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Outline

. Perturbative non-adiabatic response for real time and
Imaginary time dynamics.

. Imaginary time quantum annealing using QMC (with C. De-
Grandi, C.-W. Liu, A. Sandvik)

. Geometric optimization of fidelity in annealing protocols (with
T. Souza and M. Tomka).

. Counter-diabatic driving: idea, local CD driving - variational
formulation, application to many-particle systems (with D. Sels).

. Machine learning for optimization of quantum annealing (in
progress, by M. Bukov and P. Mehta).



What is the moving frame and what is behind these transformations?

ihd|[v) = H(X(t))|0)
Let us do a unitary transformation to a co-moving frame,
diagonalizing the instantaneous Hamiltonian

W) = UT(N)|¢), UYHU = diag(E1, Es,...)

ihd, | V) = (UTHU — ihUTd,U) @) = (UTHU — Mg Ag)|P)
Ao =ihUT0\ U, Al = A, - gauge potential

Gauge potentials are Hamiltonians in parameter space:

ihox, [W(N)) = —Aa|¥), Ao =ihUTON U, Al, = A,

Classical Hamiltonian systems: gauge potentials — generators
of canonical transformations.
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H=2_1v(- X))
2m

U = exp |~ 3pXo(0)] Ay, = ihU'0x,U = p

H=U'HU — XoAx, = H — Xop

Galilean Transformation

Compute leading correction to the energy due to the Galilean term
(consider the ground state)
AE; = (0] — Xopl0) =0

: Olp|n)(n|p|0) <o, 25— (n|0x]|0)? 0 8 o= 1602 mX2
AE, = X | = X3h = mXi— — 0
=53y S BBy~ L Gy

n=1

Recover the mass term as the leading non-adiabatic correction
to the energy.



- Dilations

m .
— —» > Moving frame
2
H=UHU - XAy, = —>—— — D
. M vy 0AX, 2mL2(t)
<€ > s
L(t) Dilation operator D =22 "*

2L
Can absorb L2 into time dilatation: dt = L?*dr, H — L°H

Leading non-adiabatic correction.

Y (n|D|m){m|D|n) 5 16 n*m? mXZ2 (1 1
Ak, =L z?i_: E.,—-F, ML Z (m?2 —n2)3 2 3 212p2

Recover “quantum” dilatation mass: the classical (massive
spring) result plus an additional quantum correction.



Geometric structure of the ground state manifold

Hamiltonian: H = H(X). Ground state wave-function: 1y = ().

—

Consider the following change X — A+ O\

1690]12 = 1 — (o (N)[ho(X + X)) 2 = Xapdrad\s
Xag - geometric tensor (Provost, Vallee, 1980)

Xag = (0[0a03(0) — (0104]0)(0[9510) = (Bavroldptho).:

Insert a complete basis of states and observe
Xag = <Aa¢45>c, A, =10, = iUTaaU

Geometric tensor is the covariance matrix of the gauge potential.
Can be measured as a dynamical response.



Berry curvature. Defines the effective magnetic field
F(_)ﬂ — —i(XQﬂ — XB(.}.’) — —L<OHA(1 Aﬁ”O> — a(_):AB — aﬁA(x

Hall response, topological invariants, Coriolis forces, Lorentz forces,...

Symmetric part of the geometric tensor

1 | I, | | 1 1
Jap = §(<0(1'7,1'9|0/3U”>c: + <(9/31,4‘9|00l."‘-’)>c) — 5()(@/3 + X/3a) — §<0|AGA/3 + A/3~/4(1>c

Metric tensor. Defines the Riemannian metric structure on the manifold of
ground states, fidelity susceptibility, Fisher information.

Defines leading non-adiabatic corrections to work fluctuations

5W2 — ).\(xg(tﬂ ).\[3

g also defines mass renormalization in the classical (high temp.) limit.
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Non-adiabatic response in imaginary time (can do Monte-Carlo)

—

Or|) = —H(A(T))|¥)
Instantaneous moving frame
0-|0) = (~U'HU — U'd,U)|¢p) = (~UTHU + i\gAy)|¥)
Can use similar linear response theory as in real time.
Generic off-diagonal observables
(=0 H) = (—0aH)o — 2gapAp
Can easily compute the metric tensor without calculating overlaps

Diagonal observables: same as in real time

e AL . 1. .
OWZ — )\(xg(tﬂ)\ﬁ W =AFE = 5/\0,1{.0,/3/\/3



Comparison of the excess energy and the log-fidelity for quenching to the critical
point for RT and IT dynamics. Asymptotically agree in fast and slow limits.
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Application to Quantum Annealing

N N
Eﬂ)zzizjjgjbhjafaj, (o ity

i=1 j=1
Introduce an auxiliary quantum term and slowly anneal it to zero

N N

lehZUf:hZ(Jj—i—ag).
i=1 i=1
H = sHy 4 (1 =s)Hi S =%

In the adiabatic limit follow the ground state.

Both thermal (simulated) annealing and quantum annealing
have problems in glass phases. Hopes are that quantum
annealing can be more efficient.



Application to a random graph model

=t
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FIG. 1: A typical 3-regular graph with N = 64 spins.
Phase transition to a glass phase at finite temperature

R e R TR N

Quantum transition to a glass phase at s,=0.37

E. Farhi, et. al., Phys. Rev. A 86, 052334 (2012).



Imaginary time quantum annealing vs thermal annealing

Finding Critical Point Extracting dynamical exponent,
ramp-to.QCP
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Classical annealing (¢%) = NP/ ¢ [L(.s — 50)”, N’”/“/”'v]
2+ 1V =1
For quenching to the critical point thermal annealing is more efficient.

Quantum annealing in IT is not quantum simulated annealing.
Opposite results in 1D: T. Zanco G. Santoro, 2016



Geometric approach to annealing
(M. Tomka, T. Souza, A.P. 2016)

Generalization of geometric suppression of dissipation in
classical dissipative systems (D. Sivak and G. Crooks 2012)

ldea: maximize instantaneous fidelity along the path (time average
of the energy variance, time component of the metric).

S Ay ty .
L(N) = / ds = / \/gw,)\“)\’/ dt
Xi 0

Solution: geodesic protocol defined by the Fubini-Study metric.

A+ T AVAP = 0,

Avoids small gaps and most relevant perturbations; slows down
near minimal gaps (constant energy variance along the path).



Application to LZ problem

Final fidelity vs. annealing time

!

Degenerate geodesic solutions (problem too simple).
Geodesic solutions strongly outperform the naive protocol.

Metric tensor can be measured (computed numerically)
without need to do tomography (diagonalize Hamiltonian).



Application to XY spin chain
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Final fidelity: (i) naive protocol, (ii) geodesic protocol, (iii)
optimal power law protocol (R. Barankov, A.P. 2008), (iv) geodesic
protocol which avoids QCP in an optimum way.



Beyond adiabatic response. Shortcuts to adiabaticity.
(M. Demirplak, S. A. Rice (2003), M. Berry (2009), S. Deffner, A. Del Campo, C. Jarzynski (2014+),

also Bloch-Siegert shifts in NMR).

Moving frame Hamiltonian

~

H, =H—-)A,, H= diag(E1, Eo, .. .)

|dea: introduce counter-adiabatic (CA) term

H—-H+MAy, H, =H
Moving frame follow eigenstates of H. Back to the lab frame:

Hep = H + AA, No CD term CD term

CD driving intuitively:
 Have to introduce extra parameters

* Do not follow instantaneous ground
state

« Use only local (physical) counter
terms, i.e. do not address individual
water molecules




Beyond adiabatic response. Shortcuts to adiabaticity.
(M. Demirplak, S. A. Rice (2003), M. Berry (2009), S. Deffner, A. Del Campo, C. Jarzynski (2014+)

p2
MMM % Suppose we want to move a box in

space without exciting a particle inside
(without heating).

Can move the box slowly but it takes time. If move too
slow will likely decohere due to a bath.

Recall a moving Hamiltonian

2

[j[ = UTHU — X().AXO = p— + V(T) - X()p

2m

Can compensate the last term by adding the counter term
H— H —+ Xop

The moving frame the Hamiltonian is diagonal (time-independent). Can
move arbitrarily fast. This is not what the waiter does!



2
H = p—-I-V(x—Xo)-I-XOp

2m
X0)? X2
— (p+m 0) +V(£L’—X0)—m 0
2m 2
p2 .
~ — 4+ V(x— Xy) —mazX.

2m

CD (counter-diabatic) term is simply a linear potential
proportional to the acceleration (gravitational field).

D: x— Lx,p—p/L
2

P 1 . DT + TP
H = L ¢ _v/L)+L
om T2V @/ L)+ L
; )
jy 1 max*“ L
~ L4 V(z/L) - .
om T2V @/ L) - —

CD term is a harmonic potential (Deffner, Jarzynski, Del Campo 2014).




1.

Finding adiabatic gauge potentials in complex systems
(important for CD driving, geodesics, Chern numbers, metric,...)

Through the unitary: A, = i(0,U)U"
Exact but not useful as we do not know the unitary.

. Through the matrix elements of the instantaneous eigenstates:

n|o\H|m)
E m E n

Same problem and hard to connect to local physical operators.
Problem of small denominators in chaotic systems unless have
special symmetries like Galilean invariance (related issues in
classical chaotic systems Jarzynski 1997).

(n|Ax|m) =1 <

Need to find another root for finding approximate local adiabatic
gauge potentials.



Recall definition of the moving frame as the one diagonalizing H

~

H(\) = UT(NHMNU(N)
Differentiate with respect to A (moving derivative)
NH() = UTNOAHNU () + 7 Ay, H]

By construction [EAFI, fl] = 0 : gauge potential eliminates
off-diagonal terms in the conjugate force

Go back to the lab frame (remove tildes), insert Planck’s constant
ihO\H — [Ax, H], H| =0

Classical systems

[ONH — {A\, HY, HY =0



Many-particle (non-interacting) systems

H=—-.J Z((.}r(]_*_l -+ C;]]L'+1C.7') + Z V(J* /\)(]}L(}

J

Hqop :H—I—).\.AA
ionH — [Ay, H], H] = 0

It is clear that

— /. . . ‘.i‘ . ) o — /]
Ay =i E :O‘U(’i Cjy, Qi = —Qlj
i#]

Gauge potential is imaginary, in general long range, hopping

Exact solution for a constant electric field V; = A jclc;
j
J ; ; _
Ax=—isg Q (¢ — i) CD term is the current operator
j



Counter-diabatic Hamiltonian (set J=1)
) +
Hep = —Z((‘T(‘JH —I-CIH('J +)\Zyc %~ 32 (cjci+ —C;+1Cj)
J J J
Can eliminate complex hopping by the gauge (Pierls) transformation

A(t) /L/t
Hep = — E (cleiir + el ei) — ( E jc ciy  p=1/A

CD protocol depends on the rate and the acceleration (unlversal result).
Renormalization of hopping is absorbed into time dilations.

Counter-adiabatic vs. naive protocols

‘ A ) mt 3
A(f) o= )\U + ()\f ™ AU) S1n- (5 S1n- (ﬁ)) 25+
AO — 0.1, Af === 1 2+

As time T increases CD and naive il
protocols approach each other. 05|

0 0.2 0.4 0.6 0.8 1



Beyond the linear potential
i0\H — [Ax, H], H] = 0

The exact solution exists in terms of long-range imaginary hopping.
Hard to implement, can not gauge away. The situation is even worth for
interacting systems (get many-particle interactions).

Need to find an approximate local solution
G = @,\H+i[ ;,H]
Treat the gauge potential as a variational function:

* — ;. o-‘- . — 'T v .
A\ =1 E :aj((‘;jcj%-l Cjt165)
J

Minimize norm of G. This talk: trace norm. Can use norm with
UV cutoff, GS norm, finite temperature norm etc.



D(AY) = Tr(G?) G = 0,\H + i[ A}, H]

Advantages of the trace norm: easy to find analytically, Wick’s theorem
applies to any Hamiltonian. Works both for the ground and excited states.

G = Z \V; —2J(a; — - 1))c;c}

+ ]Z v — Q1) ,*1 - 1+C, 1€ 1+1)+Z(Vj+1 Vj)a(c J;+1(1+C;C{j+1)-
J

Result of the minimization
—3Aa+ (V;V)?a = V;(0\V)
Smooth potentials, continuum limit
—302a + (0:V)?a = 0, (0\V)

This gauge potential defines the best local co-moving frame. Does not require
diagonalization of the Hamiltonian. Maps quantum to classical problem




: vil
Hop = Ho+ M5 = =7 ) [C:]}L'%—lc.’/ (1 - ’%) + cjej (1 “L)] ZV cle,
J
Perform a phase (Pierls) transformation: c; — c;e %

HCA:—ZJfo(’I:)(L_l(L-FC (,+1) Zfo (CL
7

r i
‘/cff(xv t) - V()\, l) - )‘/ (Y(q ) ‘
‘ a 14+ X(a(x'))?

da’, J. ff x,t) \/1 +)\2

Imaginary CD protocol is only sensitive to velocity. Real CD protocol also
knows about acceleration

Small velocity: potential renormalization (slowing particles in front)

Large velocity: need to locally renormalize hopping = local time
rescaling or introducing a local refraction index



Example: inserting Eckart’s potential (fighting Anderson
orthogonality catastrophe). Half filling, 512 sites

At)
cosh® (5 /€)

1

0.9+
0.8 -

0.7 -

V(j,A) = A(t) = 2sin® (g si1'12(7rt/2T))

T =10, L = 512

0.6 -
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/T

Like throwing a stone into quantum water (gas) without
generating ripples.
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Inserting the Eckart potential

-log(Fidelity)
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CD driving outperforms naive protocol by many orders of
magnitude.



-log(Fidelity)

Moving local potential. Fighting friction.

| 2
V(j, )=

cosh?((j — A(t))/€)

Log Fidelity

300

T -
-
-
P ”~
250 - :
Naive e
-
-
P4
b d
200 - -
”
”~
”~
/
-
150 P
-~
P d
' d
e
7
100
50 |
O 1 1 1 | | | |
20 30 40 50 60 70 80 20 100

Time TJ

Heat A E/J

w
(%]

Dissipation (heating)

-
30 + -
-
-
-
P d
~ -
25 ~
-
-
-
-
20 + - -
-
-
-
-
-
15 |- -
I~
10 +
5 L
O | | | | | | |
20 30 40 50 60 70 80 20
Time TJ

Suppress dissipation, increase fidelity.

100



Fermion density profiles

Naive
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Position of the potential

Time
Emit much fewer particles with CD driving.

Large gain in energy and fidelity for loading to a quasi-periodic smooth potential

Large gain in energy (but not fidelity) for loading into a random potential.



Ergodic spin system (going around QCP)

. 2 : z z ] E z E T * E Y
J J J J

N . ;o /
Variational solution: 1 hah, —h.h;

o = ‘ :
(exact for J=0). 2 h?2 + h2 + 2J?
hSP = \/h?,: + \2a2, hy® =0
Gauge equivalent real solution: ,cp _ 1 $hpa+ A2(hpo! — )
v, =Ny — = -
i 2 h2 + \2q?

Loading across critical point.

h, = 0.02, hy = hoA(t), J = A(t)

Fidelity and A E/L

CD protocol strongly outperforms
naive protocol if driving across QCP.

-
- I

e 0ses e e s 6 6@ QCP etc. is needed!

- - | No information about GS, location of




CD driving through QCP in the TFI model

100

L

L

excitation density
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Dots: variational solutions with string lengths 1-4; lines: exact
truncated solutions. Variational solution can be generalized to
a nonintegrable chain.



Machine learning optimization (final fidelity as a reinforcer)
(in progress, lead by M. Bukov and P. Mehta)

Landau-Zener prh, =1, h, € |[—1,1], ~ 1000 runs
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14 cite chain, no QCP, 1000 runs
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14 cite chain, crossing QCP, 1000 runs
Hy = 1.23Za]a]+1 +0. 0220 ha(t) Y oF, he €[0,2], t €[0,2]
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Summary

Deep connections between non-adiabatic response and
geometry.

Imaginary time dynamics can be used to simulate real time
guantum annealing in nontrivial regimes

Geometric approach to optimum annealing protocols
Local counter-adiabatic driving: robust, easy to implement
Reinforcement learning can be used to solve non-trivial

optimization problems (crushed my intuition and cost me a
bottle of a good cognac).



My ~ M\” + hFy A

Imagine motion in momentum space (equivalently gauge
potential space)

1 1
ALU — _AIB‘ Afl — —A'l
C ) Yy c Yy
: 1 0A, OH
)"1’ = — L p— E’I‘ ]\47 = —C — e]f(
T c (?t Y <0Ay> Y

Recover the standard Hall effect

J =hF. E Quantization of the Chern number (when we integrate F
C LY —Z| over a closed manifold) implies the quantum Hall effect

o A, A,
b = %/Adl = <— —J> € [0,27h/Lye] x [0,27h/L,e]

ch c c
A2 h2 hEy, 2 QHE can be interpreted as
F‘”’W =2TN = Ogy = 5 =5 measurement of the quantized

Coriolis force.



How can we understand the mass in a simple setup?

Take container and start slowly
F S accelerating it to velocity v.

Compute the force (or work).

Assume particle is fast compared to the container

._> Ap1 = —2mv + 2aAty
v+ 2aAt1 1

"ZGAtl +

2a(Aty + Aty)

—v + QaAtl

Ap1+Ap2 _ 2mait; - Only valid near the adiabatic

~
~

T At 4+ Aty Aty + Aty limit, where At ~ Ato




Two ways of measuring generalized force

o F
—> %
s W

1. Measure force as a pressure using some calibrated
device like a spring and third Newton’s law.

2. Measure as the generalized force
e / dep(2)0,V(z) = W0, VI[v), V(z)Is the wall potential

Y. Kafri, M. Kardar, ... non-existence of pressure as a
function of state in active (non-equilibrium) matter (2014)



