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Outline of the talk

e introduction to models

e Slow quenching dynamics across Quantum critical points:

Defect in the final state: Kibble-Zurek Scaling

e Central Spin model and decoherence of the qubit.

e Driven environment and dynamics of decoherence

e |s there a universal scaling of the decoherence factor?
e Ground state quantum fidelity and finite size scaling

e Universal scaling of the decoherence factor



Quantum Phase Transitions: Transverse Ising Chain
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For h > 1, (o) = 0; Paramagnetic
For h < 1; (oF) # 0; Ferromagnetic
e Quantum critical point A =|h—1| =0
e Diverging length Scale: £ ~ \7”

e Diverging time Scale: &, ~ &7
Dutta, Aeppli, Chakrabarti, Divakaran, Rosenbaum and Sen, CUP (2015); Suzuki, Innoe and Chakrabarti, Springer

(2013).



Transverse XY chain
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Quenching across quantum critical point and the defect

density

Change a parameter A(t) = t/7 across the QCP at A =10

: 1
The defect density scales as n ~ -7

h(t) =1 —t/7; Cross QCPs with v =z =1 — n~ 77 1/2
Zurek, Dorner and Zoller, Phys. Rev. Lett. 95, 1057 (2005); Polkovnikov, Phys. Rev. B 72, 161201 (R), (2005)

Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).); Damski, Phys. Rev. Lett. 95, 035701 (2005).

Kolodrubetz, Clark, Huse, Phys. Rev. Lett. 109, 015701 (2012), Chandran, Erez, Gubser and Sondhi, Phys. Rev.

B 86, 064304(2012).
The scaling is not conventional when quenched through

o The gapless phase: n~ —

T
o The multicritical point: n ~ —7
T
Mukherjee, Divakaran, Dutta, Sen, Phys. Rev. B (2007); Divakaran, Dutta and Sen, Phys. Rev. B (2008)
Pellegrini, Montangero, Santoro, Fazio, Phys. Rev. B 77 140404 (2008); Caneva, Fazio, Santoro, Phys. Rev. B 76,

144427 (2007)

Polkovnikov, et al, RMP (2011); Dziarmaga, Adv. in. Phys. (2011); Dutta et al, CUP (2015).



The central spin model and decoherence of a qubit

Central Spin Model

e A qubit coupled to a quantum critical many body system

e "Qubit" — a single Spin-1/2

e Environment — Quantum XY Spin chain

e A global coupling

e LE: Loss of phase information of the Qubit close to the QCP.



The Central Spin model

e A central spin globally coupled to an environment.

e We choose the environment to be Transverse XY spin chain
_ y_y
H= _JXZU?U?(H - JyZU,- Tiy1 — hZUiz
i i i
e and a global coupling =", 070%

e Qubit State: |¢s(t =0)) =c1| 1) + 2| |)
e The environment is in the ground state |pe(t = 0)) = |¢g)

e Composite initial wave function:

[4(t =0)) = |os(t = 0)) @ |oyg)

Quan et al, Phys. Rev. Lett. 96, 140604 (2006).



Coupling and Evolution of the environmental spin chain

o—iH(h+8)t
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e At a later time t, the composite wave function is given by

() = al 1) @ o) + el 1) @ [¢-).

|¢+) are the wavefunctions evolving with the environment
Hamiltonian Hg(h £ §) given by the Schrodinger equation

i0/0t]6) = HIh + 8]|x).
e The coupling d essentially provides two channels of evolution of

the environmental wave function with the transverse field h 4§
and h — 9.



What happens to the central spin?

The reduced density matrix:

_ lal?  acdi(t)
ps(t) = ( Cszd(t) |C2’2 .

e The decoherence factor (Loschmidt Echo)

D(t) = d*(t)d(t) = [(¢+(t)o—(1))|?
Overlap between two states evolved from the same initial state
with different Hamiltonian
e D(t) =1, pure state. D(t) =0 Complete Mixing

e Coupling to the environment may lead to Complete loss of
coherence

e Decay of Loschmidt echo
T. Gorin, T. Prosen, T. H. Seligman, M. Znidaric, Phys. Rep. 435, 33-156 (2006);
e Enhanced decay close to a QCP

Quan et al, Phys. Rev. Lett. 96, 140604 (2006).



Loschmidt echo

various applications in quenched closed quantum systems

o Work Statistics (Gambassi and Silva)
o Dynamical Phase transitions (Heyl, Polkovnikov and Kehrein)

o Emergent thermodynamics is closed quantum systems (Dorner
et al, Deffner and Lutz)



Ramped environment: dynamic generation of decoherence

. e~ iH (h+6)t

~= - |9+)
|6-)

e—iH(h—0)t

Assume h(t) =1 — t/7, driven spin chain environment

Loy h(t) = 6 + cos k vy sin k
Hk(t)_2< ysin k —(h(t) £+ cosk) )

B. Damski, Quan and Zurek, Phys. Rev. A 83, 062104 (2011).



The decoherence factor D(t)

(1)) H\cﬁi t) = [ [uk (0I0) + v ()&, —K)] .

k>0

i0/ot (uf (1), viE(e)) T = HE (1) (ui(e), vid (1)

with [T, Fi(t) = [T [ (h(t) + 0)lo,c (h(t) — 8))[%,

D(t) = exp [2’\; /Oﬂ dk In Fk] 2)

where Fj can be written in terms of uf and vf.



The question we address:

We assume 6 — 0 and and work within the appropriate range of
time;
A is the driving parameter.

One finds: Far away from the critical point A =0

InD ~ (—t2L952%f (7))

What is the scaling of this function f(7)?
e Is that identical to the scaling of the defect density?

Not necessarily! Even for this integrable system!



How to Calculate D(t)?...

e Use the Landau-Zener transition formula:

pr = |uk)? = exp(—2777? sin? k)

Fi(t) = 1—4ape(1— pg)sin?(At)
= 1-4 [e_%m?k/z — e_4”772k/2] sin?(46t)  (3)

sin k has been expanded near the critical modes k = 7, with
k" = m — k and we have taken the limit 6 — 0.
B. Damski, Quan and Zurek, Phys. Rev. A 83, 062104 (2011); Pollmann, Mukherjee, Green and Moore, Phys.

Rev. E 81, 020101(R) (2010)



How to calculate D(t)?

Assume 6 — 0

oo

N
D(t) = = [ dk
(t) P or |

In |:1 _ (ef27r7"yzk’2 _ e747r7"~/2k’2> 64(521'2}

Finally D is given by

D(t) ~ exp{~8(V2 — NS/ (/7).

o InD(t) ~771/2

The same scaling as the defect density



Quenching through a critical line

Change v = t/7 with h = 1. Quenched through the MCP
Modified CSM with interaction:

Hse = —(0/2) Y (07ofyy — o} 0l,1)o%

1

The coupling ¢ provides two channels of the temporal evolution of
the environmental ground state with anisotropy v+ 0 and v — 4.
The appropriate two-level Hamiltonain

e The defect density in the final state n ~ 7~ 1/3*

U. Divakaran et al, Phys. Rev. B 78, 144301 (2008).
D(t) ~ exp{—2*/3N52t2/(377)}.

e Scaling of In D(~ 771) is completely different!!

T, Nag, U. Divakaran and A. Dutta, Phys. Rev. B 86, 020401(R) (2012).



Question we ask?

Is there universal scaling?
Recall the scaling of the fidelity susceptibility and finite size scaling

What happens in non-integrable models?



The ground state Quantum Fidelity

We consider the Hamiltonian

H(X) = Ho + AHi; - H(A)[vo(A)) = Eolto(A))
where |¢g(A) is the ground state wave function.

o A is the driving term. The QCP is at A = 0.

o The quantum fidelity: modulus of the overlap between two
ground state corresponding to parameters A\ and A + 9

F(A,0) = [{¢o(M)[vo(A + 6))]

o Indicator of Quantum Criticality: Shows a dip close to it



Finite size scaling

Recall finite size scaling:

Close to the critical point: L < &(~ A™") Scaling with L
Away from the critical point: L > &(~ A™) Scaling with £
Smaller length scale dictates the scaling

Thermal phase transition:

Finite size scaling of the magnetic susceptibility

x(t, L) ~|t|"7f <f> t~(T—-T.)

Away from the critical point : f(x) — const
Xt L) ~ [t~ T

Close to it: f(x) — x/v x(t, L) ~ LV



Fidelity susceptibility Approach

0 — 0 and small L
1
F(\d0)=1- 5<52L"><,:(A) +oee
Fidelity susceptibility xr = — 2 lims_o(In F/62) = — % 0?F /95>

2L E(N) << 1



Enlist the length scales

The scales of the problem: L, & ~ A%, 6%

0 sets a length scale in the problem: 67

Set A = 0 (at the QCP; more precisely £ > L)

o [ < )77, fidelity susceptibility approach is meaningful

e L > 677, fidelity susceptibility approach is NOT meaningful
L > §7% Fidelity in the thermodynamic limit

L is the largest length scale of the problem and ¢ is finite.

Rams and Damski,Phys. Rev. Lett. 106, 055701 (2010)



Scaling of xr

Scaling of the fidelity susceptibility 67" is the largest

1
F:1—§Ld62x/:+-~-
F is dimensionless: 6% ~ L
e {(=A"Y)> L; xf ~ L?7=9 Close to the QCP
o &(=A7Y) < L; xF ~ X972 Away from the QCP.

Venuti and Zanardi Phys. Rev. Lett. 99, 095701 (2007). De Grandi, Gritsev and Polkovnikov, Phys. Rev. 81,

012303 (2010)



Universal scaling of the DF: early time limit t = 0+

e—iH (h+6)t

|$+)

—(1/L)n D(t)

|’l/10>
[o-)

e—iH(h—6)t 3 7 § § o

e ESS Hamiltonian is quenched A = t/7, with t starting from a
large negative value A = h — 1, t=0 is the QCP

e two channels of evolutions of the initial ground state of the ESS
dictated by two Hamiltonians with parameters A+ and A — §

In the limit, small 6 and t; Not Gaussian decay

% In D(t) ~ — (XF(T) + o (7))t + %Ocz(T)tz + - ) 82,

XF(1) =~ g I0D(0), am(r) = 2 9 (In D(1)) |eco.



How to arrive at the universal scaling? Dimensional

Analysis

What is the characteristic length scale?

e Hamiltonian H(A) = A = |h — 1| = 0 Linear driving A = t/7.

on time

Relaxatio

How to find out £? At t = t,

relaxation time ~ rate of driving —> /\lz ~

>

o £ ~ 7vz/(vz+1) — [ ~ Y/ (vz+1)

[ is the characteristic length scale of the problem

~ L  —vd/(vz+1)
N R )



~

Dimensional Analysis using L

In D(t) must be dimensionless

1

7d InD(t) ~ — (XF(T) + ai(7)t + ;az(T)ﬂ) 52,

t~[Zandé (=) ~ L

XF(T) ~ 7_(27d1/)/(21/+1)7 Odm(T) -~ 7_(27d1/fmzu)/(zu+1) (m =1, 2)
Non-linear quenching: A(t) = —|%|"sgn(t) L ~ rm/(rvz+1)

r(2—dv)/(rzv+1)

XF(T) ~ T ’ am(T) ~ 7_r(27d1/7m21/)/(r21/+1)

h-quenching: d=1,v=1andz=1
YF(r) ~ T2 an(r) ~ 10, a(r) ~ 7
Xe(r) ~ 7/ ag (1) ~ 70 an(r) ~ /)

Suzuki, Nag and Dutta, Phys. Rev. A (2012).

-1/2



Xr(7): the generalised fidelity susceptibility

Not the ground state fidelity susceptibility

e—iH(h+6)t

|o+)
o)

e—zH(h—&)t

[v0)

A = —t/7 which stops at the critical point at A =t = 0.
In D(A =t = 0) = 2In(|(¢+(t = 0)[¢—(t = 0))]);
In([{¢+(t = 0)|¢—(t = 0))]) ~ —0°LIxF (7).
[2/v=4  length scale [ ~ 77/(z+1)

XF(T) -~ 7_(271/d)/(1/2+1)



linear and non-linear quenching: numerical results

For linear quenching integrable models: exact analytical results

eh—1=-1
=
10,
Kt T2
o, 0
X T . P
At
$ 3
o X% LT
10 T 100
e Non-linear quenching: h(t) —1 = —|%|"sign(t); r =2
100
Y + =100, 5=10*
10 Cll X
a, *++,+,+ i
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HE = —ZO‘,-ZO',-Z+1 - hLZJiz - hZUf
i i i
h =1 integrable critical point: apply hy =— v =8/15,z=1
hy = —t/7 and Two channels: hy + 6 and hy — 6
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late time limit: far away from the QCP

For integrable models:

InD ~ —t262L%(7)

e (i» has the same scaling as ap

e linear quenching: do(7) ~ 7(2-dv=22v)/(zv+1)

e Non-linear quenching: d(7) ~ 7"(2—dv=22v)/(rzv41)

e O ~ defect density iff vz =1

r=1,h(t)=1—t/7; o ~ 7 /2

r=1h=1~vy=t/r, dg~7"!



Concluding comments

o There is a universal scaling of decoherence factors
o Follows from simple dimensional analysis with L

o In the late time limit: scaling is identical to the defect when
vz=1

o Beyond the central spin model?



How to Calculate D(t)?

Use the integrable two-level nature of the environmental
Hamiltonian.
Far away from the QCP (|h(t)|>1 (t — +o0))

dk(h + 6)) = uk|0) + viee "2t k, —k)

|6k(h — 6)) = uil0) + €2 Fvielk, —k)

AT =4,/(h+ 6+ 1)2 +42sin k2
A~ =4,/(h—6+1)2+~2sink2,

are the energy of two excitations in |k, —k) when the transverse
field is equal to h+ & and h — §, respectively.

Excitations occur only in the vicinity of QCPs

F. Pollman et al, Phys. Rev. E 81 020101 (R) (2010).



How to Calculate D(t)?...

How does one know wuy and v, ?

e Use the Landau-Zener transition formula:
pr = |uk|? = exp(—2m7y% sin? k)

| (@K (h(t) + 6)|ox(h(t) — 8))[>

. N2
Juk? + [P ATAT (4)

Fk(t)

In the vicinity of the quantum critical point at h =1
A= (AT —-A7)/2,

Fk(t) = 1- 4Pk(1 — pk)sinz(At)
= 1-4 [e*2”72k/2 — e*4”772k/2] sin(46t)  (5)

sin k has been expanded near the critical modes k = m, with
k' = m — k and we have taken the limit § — 0.



How to calculate D(t)?

Assume 6 — 0

oo

N
D(t) = = [ dk
(t) P or |

In |:1 _ (ef27r7"yzk’2 _ e747r7"~/2k’2> 64(521'2}

Finally D is given by

D(t) ~ exp{~8(v/2 — NG/ (v /7).
® InDpon—ad ~ T1/2

The same scaling as the defect density



Non-linear Quenching

Non-linear Quenching: h =1 — sgn(t)(t/7)*

The scaling form py = |u|? = G(k?72/(e+1))

D(t) = exp(—CN§?t? )70/ (aF1)y
o InD(t) ~ r—/(at1)
Quenching through a MCP

In Don—ad(t) ~ (t — J,7)2 /7Y% ~ (Jy — J,)r1Y/0
e Quenching through Isolated critical points: In Dpop_aq(7) ~ n

Is this scenario true in general?



Quenching through a critical line

Change v = t/7 with h = 1. Quenched through the MCP
Modified CSM with interaction:

Hse = —(5/2)Z(Uf(fff+1 - U?/U/'yﬂ)aé

1

The coupling ¢ provides two channels of the temporal evolution of
the environmental ground state with anisotropy v+ 0 and v — 4.
The appropriate two-level Hamiltonain

4 B (y£0)sink h + cos k
() = 2( h+cosk —(y=+d)sink )°

e The defect density in the final state n ~ 7—1/3%

Does that mean In Dyop_ag ~ 7 /32
* U. Divakaran et al, Phys. Rev. B 78, 144301 (2008).



A completely different Scaling

Fr=1- 4(e_7”k3/2 - e_”k3) sin?(4dkt)

e An exponential decay:

Dpon—ad(t) ~ exp{—2"/3N5§?t?/(377)}.

e Scaling of In Dpop_aq(~ 771) is completely different!!



