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Spin Glasses
The problems studied on current quantum annealing hardware are 
spin glasses. Spin glasses have been studied by physicists for many 
years and insights thus obtained are helpful in understanding 
the difficulties in developing efficient quantum annealers. I will 
review these ideas from spin glasses as well as some recent work 
applying them to quantum annealing, and raise some open 
questions. (Mainly a review of the work of others.) Will focus on:

•Phase Transitions
•Chaos
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The Hamiltonian

We wish to find the ground state of the following classical 
Hamiltonian:

where the Si are Ising spins,   1, the Jij are the “frustrated” 
interactions (random in sign). We may also include random 
longitudinal fields hi in which case h will denote their standard 
deviation. For now we set h = 0. 

±



[hSiSji2] ⇠ exp(rij/⇠)

⇠ ⇠ (T � Tc)
�⌫

⇠ ⇠ T�⌫ , (d = 2), where ⌫ ' 3.4

Spin Glass Phase Transition
As the temperature decreases correlations grow. The spin glass 
correlation length ξ is defined (for h = 0) by

where          denotes a thermal average and [ ... ] denotes an 
average over samples (or equivalently an average over different 
regions of the sample with fixed rij).
As the transition temperature Tc is approached ξ diverges like

h. . .i

In dimension = 3, 4, ..., Tc > 0. However, in d = 2, including D-
Wave’s chimera graph, Tc = 0 and we have



Spin Glass Ordering
For T < Tc lim

rij!1
[hSiSji2] ! (order parameter)2



` = cJ(�J)�⇣

` = cT (�T )�⇣

Chaos in spin glasses
As T is lowered the spin glass configuration that that minimizes the 
free energy can change (quite suddenly, a rounded “transition”) 
which is called temperature chaos, or T-chaos for short. Spin 
correlations change at distances greater than l  where 

In addition to T-chaos, there is also sensitivity to small 
changes in the interactions, called J-chaos, where the length 
scale is 

Numerically ζ ≃ 1 in d = 2, 3, 4 for both J-chaos and T-chaos. 
However, the amplitude is much bigger for J-chaos, i.e.  

cJ � cT



Example of T-chaos on the chimera graph 
In some spin glass samples temperature chaos will not occur, in 
others it may occur once, twice etc. Instances where this occurs 
will be particularly hard to solve. Fraction of instances where this 
occurs is found to increase with increasing size N.

Figure shows a hard 
sample, in which the 
energy shows a 
pronounced change at low-
T due to temperature 
chaos, and an easy sample 
where this does not occur. (From Martin-Mayor and Hen, arXiv:1502.02494)

(Chimera graph is 2ïd)
TTc=0

Possible locations
for T chaos

Samples with T-chaos also have low energy excited states which 
are very different from the ground state (Katzgraber et al, arXiv:1505.01545, 
also E. Crosson’s talk on Tuesday)



Parallel tempering
The method of choice for simulating spin glasses is called parallel 
tempering. One simulates copies of the system at n temperatures 
T1 < T2 < ... < Tn. Standard MC updates are done at each 
temperature. In addition there are “swap” moves in which the spin 
configurations at neighboring temperatures are swapped with an 
appropriate probability. 
Thus, the temperature of 
each copy does a random 
walk between T1 and Tn. 
The “mixing time” 𝝉 is the 
average time it takes each 
copy to fully traverse the 
temperature range. This is 
a measure of classical 
hardness. There is a 
broad range, see figure.

(From Martin-Mayor and Hen arXiv:1502.02494)
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Sample-to-sample fluctuations
There is a broad distribution in the values of the mixing time 𝛕. 
Interpretation: samples with small 𝛕 presumably have no T-chaos, 
while those with large 𝛕 presumably have one or more 
temperatures where T-chaos occurs. 
One finds that T-chaos is rare for small sizes but happens in most 
samples for very large sizes. 
T-chaos is problematic for classical, annealing-type algorithms.
Is it a problem for other classical algorithms or for quantum 
annealers?
To see this, for each sample on chimera graph (choice of the 
Jij) Martin-Mayor and Hen determined 𝝉. This is a measure of 
the classical hardness.
They then determine the time to solution ts for each sample on 
a different classical algorithm and on the D-Wave machine, 
and ask how the ts are correlated with the 𝝉 (see next slide). 
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Hamze-de Freitas-Selby algorithm
For each sample, the time to find a solution, ts, with the HFS 
algorithm (most efficient known for chimera graph) is determined. 
A correlation is found between ts and the classical mixing time 𝝉. 
One finds that                                            , see figure, blue 
points, slope 0.26.
By contrast the time 
to solution for the 
classical PT algorithm 
is of order 𝝉, as 
expected (green 
points, slope 1).
Much stronger 
correlation with the 
D-Wave results 
(red) which will be 
discussed later.

(From Martin-Mayor and Hen arXiv:1502.02494)

ts / ⌧↵ with ↵ ' 0.26



How to generate hard instances?
The classical mixing time 𝝉 is a measure of classical hardness. 
However, with current quantum hardware, the largest possible 
size is around N = 1000, for which most problems are not all 
that hard.  How can we generate particularly hard samples?
One possibility: brute force.  Compute 𝛕 for, e.g. 106 samples 
and study in detail the 102 with the largest 𝛕.
Recently, Marshall, Martin-Mayor, Hen, arXiv:1605.03607 proposed 
a more efficient method to find hard samples by doing 
“simulated annealing” (SA) in space of couplings.  
Standard SA. Want to minimize the energy, E. Add a fictitious 
temperature so Boltzmann factor is exp(-E/T). Do importance 
sampling on the spins and slowly decrease T.
M-MM-H. Want to maximize e.g. the mixing time 𝛕. Add a 
fictitious temperature so “Boltzmann factor” is exp(𝛕/T). Do 
importance sampling on the J’s and slowly decrease T. The J’s 
evolve to give samples with larger 𝛕.
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Now make things quantum
In adiabatic quantum computing the simplest way to add quantum 
fluctuations to a classical “problem” Hamiltonian is to add a “driver 
Hamiltonian” consisting of a single transverse field hT, i.e. for zero 
longitudinal field, h = 0, we have

where the Ising spins have been promoted to Pauli spin 
operators σz. We assume the Jij give spin glass behavior and 
the spins (qubits) are on a lattice in d-dimensions (including 
chimera for d=2). 
Phase boundaries for d = 2 and 3 are shown in the next slide.
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Phase boundaries, transverse field spin glass

Note: spin glass phase only at T = 0 for d = 2.



�E ⇠ ⇠�z ⇠ (hT � hT
c )

z⌫ , (L ! 1)

⇠ L�z, (hT = hT
c )

Where’s the bottleneck in Quantum Annealing?
Answer: where the energy gap becomes very small (avoided 
level crossing).

(i) Could be at a quantum critical point( QCP). Characterized by 
a dynamical exponent z.

With disorder can have z infinite so gap is exponentially small 
in size at the QCP (activated dynamical scaling). E.g. d =1 
random, transverse field ferromagnet (D.S. Fisher).

(ii) Or could be in the quantum spin glass phase (nature of spin 
glass state rapidly changes). Analogous to T-chaos.  Call this 
transverse field chaos, or TF-chaos for short. (Avoided level 
crossing)
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D-Wave results
(Martin-Mayor & Hen, arXiv:1502.02494) For each sample, the time to find a 
solution, ts, on the D-Wave machine is determined. A strong 
correlation is found between ts and the classical mixing time 𝝉. They 

find that                                                   see figure (red points, slope 1.73)                                           
By contrast the time to 
solution for the classical 
PT algorithm is of order 
𝝉, as expected (green 
points, slope 1). In 
other words, the hard 
samples are even 
harder on the D-Wave 
machine than 
classically. 

ts / ⌧↵ with ↵ ' 1.73

(From Martin-Mayor and Hen)



Interpretation of D-Wave results
Does this mean that quantum annealing is less efficient than 
classical algorithms? Not necessarily. The observed result that the 
time to solution on D-Wave varies as the time to solution using the 
classical parallel tempering (PT) algorithm to a power greater than 
one could have classical origins:

• The temperature is not low enough. For instances where 
temperature chaos occurs at a temperature lower than that of 
the chip then the wrong answer will typically be obtained. 
•The strengths of the bonds are not represented exactly in the 

(analog) D-Wave machine (intrinsic control errors, ICE).  
Even small changes in the bond strengths can dramatically 
change the ground state. This is called “J-chaos”. Thus D-
Wave machine might be getting the right ground state to the 
wrong problem (some of the time). Do samples with strong 
T-chaos also have strong J-chaos?  Probably, but more work 
needed to make this precise. 



2d vs. 3d
Recent detailed simulations by, e.g. Troyer et al .Science,
345, 420 (2014), Katzgraber et al. arXiv:1505.01545, Martin-Mayor and Hen arXiv:
1502.02494. Mainly for the chimera graph (i.e. 2d) in order to 
compare with experiment.
How hard is 2d?
Katzgraber et al, arXiv:1401.1546: quite easy because Tc = 0. But ξ 
diverges strongly as T → 0. On scales less than ξ, is the problem 
much easier than in 3d? Also one can find hard samples in 2d, 
(e.g. Martin-Mayor and Hen, arXiv:1502.02494).
Asymptotic scaling of best algorithms seems to be exp(c N1/2).
Expected since for good algorithms time ~ exp(c’ TW) where TW 
is the ``tree width’’ of the graph (~ N1/2 in 2d), see e.g. Lidar et al. 
Science,345, 420 (2014). 
How much harder is 3d?
What is the treewidth? Is it N2/3? Is the time ~ exp(c N2/3)?
Would be interesting to have simulations in 3d at at the same level 
of detail and care that were done in 2d.

http://arxiv.org/abs/1505.01545
http://arxiv.org/abs/1505.01545


hSiSji

Cij ⌘
⇥
( hSiSji � hSiihSji )2

⇤
⇠ e�rij/⇠

Non-zero (random) longitudinal field
Note: for a symmetric distribution of J’s, the sign of the field can 
be gauged away so a uniform field is equivalent to fields with a 
symmetric distribution.  We consider the latter. Remember h is the 
standard deviation of the field distribution.

First, the effect of a field on classical spin glasses.
The field breaks inversion symmetry and naively should round out 
the zero-field transition (where this symmetry is broken). But this 
is not necessarily the case for a spin glass. Back to the definition 
of correlation length. Recall in zero field, the spin glass correlation 
function is Cij ⌘ [hSiSji2]
However, in a field we have to replace             by the 
“connected” correlation function                                 and so hSiSji � hSiihSji

provides a definition of the spin glass correlation length in a 
field (above any possible transition). 



c

T
0

AT lineh

SG (Parisi)

Para (RS)

(RSB)
T

Non-zero (random) field
Can ξ diverge in a field? For at least one model the answer is yes. 
This is the mean-field (infinite-range) Sherrington-Kirkpatrick (SK) 
model (think of it as infinite-d). There is a line of transitions in a 
field called the de Almeida-Thouless (AT) line. 

This is for the SK model. Is 
there an AT line in finite-
dimensional models? Not 
clear.  

Different hypotheses:

• SK line is special. No AT line in any finite-d (Fisher-Huse)
• An AT line only above the upper critical dimension, du = 6 

(Moore) (some numerical evidence, Katzgraber and APY)
• An AT line everywhere that Tc > 0 in zero field, i.e. d ≥ 3 (Parisi 

et al.) 
Note: numerics turns out to be hard.



lim
rij!1

⇥
( hSiSji � hSiihSji )2

⇤
= (order parameter)2

SG order parameter in non-zero (random) field

For T < Tc(h), i.e. below the AT line (if any)

The region where this order parameter = 0 in a longitudinal field, 
i.e. below the AT line, is called a replica symmetry breaking (RSB) 
phase. There are many valleys connected by barriers which 
diverge for N ➝ ∞. 

The region where this order parameter = 0, i.e. above the AT line, 
is called the replica symmetric (RS) phase.

/



Does a field make the problem harder?
Running parallel tempering simulations in an intermediate-
strength field seems harder than in zero field. T-chaos is much 
larger (similar to J-chaos). Suggests that a field makes the 
problem harder (at least for annealing-type algorithms).

But, if there is no AT-line, then ξ is always finite. For finite ξ, 
algorithm of Zintchenko,Hastings and Troyer (2015) finds 
solution in patches and joins patches together. In 2d, typical 
instances are solved in polynomial time(!) even down to h = 0 
where ξ → ∞, at least for the sizes studied. What about 3d? 
Maybe, then, a field makes things easier? 



A quantum de Almeida-Thouless (QuAT) line?
For the SK model, there is a (classical) AT line in the h-T plane at 
hT = 0, below which we have RSB. Is there also RSB for hT > 0?
• Yes. Büttner and Usadel (1990) and Goldshmidt and Lai (1990):, 
• No. Ray and Chakrabarti2 (1989):  See also Chakrabarti’s talk on Tuesday). 
Does RSB go all the way down to T =0? If so, there is also a 
quantum AT (QuAT) line in the h-hT plane at T = 0. 
This figure is a surmise for the 
SK model. 

Suppose that there is an AT 
for some range of (finite) 
dimension, then there may be 
a QuAT line for some 
dimensions, not necessarily 
the same.

0 T

AT line

h

Tc

hT
hc
T

QuAT line



QuAT line

T

h

d = 2 ??

hT
hTc

0
SG

Could there even be at QuAT line in d = 2?

In d= 2 there is a non-zero critical value of the transverse field, 
so could there be a QuAT line in this case? Not ruled out but 
perhaps unlikely.

Recall, below the QuAT line 
we have RSB, something 
like the Parisi solution of the 
SK model. 
Above the QuAT line we 
have an RS phase. 

Note: a phase transition provides one of 
the possible bottlenecks for annealing 
algorithms. If there is an QuAT line in 2-d, 
this would provide an additional bottleneck 
for problems with fields (biases) running 
on the D-Wave annealer.



Conclusions
• Phase Transitions:
• They provide one of the bottlenecks in annealing algorithms.
• If there is a Quantum AT line in a magnetic field at T = 0 this 

would presumably affect the performance of quantum annealing.
• Chaos: 
• Stressed importance of T-chaos and TF-chaos in making 

problems hard.  To what extent are they correlated? Very broad 
range of hardness of problems of a given size.
• Importance of intrinsic control errors (ICE) in getting correct 

results from analog quantum annealers, e.g. D-Wave, because of 
J-chaos. Are samples with J-chaos also those with T-chaos?

• Other questions/problems
• Is h > 0 harder or less hard than h  = 0?
• How much harder is d = 3 than d = 2? 

Thank you


