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Outline of the talk

• introduction to models

• Slow quenching dynamics across Quantum critical points:

Defect in the final state: Kibble-Zurek Scaling

• Central Spin model and decoherence of the qubit.

• Driven environment and dynamics of decoherence

• Is there a universal scaling of the decoherence factor?

• Ground state quantum fidelity and finite size scaling

• Universal scaling of the decoherence factor



Quantum Phase Transitions: Transverse Ising Chain

H = −
∑

<ij> σ
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i

For h > 1, 〈σxi 〉 = 0; Paramagnetic

For h < 1; 〈σxi 〉 6= 0; Ferromagnetic

• Quantum critical point λ = |h − 1| = 0

• Diverging length Scale: ξ ∼ λ−ν

• Diverging time Scale: ξτ ∼ ξz
Dutta, Aeppli, Chakrabarti, Divakaran, Rosenbaum and Sen, CUP (2015); Suzuki, Innoe and Chakrabarti, Springer

(2013).



Transverse XY chain

HXY = −
N∑
i=1

[
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + hσzi

]
(1)

We shall set Jx + Jy = 1 Jx − Jy = γ.
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Quenching across quantum critical point and the defect
density

Change a parameter λ(t) = t/τ across the QCP at λ = 0

The defect density scales as n ∼ 1
τνd/(νz+1)

h(t) = 1− t/τ ; Cross QCPs with ν = z = 1 −→ n ∼ τ−1/2

Zurek, Dorner and Zoller, Phys. Rev. Lett. 95, 1057 (2005); Polkovnikov, Phys. Rev. B 72, 161201 (R), (2005)

Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).); Damski, Phys. Rev. Lett. 95, 035701 (2005).

Kolodrubetz, Clark, Huse, Phys. Rev. Lett. 109, 015701 (2012), Chandran, Erez, Gubser and Sondhi, Phys. Rev.

B 86, 064304(2012).

The scaling is not conventional when quenched through

The gapless phase: n ∼ 1
τ1/3

The multicritical point: n ∼ 1
τ1/6

Mukherjee, Divakaran, Dutta, Sen, Phys. Rev. B (2007); Divakaran, Dutta and Sen, Phys. Rev. B (2008)

Pellegrini, Montangero, Santoro, Fazio, Phys. Rev. B 77 140404 (2008); Caneva, Fazio, Santoro, Phys. Rev. B 76,

144427 (2007)

Polkovnikov, et al , RMP (2011); Dziarmaga, Adv. in. Phys. (2011); Dutta et al , CUP (2015).



The central spin model and decoherence of a qubit
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Central Spin Model

• A qubit coupled to a quantum critical many body system

• ”Qubit” → a single Spin-1/2

• Environment → Quantum XY Spin chain

• A global coupling

• LE: Loss of phase information of the Qubit close to the QCP.

Does a QCP influence the Loschmidt echo?



The Central Spin model

• A central spin globally coupled to an environment.

• We choose the environment to be Transverse XY spin chain

H = −Jx
∑
i

σxi σ
x
i+1 − Jy

∑
i

σyi σ
y
i+1 − h

∑
i

σzi

• and a global coupling −δ
∑

i σ
z
i σ

z
S

• Qubit State: |φS(t = 0)〉 = c1| ↑〉+ c2| ↓〉

• The environment is in the ground state |φE (t = 0)〉 = |φg 〉

• Composite initial wave function:

|ψ(t = 0)〉 = |φS(t = 0)〉 ⊗ |φg 〉

Quan et al , Phys. Rev. Lett. 96, 140604 (2006).



Coupling and Evolution of the environmental spin chain

• At a later time t, the composite wave function is given by
|ψ(t)〉 = c1| ↑〉 ⊗ |φ+〉+ c2| ↓〉 ⊗ |φ−〉.

|φ±〉 are the wavefunctions evolving with the environment
Hamiltonian HE (h ± δ) given by the Schrödinger equation

i∂/∂t|φ±〉 = H[h ± δ]|φ±〉.

• The coupling δ essentially provides two channels of evolution of
the environmental wave function with the transverse field h + δ
and h − δ.



What happens to the central spin?

The reduced density matrix:

ρS(t) =

(
|c1|2 c1c

∗
2d
∗(t)

c∗1c2d(t) |c2|2
)
.

• The decoherence factor (Loschmidt Echo)

D(t) = d∗(t)d(t) = |〈φ+(t)|φ−(t)〉|2

Overlap between two states evolved from the same initial state
with different Hamiltonian

• D(t) = 1, pure state. D(t) = 0 Complete Mixing

• Coupling to the environment may lead to Complete loss of
coherence

• Decay of Loschmidt echo
T. Gorin, T. Prosen, T. H. Seligman, M. Znidaric, Phys. Rep. 435, 33-156 (2006);

• Enhanced decay close to a QCP
Quan et al , Phys. Rev. Lett. 96, 140604 (2006).



Loschmidt echo

various applications in quenched closed quantum systems

Work Statistics (Gambassi and Silva)

Dynamical Phase transitions (Heyl, Polkovnikov and Kehrein)

Emergent thermodynamics is closed quantum systems (Dorner
et al , Deffner and Lutz)

· · ·



Ramped environment: dynamic generation of decoherence
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Assume h(t) = 1− t/τ , driven spin chain environment

H±k (t) = 2

(
h(t)± δ + cos k γ sin k

γ sin k −(h(t)± δ + cos k)

)
.

B. Damski, Quan and Zurek, Phys. Rev. A 83, 062104 (2011).



The decoherence factor D(t)

|φ±(t)〉 =
∏
k

|φ±k (t)〉 =
∏
k>0

[
u±k (t)|0〉+ v±k (t)|k,−k〉

]
.

i∂/∂t
(
u±k (t), v±k (t)

)T
= H±k (t)

(
u±k (t), v±k (t)

)T
with

∏
k Fk(t) =

∏
k |〈φ

+
k (h(t) + δ)|φ−k (h(t)− δ)〉|2,

D(t) = exp

[
N

2π

∫ π

0
dk lnFk

]
(2)

where Fk can be written in terms of u±k and v±k .



The question we address:

We assume δ → 0 and and work within the appropriate range of
time;
λ is the driving parameter.

One finds: Far away from the critical point λ = 0

lnD ∼ (−t2Ldδ2f (τ))

What is the scaling of this function f (τ)?

• Is that identical to the scaling of the defect density?

Not necessarily! Even for this integrable system!



How to Calculate D(t)?...

• Use the Landau-Zener transition formula:

pk = |uk |2 = exp(−2πτγ2 sin2 k)

Fk(t) = 1− 4pk(1− pk) sin2(∆t)

= 1− 4
[
e−2πτγ2k ′2 − e−4πτγ2k ′2

]
sin2(4δt) (3)

sin k has been expanded near the critical modes k = π, with
k ′ = π − k and we have taken the limit δ → 0.
B. Damski, Quan and Zurek, Phys. Rev. A 83, 062104 (2011); Pollmann, Mukherjee, Green and Moore, Phys.

Rev. E 81, 020101(R) (2010)



How to calculate D(t)?

Assume δ → 0

D(t) = exp
N

2π

∫ ∞
0

dk

ln
[
1−

(
e−2πτγ2k ′2 − e−4πτγ2k ′2

)
64δ2t2

]
Finally D is given by

D(t) ∼ exp{−8(
√

2− 1)Nδ2t2/(γπ
√
τ)}.

• lnD(t) ∼ τ−1/2

The same scaling as the defect density



Quenching through a critical line

Change γ = t/τ with h = 1. Quenched through the MCP

Modified CSM with interaction:

HSE = −(δ/2)
∑
i

(σxi σ
x
i+1 − σ

y
i σ

y
i+1)σzS

The coupling δ provides two channels of the temporal evolution of
the environmental ground state with anisotropy γ + δ and γ − δ.
The appropriate two-level Hamiltonain
• The defect density in the final state n ∼ τ−1/3∗

U. Divakaran et al , Phys. Rev. B 78, 144301 (2008).

D(t) ∼ exp{−214/3Nδ2t2/(3πτ)}.

• Scaling of lnD(∼ τ−1) is completely different!!
T, Nag, U. Divakaran and A. Dutta, Phys. Rev. B 86, 020401(R) (2012).



Question we ask?

Is there universal scaling?

Recall the scaling of the fidelity susceptibility and finite size scaling

What happens in non-integrable models?



The ground state Quantum Fidelity

We consider the Hamiltonian

H(λ) = H0 + λHI ; H(λ)|ψ0(λ)〉 = E0|ψ0(λ)〉

where |ψ0(λ) is the ground state wave function.

λ is the driving term. The QCP is at λ = 0.

The quantum fidelity: modulus of the overlap between two
ground state corresponding to parameters λ and λ+ δ

F (λ, δ) = |〈ψ0(λ)|ψ0(λ+ δ)〉|

Indicator of Quantum Criticality: Shows a dip close to it



Finite size scaling

Recall finite size scaling:

Close to the critical point: L� ξ(∼ λ−ν) Scaling with L

Away from the critical point: L� ξ(∼ λ−ν) Scaling with ξ

Smaller length scale dictates the scaling

Thermal phase transition:

Finite size scaling of the magnetic susceptibility

χ(t, L) ∼ |t|−γf
(
ξ

L

)
; t ∼ (T − Tc)

Away from the critical point : f (x)→ const

χ(t, L) ∼ |t|−γ ∼ ξγ/ν

Close to it: f (x)→ x−γ/ν χ(t, L) ∼ Lγ/ν



Fidelity susceptibility Approach

δ → 0 and small L

F (λ, δ) = 1− 1

2
δ2LdχF (λ) + · · ·

Fidelity susceptibility χF = − 2
Ld

limδ→0(lnF/δ2) = − 1
Ld
∂2F/∂δ2

δ2LdχF (λ) << 1



Enlist the length scales

The scales of the problem: L, ξ ∼ λ−ν , δ−ν

δ sets a length scale in the problem: δ−ν

Set λ = 0 (at the QCP; more precisely ξ � L)

• L� δ−ν ; fidelity susceptibility approach is meaningful

• L� δ−ν ; fidelity susceptibility approach is NOT meaningful

L� δ−ν Fidelity in the thermodynamic limit

L is the largest length scale of the problem and δ is finite.
Rams and Damski,Phys. Rev. Lett. 106, 055701 (2010)



Scaling of χF

Scaling of the fidelity susceptibility δ−ν is the largest

F = 1− 1

2
Ldδ2χF + · · ·

F is dimensionless: δ−ν ∼ L

• ξ(= λ−ν)� L; χF ∼ L2/ν−d Close to the QCP

• ξ(= λ−ν)� L; χF ∼ λνd−2 Away from the QCP.

Venuti and Zanardi Phys. Rev. Lett. 99, 095701 (2007). De Grandi, Gritsev and Polkovnikov, Phys. Rev. 81,

012303 (2010)



Universal scaling of the DF: early time limit t = 0+
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• ESS Hamiltonian is quenched λ = t/τ , with t starting from a
large negative value λ = h − 1, t=0 is the QCP

• two channels of evolutions of the initial ground state of the ESS
dictated by two Hamiltonians with parameters λ+ δ and λ− δ
In the limit, small δ and t; Not Gaussian decay

1

Ld
lnD(t) ≈ −

(
χF (τ) + α1(τ)t +

1

2
α2(τ)t2 + · · ·

)
δ2,

χF (τ) = − 1

δ2Ld
lnD(0), αm(τ) = − 1

δ2Ld
dm

dtm
(lnD(t)) |t=0,



How to arrive at the universal scaling? Dimensional
Analysis

What is the characteristic length scale?

• Hamiltonian H(λ)⇒ λ = |h − 1| = 0 Linear driving λ = t/τ .

+t

>

R
el

ax
at

io
n
 t

im
e

0 time−t

>

ImpulseAdiabatic Adiabatic

How to find out t̂? At t = t̂,

relaxation time ∼ rate of driving =⇒ 1
λνz ∼

λ
λ̇

• t̂ ∼ τνz/(νz+1) =⇒ L̂ ∼ τν/(νz+1)

L̂ is the characteristic length scale of the problem

n ∼ 1
L̂d
∼ τ−νd/(νz+1).



Dimensional Analysis using L̂

lnD(t) must be dimensionless

1

Ld
lnD(t) ≈ −

(
χF (τ) + α1(τ)t +

1

2
α2(τ)t2

)
δ2,

t ∼ L̂z and δ (≡ λ) ∼ L̂−1/ν

χF (τ) ∼ τ (2−dν)/(zν+1), αm(τ) ∼ τ (2−dν−mzν)/(zν+1) (m = 1, 2)

Non-linear quenching: λ(t) = −| tτ |
r sgn(t) L̂ ∼ τ rν/(rνz+1)

χF (τ) ∼ τ r(2−dν)/(rzν+1), αm(τ) ∼ τ r(2−dν−mzν)/(rzν+1)

h-quenching: d = 1, ν = 1 and z = 1

χF (τ) ∼ τ1/2, α1(τ) ∼ τ0, α2(τ) ∼ τ−1/2

χF (τ) ∼ τ r/(r+1), α1(τ) ∼ τ0, α2(τ) ∼ τ−r/(r+1)

Suzuki, Nag and Dutta, Phys. Rev. A (2012).



χF (τ): the generalised fidelity susceptibility

Not the ground state fidelity susceptibility

λ = −t/τ which stops at the critical point at λ = t = 0.

lnD(λ = t = 0) = 2 ln(|〈φ+(t = 0)|φ−(t = 0)〉|);

ln(|〈φ+(t = 0)|φ−(t = 0)〉|) ∼ −δ2LdχF (τ).

L2/ν−d length scale L̂ ∼ τν/(νz+1)

χF (τ) ∼ τ (2−νd)/(νz+1)



linear and non-linear quenching: numerical results

For linear quenching integrable models: exact analytical results

• h − 1 = − t
τ
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• Non-linear quenching: h(t)− 1 = −| tτ |
r sign(t); r = 2
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Beyond integrability

h

h=1, h = 0L
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∑
i

σzi σ
z
i+1 − hL

∑
i

σzi − h
∑
i

σxi

h = 1 integrable critical point: apply hL =⇒ ν = 8/15, z = 1

hL = −t/τ and Two channels: hL + δ and hL − δ
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late time limit: far away from the QCP

For integrable models:

lnD ∼ −t2δ2Ld α̃2(τ)

• α̃2 has the same scaling as α2

• linear quenching: α̃2(τ) ∼ τ (2−dν−2zν)/(zν+1)

• Non-linear quenching: α̃2(τ) ∼ τ r(2−dν−2zν)/(rzν+1)

• α̃2 ∼ defect density iff νz = 1

r = 1; h(t) = 1− t/τ ; α̃2 ∼ τ−1/2

r = 1, h = 1, γ = t/τ , α̃2 ∼ τ−1



Concluding comments

There is a universal scaling of decoherence factors

Follows from simple dimensional analysis with L̂

In the late time limit: scaling is identical to the defect when
νz = 1

Beyond the central spin model?



How to Calculate D(t)?

Use the integrable two-level nature of the environmental
Hamiltonian.

Far away from the QCP (|h(t)|�1 (t → +∞))

|φk(h + δ)〉 = uk |0〉+ vke
−i∆+t |k ,−k〉

|φk(h − δ)〉 = uk |0〉+ e−i∆
−tvk |k ,−k〉

∆+ = 4
√

(h + δ + 1)2 + γ2 sin k2

∆− = 4
√

(h − δ + 1)2 + γ2 sin k2,

are the energy of two excitations in |k ,−k〉 when the transverse
field is equal to h + δ and h − δ, respectively.
Excitations occur only in the vicinity of QCPs
F. Pollman et al , Phys. Rev. E 81 020101 (R) (2010).



How to Calculate D(t)?...

How does one know uk and vk?

• Use the Landau-Zener transition formula:
pk = |uk |2 = exp(−2πτγ2 sin2 k)

Fk(t) = |〈φk(h(t) + δ)|φk(h(t)− δ)〉|2

=
∣∣∣|uk |2 + |vk |2e−i(∆+−∆−)t

∣∣∣2 , (4)

In the vicinity of the quantum critical point at h = 1
∆ = (∆+ −∆−)/2,

Fk(t) = 1− 4pk(1− pk) sin2(∆t)

= 1− 4
[
e−2πτγ2k ′2 − e−4πτγ2k ′2

]
sin2(4δt) (5)

sin k has been expanded near the critical modes k = π, with
k ′ = π − k and we have taken the limit δ → 0.



How to calculate D(t)?

Assume δ → 0

D(t) = exp
N

2π

∫ ∞
0

dk

ln
[
1−

(
e−2πτγ2k ′2 − e−4πτγ2k ′2

)
64δ2t2

]
Finally D is given by

D(t) ∼ exp{−8(
√

2− 1)Nδ2t2/(γπ
√
τ)}.

• lnDnon−ad ∼ τ−1/2

The same scaling as the defect density



Non-linear Quenching

Non-linear Quenching: h = 1− sgn(t)(t/τ)α

The scaling form pk = |uk |2 = G (k2τ2α/(α+1))

D(t) = exp(−CNδ2t2/τα/(α+1))

• lnD(t) ∼ τ−α/(α+1)

Quenching through a MCP

lnDnon−ad(t) ∼ (t − Jyτ)2/τ1/6 ∼ (Jx − Jy )τ11/6

• Quenching through Isolated critical points: lnDnon−ad(τ) ∼ n

Is this scenario true in general?



Quenching through a critical line

Change γ = t/τ with h = 1. Quenched through the MCP

Modified CSM with interaction:

HSE = −(δ/2)
∑
i

(σxi σ
x
i+1 − σ

y
i σ

y
i+1)σzS

The coupling δ provides two channels of the temporal evolution of
the environmental ground state with anisotropy γ + δ and γ − δ.
The appropriate two-level Hamiltonain

H±k (t) = 2

(
(γ ± δ) sin k h + cos k
h + cos k −(γ ± δ) sin k

)
.

• The defect density in the final state n ∼ τ−1/3∗

Does that mean lnDnon−ad ∼ τ−1/3?
∗ U. Divakaran et al , Phys. Rev. B 78, 144301 (2008).



A completely different Scaling

Fk = 1− 4(e−πτk
3/2 − e−πτk

3
) sin2(4δkt)

• An exponential decay:

Dnon−ad(t) ∼ exp{−214/3Nδ2t2/(3πτ)}.

• Scaling of lnDnon−ad(∼ τ−1) is completely different!!


