

1

Classical and Quantum in Adiabatic Computation

Phil Crowley Trieste, August 2016

Tanja Đurić, Walter Vinci, Paul Warburton, Andrew G. Green

PRA 90, 042317

It is a quantum computer if...

- It solves classically non-poly problems in poly time?
- There is a verifiable presence of large scale entanglement?
- It does anything classically impossible?
- It correlates better with quantum models than classical models?

Pragmatic approach to benchmarking:

We need exponential data resources to simulate a full quantum dynamics

What resources do we need to perform as well as a given putative adiabatic quantum computer?

Defining degrees of quantum resources

Closest states of lower rank

Defining degrees of quantum resources

Classification of problems by quantum resources

Classify AQC problems based on χ required to solve

Compare success rates with quantum technology

Thanks!