO

energy and total spin that minimize mean-field free energy of the metastable state

Rising temperature will increase tun-

neling transition rate if the opti-

oo . i X

38— e*(B) — eo(B) mal tunneling energy is greater then
p the expectation value of energy in

metastable state



Path Integral formulation

Using the Suzuki-Trotter formula quantum problem is mapped onto a classical one
with one additional (imaginary time) dimension 7 € (0, 3). In the limit of infinite
number of Trotter slices Z is given by an integral over the array of spin paths

s(m) = {s1(n),- .., sn (M)}, si(r) = £1/2, 5(0) = 5(8)

Each path is parametrized by the locations of points (“kinks”) at the imaginary
time axis where the sign of s;(7) changes.

N
/ Ds(r Hpn[sxrne—zv JE Um(r)dr
9 N
N =1

> Here k[s;(7)] equals to the number of domain walls (kinks) in s;(7)

» m[s(7)] is an order parameter —z-component to total magnetization



QMC probability functional

QMC is a method to evaluate the path integrals defined above. It samples from a
Gibbs distribution corresponding to Z using the Metropolis-Hastings algorithm by
implementing a series of stochastic updates of the state vector of individual spin
paths s(7).

s(m) = {s1(r),...,sn ()}, 8(0) = s(8),  s5(7) = £1/2

» each spin path is parametrized by domain walls along imaginary time axis
» new domain walls are generated via a Poisson process with decay time 1/T

» two domains from different path components s;(7), s;(7) are updated
together with probability proportional to their overlap and coupling energy

Gibbs distribution

N
Palo(r)] = 271 H [rlos (M) =N [ UGm(r))dr
=1



QMC probability functional in reduced space

Because of the mean-field character of the model it is possible to obtain in a closed
form a Gibbs probability measure P[m(7)] = Z~'e=NBFI™(7) for the
magnetization per spin order parameter m(7) (Bapst, Semerjian, 2012)

B8
Flm(r)] = % / [m(r)U" (m(r)) — U(m(r))Jdr — %logA[U%m(T))]

Here, m(0) = m(8) and the functional A[A(7)] equals

AN(T)] = TTKPO[B(r)], K™ =Ty Jr 7o)

Hy(r) =-B(7) -0, B(r)=(T,0,A(1))

where o = (04,0, 0;) is vector of Pauli matrices. The propagator K corresponds
to a spin 1/2 evolving in imaginary time under the action of the magnetic field
B(7).



Instanton trajectory

Two types of solutions

» Static solution: JIF
m(7) = m; = const, dE:’;i] =0

m; = mg,my1 (local and global minima of Fg(m)

Free energy of Quantum ferromagnet

F[m] = mU'(m) — U(m) — %log (2 cosh(B+/(U’(m))2 + Fg))

F[m(7)] m,(7)

Instanton trajectory

,. Dynamic solution, m.(7) # const. In-
stanton is a saddle point of F[m(7)]

m(z)




Kramers escape

We study the stochastic trajectories s(7,t) by inspecting their projections m(r,t).
The trajectory spends a long time near the metastable state mg. Occasionally, a
large fluctuation occurs corresponding to the escape event where the path m(r, )
moves away from mg and arrives at the vicinity of the global minimum m;. The

free energy F[m(7,t)] is increasing until it reaches the saddle point of the
functional F.

The quasi-stationary statistical distribu-

tion over m(7) has the Gibbs form /
Pg[m(7)] everywhere in the domain of the /
local minimum except in the small vicinity A

of the saddle point [ F[m(7)—F[m.(7)| S o
B~ where deviations from Pg[m(7)] al- “_  m@=m, ‘
low for the probability current flow away

from the metastable state

W e—,BNAF

AF = Flm*(r)] - F[mo)




QMC tunneling rate scales like quantum rate

We obtain numerically the QMC tunneling rate for a fully connected ferromagnetic
Ising model between the two orientations at low temperature. Gap A obtained by
Exact Diagonalization (ED).

A
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100 F .

102 L. ' QMC: open symbols
ED: closed symbols

Tunneling time &, a(T) L~ /A(L,T)?

8 10 12 14 16

L
We find that QMC tunneling rate oc A~2, which is the incoherent quantum
tunneling rate.



Instantons in QMC

Variational equations § F' = 0 take the form

_ SlogA(N(7))  TrKP7o. K™

m() = 5 T TEPo
) = a0

AT = TeKPO[B(r)], K™ =T e I 4o
Hy(r) =-B(1) -0, B(r)=(T,0,X(1))
To analyze these equation we introduce vector of magnetization components
TrKA 76 K™0]
TrK#B0
Optimal trajectory is a classical rotator in nonlinear potential
dm(r) _2i87-[0[m(7')] “m

dr om (7)

m(7) =

Ho[m] = =T'my(7) — Ulm.(7)]



Instantons in QMC Il

Two integrals of motion: Holm] =e, m(7) -m(7) = ¢?

My = /€2 — m?2 cosh p(m, e)
my = —i\/£? — m2sinhp(m,, e)

dm.,
dr

=v(e,m;)

Oe

e(m,,p) = —2I\/£2 —m2cosp—U(m,), v= o

A Equation for dm,(7)/d7 is identical with that for the WKB instanton trajectory.
A Self-consistent equation for £

B, &~ 777,0
Tr[K oK ] S 62(TI'KB70)2 — Z (Tr(K’B’O O_J))z

m(r) = —qgEs o

J=,y,2

B
KPP0 =T, exp (/0 (Toy, + g'(mz(T))oz)dT>




Solving self-consistent equation

We introduce a replica qubit and write the self-consistent condition as

(TrKP0)? = TT(Kﬁ’O 9K Y o o—j)
j=x,y,2

Z 0; @0 =Ps—3Py

J=x,y,z

P4 is projector onto anti-symmetric

Ps is projector onto symmetric
(singlet) subspace

(triplet) subspace

We use basis of Bell states

@) = 7(\00> 1)
o) = 7(|01> 110)) ) = 7(\01>+\10>)
|®T) = (\00>+\11>)

Sl



To analyze the double propagator K? @ K”, we consider the Hamiltonian

HYY = —T(0} +02) — ¢'(m.) (o} + 0?)

(0L +02)Pa= (0L +02)Pa=0, HPPy=0

B
K70 @ K70 = T, exp (-/ e (T)dT) , KPR KPOP, =1
0

The anti-symmetric singlet state | ™) is a dark state, and the triplet states are
closed under evolution with Hé2)(7-)

P?=1- 4 =1- 4
o Tr (K8 ® KPPs)+1 Ko+ Ky +K_+1

A Total spin £ is determined by the sum of eigenvalues k. of K°? @ K”#



Eigenvalues of the super-operator K @ K”

Consider the time evolution of a state |=(7)) in the triplet subspace:

=) = K700 K 50 = ~&x(r) o) — ity ) [8) + &) [0*)
&, &y, & takereal values

d _ . 0Hom(7)

= m x &, Ho[m(T)] = —TI'my(7) — U[mZ(T)]’ (1)

We compare this equation with the equation for instanton

dm(r) . 0Ho[m(r)] _
= = Oam xm(r), m(0)=m(B)

A instanton trajectory m(7) is one of the 3 independent solutions of Eq.(1)

A it is periodic and corresponds to the eigenvalue kg =1 of K#:° g K50



Because the equation

d¢ OHo[m(7)]

dr T om & (1)
corresponds to the “rotation” around the time-dependent magnetic field the
following bilinear form is a constant of motion

B(&(7),m(7)) = &(T)na(7) + & (7)ny (7) + E:(7)n=(7) = const (2)

where £(7),n(7) are two solutions of Eq.(1).
Using Eq.(2) and the equation for the instanton we obtain remaining two
eigenvalues of K30 @ KA:0

0S(e)
ol

), a=0,%£1

€a)(ﬁ) = Ka S(a)(o), Ko = exp <2a

4

2 =1

_fio—i-mr—i—ﬁ,—l—l




Tunneling decay of metastable state: Two-point Green
function approach

Quantum imaginary time propagator : analytical continuation in metastable domain

(sle™PH|s"y = Gg(s,s) Ze‘ﬁE"\I/ U (s')

H\Y,) = E,|¥y,), \Iin(s) = (s|V,)

Application to spin systems: |s;) = ®£]=1 |sky, i=1,...,N

U Wave function under the barrier
. G,B (307 56) W (s)~exp[-NA(s,e )]
lim — ———"—% = Uy(s0)Pp(sp)
B—o0 ﬂ .
A E —ihW, /2
xe ™ || -\ >

Only one of the wavefunction amplitudes 3
has an exponential decay in it!! S 50\ S




Corollary: Spike Hamiltonian. A popular model

Am
" U(m) = Up(m) + AU § (mA_mmb>
0 AU =cNX, Am=dN7?,
0<xy<d<l1
L o m y Am > 1/N for WKB to work

m

The WKB tunneling rate for a spike cost function is:

e N1=d—x/2

Wtunn = Btunn €

The time complexity is polynomial in N when 1 — ¢ — x/2 < 0.
From our instanton analysis: both QA and QMC (with many replicas) scale
exponentially better than SA in this case.



Implications for instantons in more general systems

N
H(t)=—A(t) Y o} + B(t)Hp

K N
z
=2 X Jne a0

k=11, jr=1

m:(nthw-wnN)

n; = (sinf; cos ¢;,sinb; sin ¢;, cos 6;)

_ 9j —idj ej
|Um) —® [cosg|0>—|—e sin 5 1)

J

U(m, s) = (Vm|H(1)[Vm)




Action in imaginary time

; D B
A ;;w[nj(ﬂH/o dr Vi (r), ..,y (7))

1

o] = [ " dr(l— cosB(r)d(r),  ¢i(r) - —ip;(r)

Purely imaginary azimuthal angle

Minima of U(m) give boundary conditions for instantons.
If Hamiltonian H contains only ¢ and o2.

o o U (cos 05)
Re[qu] = 27n, Im[cﬁj] =0, 870] =0




