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Quantum Supremacy
J. Preskill, 2012

With a quantum device
perform a well-defined computational task
beyond the capabilities of state-of-the-art classical
supercomputers
in the near-term

without error correction.

Not necessarily solving a practical problem.



Approaches to quantum supremacy

Optimization of a classical function:
Quantum Annealing.
Quantum Approximate Optimization Algorithm (E. Farhi et.
al.).

Non-simulable Hamiltonian Evolution.
Variational Quantum Eigensolver (Ground state energy of
a Hamiltonian).
Approximate sampling from a well defined distribution:

Commuting Quantum Circuits (M. Bremner et. al.).
BosonSampling. (Aaronson and Arkhipov).
Random Universal Circuits. “Randomized benchmarking for
complex circuits.”



Requisites for quantum supremacy in the near-term

Classically, nothing must work for the computational task,
except direct simulation of quantum evolution.

Cost exponential in size of Hilbert space.
Typical of chaotic systems.

Specific figure of merit for the computational task.
We should measure the figure of merit up to quantum
supremacy frontier.
Naturally related to fidelity.

Well understood extrapolation of figure of merit beyond the
quantum supremacy frontier where it can not be
measured. (Unfortunately, we lack witness.)
Predictions from theory for figure of merit.
Relation to Computational Complexity is a plus.

Formal Computational Complexity is asymptotic, requires
error correction (Strong Church-Turing Thesis).



Random Universal Quantum Circuits
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Figure: Vertical lines correspond to controlled-phase gates .

Random quantum circuits are examples of quantum chaos.
Classically sampling pU(x) = | 〈x |U |0〉 |2 requires direct
simulations. Cost in 2D exponential in ∝ min(n,d

√
n) ,

depth d ,qubits n. (With 7× 7 qubits requires d ' 25. )
Good benchmark for quantum computers.
New results in computational complexity.



Porter-Thomas distribution

(Pseudo-)random circuit U

|Ψ〉 = U |0〉 =
N∑

j=1

ci |xi〉 .

Sample the output distribution with probabilities

pi = |ci |2 = | 〈xi |U |Ψ〉 |2 .

Real and imaginary parts of ci are distributed (quasi)
uniformly on a 2N dimensional sphere (Hilbert space) if the
circuit (or Hamiltonian evolution) has sufficient depth
(evolution time).

The distribution of ci is, up to finite moments, Gaussian with
mean 0 and variance ∝ 1/N (random unitary matrices,
delocalization, level repulsion...).

Porter-Thomas distribution: Pr(Np) = e−Np.



Porter-Thomas distribution

Histogram of the output distribution for different values of the
two-qubit gate error rate r .
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Figure: Circuit with 5× 4 qubits (2D lattice) and depth 25.



Verification and uniformity test

The PT distribution is very flat: p(xj) ∼ 1/N.
The `1 distance between PT and uniform distribution is∑

j

|p(xj)− 1/N| = 2/e .

If we calculate p(xj) given circuit U, we can distinguish
these distributions with a constant number of
measurements.
If we don’t know anything about p(xj) (black-box setting)
we need Θ(

√
N) measurements.

There is no polynomial witness for this sampling problem.
This problem is much harder than NP.

This is required for near-term (few qubits) supremacy.



Sampling from ideal circuit U

Sample S = {x1, . . . , xm} of bit-strings xj from circuit U
(measurements in the computational basis).

log PrU(S) =
∑
xj∈S

log pU(xj) = −m H(pU) + O(m1/2) ,

where H(pU) is the entropy of PT

H(pU) = −
∫ ∞

0
pN2e−Np log p dp = log N − 1 + γ .

and γ ' 0.577.



Sampling with polynomial classical circuit Apcl(U)

A polynomial classical algorithm Apcl(U) produces sample
Spcl = {xpcl

1 , . . . , xpcl
m }. The probability PrU(Spcl) that this sample

Spcl is observed from the output |ψ〉 of the circuit U is

log PrU(Spcl) = −m H(ppcl,pU) + O(m1/2) ,

where

H(ppcl,pU) ≡ −
N∑

j=1

ppcl(xj |U) log pU(xj)

is the cross entropy.



Sensitivity to single Pauli error

A single Pauli error (almost) destroys the output distribution pU .
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Figure: Blue line shows sorted probabilities pU (xj ) (universal quantum chaos distribution, Porter-Thomas). Red line
average of a single Pauli error in all different locations, same ordering.



Sampling with polynomial classical circuit Apcl(U) (II)

We are interested in the average over {U} of random circuits
(or chaotic evolutions)

EU
[
H(ppcl,pU)

]
= EU

 N∑
j=1

ppcl(xj |U) log
1

pU(xj)

 .

Because U is chaotic, Hilbert space has exponential
dimension, and Apcl(U) is polynomial, we conjecture that ppcl
and pU are (almost) uncorrelated (more reasons later). We can
take averages independently.

−EU
[
log pU(xj)

]
≈ −

∫ ∞
0

Ne−Np log p dp = log N + γ .

EU
[
H(ppcl,pU)

]
= log N + γ ≡ H0 .



Cross entropy difference

The average cross entropy of a polynomial classical
algorithm is the same as for a uniform distribution
p(x) = 1/N.
For algorithm A (quantum or classical of any cost) define
the cross entropy difference

α ≡ ∆H(pA) ≡ log N + γ − H(pA,pU)

=
∑

j

(
1
N
− pA(xj |U)

)
log

1
pU(xj)

.

The cross entropy goes between α = 0 for no correlation,
and α = 1 for the ideal circuit.



Cross entropy and fidelity

The output of an evolution with fidelity α̃ is

ρ = α̃U |0〉〈0|U† + (1− α̃)σU ,

with pexp(x) = 〈x | ρ |x〉 = α̃pU(x) + (1− α̃) 〈x |σU |x〉.
We again conjecture that 〈x |σU |x〉 is uncorrelated with
pU(x).

α = EU [∆H(pexp)]

= H0 +
∑

j

(
α̃pU(xj) + (1− α̃) 〈xj |σU |xj〉 x

)
log pU(xj)

= H0 − α̃H(pU)− (1− α̃)H0 = α̃ .

The cross entropy α approximates the fidelity α̃.



Numerics and theory for realistic 2D circuits

Cross entropy difference � and estimated fidelity ◦.
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r is two-qubit gate error rate. α = 1 for chaotic state. d = 25.



Experimental proposal

1 Implement a random universal circuit U (chaotic evolution).
2 Take large sample Sexp = {xexp

1 , . . . , xexp
m } of bit-strings x in

the computational basis (m ∼ 103 − 106).
3 Compute quantities log pU(xexp

j ) with supercomputer.

Cross entropy difference (figure of merit)

α =
1
m

m∑
j=1

log pU(xexp
j ) + log 2n + γ ± κ√

m
, κ ' 1, γ = 0.577

Measure and extrapolate α (size, depth, T gates).
Fit to theory: α approx. circuit fidelity, chaotic state very
sensitive to errors.

α ≈ exp(−r1g1 − r2g2 − rinitn − rmesn) ,

r1, r2 � 1 one and two-qubit gates Pauli error rates, g1,g2 � 1
number of one and two-qubit gates, rinit, rmes � 1 initialization
and measurement error rates.



Convergence to chaos

Depth required for PT distribution, in 2D is ∝ √n.
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Figure: 2D circuit 7× 6 qubits. Inset 6× 6 qubits.

Dashed line is known H(pU) for PT.



Convergence to chaos (II)

Moments of pU converge to PT distribution.
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Figure: Moments 〈pk 〉 with k = 2, 4, 6, 8, 10, normalized to 1 for PT distribution. 7× 6 circuit.



Convergence to chaos (III)
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Figure: First cycle such that the entropy remains within 2−n/2 of PT entropy.



Complex Ising models from universal circuits

As in a path integral, the output amplitude of U is

〈x |U |0〉 =
∑
{st}

d∏
t=0

〈st |U(t) |st−1〉 , |sd〉 = |x〉 .

where |st〉 = ⊗n
j=1 |st

j 〉 is the computational basis, st
j = ±1,

and U(t) are gates at clock cycle t .
Gates give Ising couplings between spins sk

j , like in path
integral QMC. For instance, for X1/2 gates

iπ
4

HX1/2

s (x) =
iπ
2

n∑
j=1

d(j)∑
k=0

αk
j

1 + sk−1
j sk

j

2
.

where αk
j = 1 denotes that a X1/2 gate was applied at

qubit j in (clock cycle) k .



Computational complexity

For universal circuits, pU(x) = λ|Z |2 is proportional to the
partition function Z =

∑
s eiθHx (s) of an Ising model

Hx (s) = hx ·s + s ·Ĵ ·s with complex temperature iθ(= iπ/8)
and no structure.
Z has a strong sign problem: Z =

∑
j MjeiθEj , |Mj |

exponentially larger than |Z |.
Worst-case complexity: Z can not be probabilistically
approximated asymptotically with an NP-oracle (is
#P-hard). (Fujii and Morimae 2013, Goldbert and Guo 2014).
Computational complexity conjecture: average case =
worst case complexity. There is no structure. (Bremner et.
al. 2015).
Theorem: if pU(x) can be classically sampled, then Z can
be approximated with an NP-oracle (Bremner et. al. 2015).
Contradiction.
Classical factoring has no computational complexity
implications.



Simulation time

% of # of # of Avg. time Time per
comm sockets fused per gate (sec) Depth-25 (sec)
5× 4 circuit : 20 qubits, 10.3 gates per level, 17 MB of memory
0.0% 1 0.00 0.00015 0.039

6× 4 circuit : 24 qubits, 12.5 gates per level, 268 MB of memory
0.0% 1 7.01 0.0041 1.294

6× 5 circuit : 30 qubits, 16.2 gates per level, 17 GB of memory
0.0% 1 5.64 0.349 141.3
6× 6 circuit : 36 qubits, 19.5 gates per level, 1 TB of memory
6.2% 64 5.40 0.76 369.0
7× 6 circuit : 42 qubits, 23.0 gates per level, 70 TB of memory

11.2% 4,096 5.54 1.72 989.0

On Edison, a Cray XC30 with 5,576 nodes. Each node is
dual-socket Intel R©Xeon E5 2695-V2 with 12 cores per socket,
2.4GHz. 64GB per node (32GB per socket). Nodes connected
via Cray Aries with Dragonfly topology. (Mikhail Smelyanskiy).



Conclusions

We expect to be able to approximately sample the output
distribution of shallow random circuits of 7× 7 qubits with
significant fidelity in the near term.
It is impossible to approximately sample the output
distribution of shallow random quantum circuits of ≈ 48
qubits with state-of-the-art supercomputers (d ∼ 25).
Quantum supremacy.
New method to benchmark complex quantum circuits
efficiently.
Relation to quantum chaos.
Relation to computational complexity.
The theory applies to other chaotic systems: chaotic
Hamiltonians, commuting quantum circuits,
BosonSampling.
The cross entropy method applies to other sampling
problems.


