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Highly excited eigenstates
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Isolated Quantum Many-Body Systems

Eigenstate Thermalization 
Hypothesis (ETH)

Many-Body 
Localization (MBL)

Energies repel (GOE) No repulsion (Poisson)

Eigenstates thermal Eigenstates frozen

No `Ψ-Chaos’ `Ψ-Chaos’



Thermal Eigenstates

4Deutsch (1991), Srednicki (1994), Rigol, Dunjko, Olshanii (2008), Pal and Huse (2010), …

Many-body eigenstates agree with equilibrium on subsystems.

H |Eii = Ei |Eii

System
ETH systems behave as their own bath.

A
				
				 								

⇢A = TrS\A |EiihEi| = TrS\A e��H

(At correct temperature for E)



Frozen Eigenstates

5Deutsch (1991), Srednicki (1994), Rigol, Dunjko, Olshanii (2008), Pal and Huse (2010), …

Many-body eigenstates locally frozen in particular patterns

System
Localized systems can’t exchange energy…

A

• Eigenstate Edwards-Anderson order parameter

qES =
1

N

X

i

h |�z
i | i2

• Note: possibly distinct from qEA in Gibbs state



Many-body Level Statistics

2N

E

2N

E
ETH MBL

Spectrum exhibits 
level repulsion (GOE, etc)

Spectrum is Poisson



Eigenstate Chaos (‘Ψ-Chaos’?)

Local observables frozen 
per eigenstate

Local observables smooth

M(n) = hn|Sz
0 |ni = M(✏n)

�M(n)

�n
⇡ dM(✏)

d✏

�✏

�n
⇡ M 0(✏)e�Ns(✏)

�M

�n
= hn+ 1|Sz

0 |n+ 1i � hn|Sz
0 |ni = O(1)
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Looking for tractable models

• Analytically tractable ETH-MBL transitions/phases?

• Finite energy density mobility edges?

• Localization is ultimate glass — any connection?



Quantum Random Energy Model

H = E({�z

i

})� �
X

i

�x

i

B.	Derrida	(1980,1981),	Y.	Goldschmidt	(1990),	T.	Jorg,	et	al	(2008),	
CRL,	Pal,	Scardicchio	(2014),	Baldwin,	CRL,	Pal,	Scardicchio	(2016)

P (E) =
1p
⇡N

e�
E2

N

N-body generalization of SK model

Random energy for each z-state

Classical Random Energy Model Transverse field 

Provides dynamics“The simplest spin glass”

�
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Classical Limit: Statistical Mechanics

n(E) = 2NP (E) ⇠ eNs(E/N)

s(✏) = log 2� ✏2

✏0 = �
p

log 2

Tc =
1

2

p
log 2

T

Paramagnet

“Glass”

f = �T log 2� 1

4T

f = �
p
log 2

B.	Derrida	(1980)

✏ =
E

N

s(✏)

Microcanonical Canonical



Replica Solution of QREM

• Replica trick in imaginary time representation

• Time and replica dependent order parameters 

• Static RS and 1RSB ansatzes give three phases…
Q↵↵0

kk0 (�) =
1

N

X

i

�↵
i (k)�

�
i (k

0)

�

k

Y.	Goldschmidt	(1990)



Quantum  
PM

Classical 
“Glass”

f = �T log 2� 1

4T f = �T log (2 cosh�/T )

f = �
p
log 2

Canonical Phase Diagram

Y.	Goldschmidt	(1990)

Classical  
PM



Quantum  
PM

Classical 
“Glass”

Localized ETH

Dynamical Phase Diagram

T =
1

2�

CRL,	Pal,	Scardicchio	PRL	2014;	Baldwin,	CRL,	Pal,	Scardicchio	PRB	2016

GOE
q = 0

Poisson
q = 1

Classical  
PM



Forward Scattering

 b =
X

paths p:a!b

Y

i2p

�

Ea � Ei

• Leading perturbative wavefunction `forward scattering’

• Directed random polymer on hypercube

• Localization: amplitudes decay to system size n=N

• Amenable to numerical transfer matrix 
treatment 

• Replica treatment of polymer problem 
identifies transitions as well



Extensive Energies

 b =
X

paths p:a!b

Y

i2p

�

Ea � Ei

�Ea

✏ =
E

N

s(✏)

Ei

 b ⇡
✓

�

Ea

◆n X

p

0

@1 +
X

i2p

Ei

Ea
+ · · ·

1

A

• Gap typically O(N) so expand

 b ⇡ n!

✓
�

Ea

◆n � b

 b
⇠ 1p

N

• Fluctuations small in N 

• Demand typical amplitude decreasing uniformly to n = N

�c = ✏a

• Paths eventually resonate: can we do better?



Proliferation of Resonances

16

• SRA: Paths typical till resonance at x

• Expected number of resonances eNf(x,✏)

• Entropy function

• Resonances proliferate beyond

• At distance

x⇤ =
p
2�+O(�2)

x
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Central Energies

 b =
X

paths p:a!b

Y

i2p

�

Ea � Ei

✏ =
E

N

�

s(✏)

Ea

Ei

• Gap typically     , fluctuations large

• Bound by greedy path at distance n

• Demand amplitudes small gives upper bound on delocalization
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• Counting resonances more carefully gives log correction



Replicated Polymers
• Typical amplitudes given by quenched average 

 n =
X

p1···pn

Y

i

wri(p1···pn)
i

ri =
nX

a=1

1 [i 2 pa]

ln = lim
n!0

 n � 1

n

• n interacting paths on hypercube



Replicated Polymers

• 1RSB Ansatz: polymers clump in n/x groups of x paths
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Finite-size form at zero energy

f(x) =

L

x

(logL� 1 + logw

x

i

)

• Replica recipe: 

wx =

Z
dEp
⇡N

e�E

2
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✓
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◆
x

f1RSB

= min
x2[0,1]

f(x)

• 1RSB holds at finite L but is swamped slowly by L! paths

• Demanding amplitude decays at size L = N
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p
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p
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[r] = 0.48Contours of level statistics ratio

N = 8, 10, 12, 14
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N = 8, 10, 12, 14XXXX

X marks the replica formula estimate



Perturbative Rigidity

E0(�) = E0 � �

2
NX

i=1

1

Ei � E0
+ · · ·

⇡ E0 � �

2 1p
2 log(2)

In forward scattering:

O(N) O(1)

• All orders give O(1) corrections to extensive energies

• States localized strongly to corners of hypercube

• Cross with paramagnetic state at boundary

|GS(� = 0)i
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��
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✏0 +O

✓
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◆

| ! · · · !i

T.	Jorg	et	al	(2008);	Baldwin,	CRL,	Pal,	Scardicchio	(2016)

Inverse Participation Ratio:

IPR = 1�O(1/N)



Quantum Annealing
• Annealing transverse field — ground state search

• Final finite energy density — ‘approximate’ search

• Scaling of final energy density with time — how 
hard is approximation?

|GS(� = 0)i
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Annealing the QREM
• Unstructured cost function — exponential lower bounds
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Ef (T )
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lnT
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Brick Wall

Classical Bound

Quantum Bound



Annealing the QREM
• Linear ramping — iterated Landau-Zener problem
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Ef (T )
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A bit more structure?

• Random energy model is completely non-local
• More local (/ less tractable?) model?

27



p-body generalization of SK model

Recovers REM as p ! 1

Typical fields O(p)

Classical p-Spin Glass
Transverse field 

Provides dynamics
“The (next) simplest spin glass”

�

�

Quantum p-Spin Glass
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Canonical Phase Diagram

Y.	Goldschmidt	(1990);	Th.	M.	Nieuwenhuizen,	F.	Ritort	(1998)

Paramagnet

Classical 
“Glass”

Tc =
p
p+ · · ·

Td =

r
p

ln p
+ · · ·

Ts = O(1)



Classical Clustering

Baldwin,	CRL,	Pal,	Scardicchio	(soon)

s(x, ✏) = �x lnx� (1� x) ln(1� x)� 1� (1� 2x)p

1 + (1� 2x)p
✏

2

• Entropy of states at distance x with energy matching origin
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Classical Clustering
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Classical Clustering

Baldwin,	CRL,	Pal,	Scardicchio	(soon)

s(x, ✏) = �x lnx� (1� x) ln(1� x)� 1� (1� 2x)p

1 + (1� 2x)p
✏
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• Entropy of states at distance x with energy matching origin

Td
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35Baldwin,	CRL,	Pal,	Scardicchio	(soon)
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Proliferation of Resonances

36

• SRA: Paths typical till resonance at x

• Neglect initial cluster; ok at low temperature

• Underestimate resonance proliferation

• Gives O(1/p) correction to phase boundary
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Summary
The p-Spin and QREM provides a 
‘mean-field’ model of MBL, and the 
MBL-ETH transition at finite energy 
density mobility edge. First order 
eigenstate transition.


Perturbative treatment in forward 
approximation — directed random 
polymer on hypercube.


De-localization transition inside 
canonical ‘paramagnetic’ phase, but 
below Td.


Annealing the QREM is hard. What 
about p-Spin?




Open Questions
Complete analytic solution of p-Spin/
QREM?


Do thermodynamics reflect dynamical 
transition? (Existing canonical phase 
diagrams perhaps not complete.)


No infinite temperature MBL — feature 
of long-range interactions?


Expected outcome for approximate 
quantum annealing in p-Spin? Grover 
speed up somehow?



Many-body Level Statistics
• Level statistics diagnose dynamical phase transition

• Ratio diagnostic cancels DOS fluctuations

ETH: GOE level statistics

MBL: Poisson level statistics

2N
[r] ⇡ 0.39

[r] ⇡ 0.53

E



Spider diagrams

�hSz
0 i

�hSz
0 i

✏ = E/N ✏ = E/N

N=8 N=10

N=12 N=14

Histogram of delta Z-Magnetization across eigenstates



Spider cuts (flow) 



[r] flow (fixed field cuts)



QREM IPRs
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T!1
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