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Outline

One wants to solve hardest problems with best algorithms!

Quantum adiabatic algorithm (hard instances):
Computational complexity: worst vs. average performance.
3-SAT: hardest instances at small m/n.
Exponentially small gap: many almost-solutions.

Classical simulation of quantum many-body systems (good algo.):
MPS/MPO algorithms for local 1D: entanglement!
Evolution of pure states (“always” bad).
Evolution of operators (“mostly” bad).
Equilibrium ρ (good).
Nonequilibrium steady states (“often” good).
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Quantum adiabatic algorithm

H0

H1

H0 is the initial Hamiltonian. Independent of
the problem and with known ground state.

H1 is the final Hamiltonian. Depends on the
problem - ground state gives the solution.

Procedure:

set the system into ground state of H0

adiabatically change the Hamiltonian,
H0 → H(t) = (1− t

T
)H0 +

t
T
H1 → H1

the final state encodes the solution
E=0.032∆
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Classical simulation of open quantum systems – p. 3



MIT result for NP-complete problem

Numerical study of adiabatic algorithm for NPC problem.
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Farhi et. al., Science 292 (2001)

random instances of exact cover

quadratic time dependence
for small sizes

Is quantum adiabatic algorithm for NPC problems polynomial?
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Random 3-SAT

How to generate “hard” 3-SAT instances?
(Complexity is defined with respect to the hardest cases.)

well known classical problem, e.g. artificial intelligence.

“common wisdom/approach”: random 3-SAT ensemble, hard instances near phase transition
(random 3-SAT for m/n)

B. Selman et. al., Artificial Intelligence 81, 17 (1996)

Random 3−SAT

(many solutions) (no solution)
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scheme after: S. Kirkpatrick, B. Selman, Science 264, 1297 (1994)

For 3-SAT there is no “natural” measure!
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3-SAT with exactly one solution

It seems that the degeneracy of the first excited state matters.

E=0.032∆
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For m/n = 3 the degeneracy grows exponentially with n!

For larger m/n (at the phase transition!) the growth is slower.
(asymptotics might not have been reached yet)
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Energy gap for single-solution 3-SAT

[M. Žnidarič PRA 71, 062305 (2005)]
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Right : AQC running time
(from Landau-Zener).

[See also R. Schützhold & G. Schaller, PRA 74,

060304 (2006)]

time grows exponentially with n
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Exact exponentially small gap

Can we analytically calculate ∆? YES [M. Žnidarič and M. Horvat, PRA 73, 022329 (2006)]

Projector to the ground state:

H0 = b(1− |ψ〉〈ψ|)
|ψ〉 = 1√

N

∑N−1
i=0 |i〉, b = n

2
N
N−1

∆ ≈ n
√
d0

2
√
N
f(n), f(n) = 2

1+γγ−1

√

γ2−1

γ−2

γ =
∑D

i=0
di
N
i ≈ nα

8
, γ−1 :=

∑D
i=1

di
N

1
i
, γ−2 :=

∑D
i=1

di
N

1
i2
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B. Altshuler, H. Krovi & J. Roland, PNAS 107, 12446 (2010).

M. H. S. Amin, PRL 100, 130503 (2008). Classical simulation of open quantum systems – p. 8



Worst vs. average performace

1. For computational complexity the worst-case performance
matters (the hardest instance of a given size n).

the measure does not matter.

2. For average performance (median,...) the choice of the
measure is absolutely crucial!

with a “biased” measure one can easily “demonstrate”
efficiency.
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Efficient classical simulation

Part II.
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Representing states

MPS (matrix product state, Fannes, Nachtergaele, Werner (’92))

|ψ〉 =
∑

cs1...sn|s1 . . . sn〉
cs1...sn = tr[As1As2 · · ·Asn],

where Asi are matrices of dimension D ×D.

For each qubit we have two matrices, Asi=0 in Asi=1,
all-together 2×D2 × n parameters!

What is the necessary dimension D?
D for A on i−th site equals to the number of nonzero
Schmidt coefficients (for bipartition [s1 . . . si][si+1 . . . sn])!
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Schmidt decomposition

|ψ〉 =
∑NA−1

i=0

√
λi|ϕA

i 〉 ⊗ |ϕB
i 〉.

|ϕA
i 〉 and |ϕB

i 〉 are orthogonal, 〈ϕA
i |ϕA

j 〉 = δij

λi are eigenvalues ρA = tr|ψ〉〈ψ|

von Neumann entropy is a simple measure of total pure-state
entanglement:

S(|ψ〉) = −tr(ρA log2 ρA) =
∑

i

−λi log2 λi.

Necessary D ∼ 2S(ψ). Small S(ψ)⇐⇒ MPS efficient
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MPS for GHZ state

State: |ψ〉 = 1√
2
(|0 . . . 0〉+ |1 . . . 1〉).

Schmidt decomposition :

|ψ〉 =
√

1
2
|0 . . . 0〉 ⊗ |0 . . . 0〉+

√

1
2
|1 . . . 1〉 ⊗ |1 . . . 1〉.

2 nonzero λi = 1
2

=⇒ D = 2.

As1=0 =

(

1√
2

0

0 0

)

, Asi=0 =

(

1 0

0 0

)

, Asn=0 =

(

1 0

0 0

)

As1=1 =

(

0 1√
2

0 0

)

, Asi=1 =

(

0 0

0 1

)

, Asn=1 =

(

0 0

1 0

)

|ψ〉 =
∑

cs1...sn|s1 . . . sn〉, cs1...sn = tr[As1As2 · · ·Asn].
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Numerical methods

NRG (Wilson ’75)
always keep states with the lowest energy
works if energy scales are well separated (e.g. impurities)

DMRG (White ’92)
for subsystems choose not the lowest energies but such
states that |ρDMRG − ρexact| is minimal!
eigenvectors of ρ with the largest eigenvalues

t-DMRG (Vidal ’03)
Can do time evolution of ψ(t) = Uψ(0).

locally approximated subspace

whole Hilbert space
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t-DMRG algorithm ( Vidal, PRL ’03 )

Ui,i+1

B
s3s4
i2,i4

SVD

i3

dim(i3) = d · D

truncation

We write state in an MPS form
|ρ〉 =

∑

si
tr[As11 · · ·Asnn ]|ρs11 . . . ρsnn 〉.

Do transformation U on two
neighboring spins.

We get |ρ′〉 =
∑

si
tr[As11 · · ·Asj−1

j−1 ·B · Asj+2

j+2 · · ·Asnn ]|ρs11 . . . ρsnn

Instead of two D ×D matrices
A
sj
j A

sj+1

j+1 we get one 2D× 2D matrix B.

We rewrite B as a product of two
matrices by using SVD; keeping only
D largest singular values (truncation!),
(B)isj ,ksj+1

= (Ã
sj
j Ã

sj+1

j+1 )ik.
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|ψ(t)〉 with t-DMRG?

t-DMRG will be efficient only if S(t) grows slowly enough!

From quantum chaos (and random circuits) we know that
chaotic systems generate entropy efficiently. S(t) ∼ t, in 1D it
saturates at S ∼ n after time t ∼ n.

But even for integrable systems (e.g. transversal Ising,

H =
∑
σx
i σ

x
i+1 + σz

i ; Calabrese & Cardy ’05) again S(t) ∼ t.

|ψ(t)〉 in general never works (in time)!

(Except for MBL; Žnidarič, Prelovšek & Prosen, PRB 2008.)
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Why the failure

generic (random) |ψ〉 will indeed have a lot of entanglement.

mostly in nonlocal DOF.

we do not care about “strange” nonlocal observables.

most of information in |ψ(t)〉 is non-physical (unobservable)

We are trying to calculate too much!

How about Heisenberg picture, operator O(t)?

For integrable systems evolution of local operators can be
efficient, even if evolution of ψ is not (Prosen & Žnidarič, PRE 2007).

Still, for generic systems it does not work!
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Density operators

Description by ρ(t) might be better (e.g., due to environment)!

pure states (“singular”) vs. density operators (“smooth”)

Example:
random high-energy |ψ〉 well describes local expectations at
T = ∞, i.e., the same as ρ ∼ 1.

But |ψ〉 is complicated and highly entangled.

While ρ ∼ 1 = 11 ⊗ 12 · · · ⊗ 1n is simple and separable (in
operator space).

Indeed: DMRG works for ground states
(S ∼ log n in critical or const. in gapped, Vidal, Latorre, Rico & Kitaev 2003),
and thermal states (imaginary time evolution).
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Lindblad equation (Lindblad; Gorini,Kossakowski,Sudarshan ’76)

d
dt
ρ(t) = L(ρ(t)) = i[ρ(t), H] + Ldiss(ρ(t)),

Ldiss(ρ) =
∑

j [Lj ρ, L
†
j ] + [Lj , ρ L

†
j ].

The generator L (the Liouvillian) is non-hermitean.

Brouwer’s fixed-point theorem:

always a fixed point ρ∞,

steady state ρ∞ = eL·( t→∞)ρ(0).
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-4

-2

2

4

Depending on Lj:
equilibrium steady state.
ρ∞ is a nonequilibrium steady state (NESS).

For small systems the choice of Lj can be important:

(F. Barra, Sci. Rep. 5, 14873 (2015); E.Arrigoni et al. PRB 89, 165105 (2014))
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Transport

Transport can be studied via local Lj acting on the boundary.

In the thermodynamic limit the choice of Lj should not matter.

Are there cases with low-rank MPO NESS? YES

Exact NESS solutions:
fixed, e.g. D = 4 (driven XX chain, M.Ž. JPA , (2010)).
polynomial, e.g. D ∼ n2 (max. driven XXZ, Prosen PRL ’11).

Numerics (t-DMRG):
many works in last 8 years.
empirics: often works good at T ≫ 1.
spin chains, ladders,...

M.Z., A.Scardicchio & V.K.Varma, PRL ’16
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Conclusions

Hard problems:

Studying running time: measure does matter, especially for
small problems.

No real reason for a uniform measure (random 3-SAT).

Single-solution instances having small m/n are hard.

Good classical algorithms:

Pure states are frequently non-physical, −→ hard to simulate.

Think about relevant physics, observables,...−→ ρ.

Lindblad master equation: equilibrium and nonequilibrium.

Large systems in 1D and at high T .
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