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Introduc$on	

Casimir	1948	:	Casimir	effect	

a	



Cri$cal	Casimir	force	

Fisher	and	de	Gennes	1978	:	
fluctua$ng	(classical)	medium	between	two	plates	creates	a	force	
(if	correla$on	length	of	the	order	of	distance	between	the	plates)	

Pressure	of	fluid	on	the	plates	:		P = � 1

A

@F

@a

Large	correla$on	length	:	second	order	phase	transi$on	
Also	implies	universality	of	the	force	close	to	cri$cality	:	

⇠ / |T � Tc|�⌫

F = aA(f
bulk

+ f
ex

) f
ex

= a�3f̃s(a/⇠)

Pc = �@a(af̃s) = a�3#(a/⇠)



Experimental	realiza$ons	

MC	simula$ons	:	Vasilyev	et	al.	2007	
He	experiments	:	Garcia	et	al.	1994	

	 	 		Ganshin	et	al.	2006	
Binary	mixture	:	Fukuto	et	al.	2005	

Helium	films	 Binary	mixtures	

Strict	boundary	condi$ons	



Boundary	condi$ons	

Casimir	scaling	func$on	universal,	depends	on	:	
	-	dimension	
	-	symmetry	of	order	parameter	
	-	geometry	/	boundary	condi$ons	

Vasilyev	et	al.	2009	

sponding to the model of pure 4He !30". The scaling function
is normalized to the depth of the minimum of the MC data.
For large L, !OO

#MFT$ agrees very well with the ones obtained
from the O#2$ Landau-Ginzburg continuum theory !30,31".

2. Periodic boundary conditions

In this subsection we discuss the XY model with periodic
BC. According to Fig. 2#b$ corrections to scaling are much
less pronounced in this case than for #O ,O$ BC !Fig. 2#a$",
suggesting that the exponent "eff might be actually larger
than 1. In addition, the dependence of the numerical data on
the aspect ratio # turns out to be relevant only in the re-
stricted range −1$y$0 of the scaling variable #see Fig. 3$,
so that the assumed forms of the aspect ratio corrections in
Eqs. #18$ and #19$ do not work best. In the present case, the
accuracy of our Monte Carlo data allows us to study in some
detail also the Casimir amplitude %%!#0$ /2. Upon focusing
on such a quantity in a broader range of thicknesses #6&L
&20$ it turns out that for this amplitude the corrections to
scaling are not properly accounted for by the previous an-
sätze !case #i$ and case #ii$, Eqs. #20$ and #21$, respectively".
We have therefore tried also a fit of the exponent "eff accord-
ing to Eq. #19$ with r1,2=0 !case #iii$, Eq. #22$", which yields
for the Casimir amplitude

%#L$ = %#1 + g3L−"eff$ . #24$

With this ansatz, our data for %P#L$ are very well fitted for
"eff=2.59#4$ and g3=14.9#7$ in the interval 0&L−1&0.15.
#At present, the origin of this rather large value of "eff is not
clear.$ The comparison between the numerical data and the
fit is reported in Fig. 5. The value of the Casimir amplitude
extrapolated to the scaling limit L→' is %P#'$%%P=
−0.2993#7$ which is slightly smaller than the previous esti-
mate %P=−0.28 #see Ref. !16" and the discussion below$.

Note, however, that our estimate is biased by the particular
form Eq. #24$ assumed for the corrections to scaling.

The analysis of the Casimir amplitude %P#L$ suggests that
the corrections to scaling for periodic BC are well captured
#in the range of sizes and of the scaling variable investigated
here$ by Eq. #22$ !case #iii$" and Eq. #18$ with r1=0. The
resulting estimate for the scaling function !P is reported in
Fig. 6 for which we adopt the values for g3 and "eff which
we determined from the analysis of the correction to scaling
for %P#L$. It turns out that a very good data collapse is
achieved even without correcting the abscissa, i.e., with g"

&0, r1&0, within the range of the scaling variable x we
have investigated, which actually includes the interval −1
(y(0 in which the corresponding function g shows a more
pronounced dependence on #.

As another valuable test of the method, our results are
compared with the corresponding MC simulation data ob-
tained previously in Ref. !16" within a different approach,
i.e., by computing the average value of the lattice stress ten-
sor. In Fig. 6 we report the data set corresponding to the
lattice size L=20 investigated therein. The shapes of the two
scaling functions are very similar but the data points from
Ref. !16" are shifted upward with respect to the ones we have
obtained. This discrepancy might be due to the uncertainty in
the normalization factor used in Ref. !16", where the vertical
scale of the data for !P has to be adjusted on the basis of an
independent estimate. This estimate has been obtained from
the )=4−d expansion of the ratio %P,n /%P,1 of the Casimir
amplitudes for O#n$ models with the result %P,n=2=−0.28 so
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FIG. 5. #Color online$ Critical Casimir amplitude %P#L$ for the
three-dimensional XY bulk universality class and periodic BC, esti-
mated from lattices of several thicknesses L and inverse aspect ratio
1 /#=6. Due to corrections to scaling, %P depends on L. The solid
line represents the best fit to the numerical database on Eq. #24$ and
allows one to extrapolate the value of %P#L$ to the scaling limit
L→', resulting in %P=−0.2993#7$ #!$. With ! we indicate the
numerical estimate %P=−0.28 provided in Ref. !16".
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FIG. 6. #Color online$ Scaling function !P of the Casimir force
for the three-dimensional XY model with periodic BC. The correc-
tions to scaling are taken into account by Eq. #22$ !case #iii$" and
Eq. #18$ with r1=0. The shape of our MC data compares very well
with the corresponding MC data #!$ of Ref. !16". For a discussion
of the relative shift of the data sets see the main text. The solid line
corresponds to the analytical prediction in Ref. !21". Due to the
Goldstone modes, in agreement with Eq. #25$, !P#x→−'$=
−0.383#4$, see horizontal dashed line. Contrary to #O ,O$ BC in Fig.
4, for periodic BC MFT yields !P

#MFT$#x$%0 for x*0. The gray
vertical line indicates the position of the universal value
xP

"
=−2.82#2$ of the scaling variable x corresponding to the occur-

rence of the Kosterlitz-Thouless transition in the film, as inferred
from MC simulations !42".
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From	cri$cal	Casimir	to	quantum	cri$cal	systems…	

sponding to the model of pure 4He !30". The scaling function
is normalized to the depth of the minimum of the MC data.
For large L, !OO

#MFT$ agrees very well with the ones obtained
from the O#2$ Landau-Ginzburg continuum theory !30,31".
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FIG. 6. #Color online$ Scaling function !P of the Casimir force
for the three-dimensional XY model with periodic BC. The correc-
tions to scaling are taken into account by Eq. #22$ !case #iii$" and
Eq. #18$ with r1=0. The shape of our MC data compares very well
with the corresponding MC data #!$ of Ref. !16". For a discussion
of the relative shift of the data sets see the main text. The solid line
corresponds to the analytical prediction in Ref. !21". Due to the
Goldstone modes, in agreement with Eq. #25$, !P#x→−'$=
−0.383#4$, see horizontal dashed line. Contrary to #O ,O$ BC in Fig.
4, for periodic BC MFT yields !P

#MFT$#x$%0 for x*0. The gray
vertical line indicates the position of the universal value
xP

"
=−2.82#2$ of the scaling variable x corresponding to the occur-

rence of the Kosterlitz-Thouless transition in the film, as inferred
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Cri$cal	classical	Casimir	force	

VS	
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of	a	2D	Bose	gas	

Func$onal	renormaliza$on	group	study	:	
AR,	Kodio,	Dupuis,	Lecheminant	(2013)	



Quantum	phase	transi$ons	

QPT	:	transi$on	at	zero	temperature	(change	of	ground-state)	when	
changing	non-thermal	parameter	�

Examples	:	Bosonic	Mog	transi$on	at	constant	density	(XY	universality	class)	

interac$on	
Superfluid	 Mog	insulator	

Ferro-paramagne$c	transi$on	in	quantum	Ising	model	in	transverse	field	

transverse	field	
Ferromagnet	 paramagnet	



Close	to	QCP	:		

Ground-state	energy	density	

f(�, T ) = ✏0(�) + T 3/c2f̃s(�c/⇠)

⇠ / |� � �c|�⌫

interac$on	

superfluid	

Mog	insulator	

T	

Phase	diagram	and	cri$cal	scaling	

Quantum	cri$cal	
regime	

QCP 



Close	to	QCP	:		 f(�, T ) = ✏0(�) + T 3/c2f̃s(�c/⇠)

Phase	diagram	and	cri$cal	scaling	
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Quantum	classical	correspondence	

2D	quantum	system	
at	finite	T	

a=c/T	
confined	

3D	classical	system	

See	e.g.	Sachdev	

L?

L

�

PBC

L

critical fluctuations

(a) (b)

a	

imaginary		
$me	

periodic	
confinement	

Close	to	a	cri$cal	point,	universality	implies	that	
scaling	func$ons	are	the	same	!	



From	cri$cal	Casimir	to	quantum	cri$cal	systems…	and	back	

Thermodynamic	stability	of	quantum	systems	implies		
agrac$ve	Casimir	force	for	periodic	BC.	

Average energy of a quantum critical system : 

✏ = L�2hĤi = @�(�f)

Pc = �@a(af̃s) = a�3#(a/⇠)

f(�, T ) = ✏0(�) + T 3/c2f̃s(�c/⇠)

For	free	bosons	:	Coleman	et	al.		Am.	J.	Phys.	2009		

Universality	:	same	as	confined	3D	classical	system	

✏ = ✏0 �
T 3

c2
#P (�c/⇠)



Cri$cal	Casimir	vs	Equa$on	of	State	

L?

L

�

PBC

L

critical fluctuations

(a) (b)

a	

imaginary		
$me	

periodic	
confinement	

Quantum	to	classical	correspondence	:	
	average	energy	interpreted	as	(universal)	entropic	"Casimir"	force	

Classical	to	quantum	correspondence	:	
	cri$cal	Casimir	force	with	PBC	can	be	quantum	simulated	experimentally!	



FRG	calcula$on	

Improved	calcula$on	:	2nd	order	of	Deriva$ve	Expansion	

6

SUPPLEMENTAL MATERIAL
CRITICAL CASIMIR FORCES FROM THE

EQUATION OF STATE OF QUANTUM
CRITICAL SYSTEMS

I. NPRG approach to the quantum O(N) model

The strategy of the NPRG approach is to build a fam-
ily of models indexed by a momentum scale k such that
fluctuations are smoothly taken into account as k is low-
ered from a microscopic scale ⇤ down to 0 [1, 2]. In the
case of the d-dimensional quantum O(N) model, this is
achieved by adding to the action the infrared regulator
term
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) with q a d-dimensional momentum
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is now k dependent. The scale-dependent e↵ective action
(or Gibbs free energy)
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[�] (3)

is defined as a (slightly modified) Legendre transform of
the free energy � lnZ
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[J] which includes the subtraction
of �S

k

[�]. Here �(r, ⌧) = h'(r, ⌧)i is the order param-
eter (in the presence of the external source J). Assum-
ing that fluctuations are completely frozen by the �S
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term when k = ⇤, mean-field theory becomes exact and
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⇤

['] = S[']. On the other hand, the e↵ective action of
the original model is given by �

k=0

provided that R
k=0

vanishes. For a generic value of k, the cuto↵ function
R

k

suppresses fluctuations with momentum |q|  k or
frequency |!

n

|  ck but leaves una↵ected those with
|q|, |!

n

|/c � k (c denotes the velocity of the ' field).
The variation of the e↵ective action with k is given by
Wetterich’s equation [3]
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k

denotes the second-order functional derivative
of �

k

. In Fourier space, the trace involves a trace over
momenta and frequencies as well as the O(N) index of
the � field.

To solve Eq. (4), we use a derivative expansion of the
scale-dependent e↵ective action with the usual (Lorentz-
invariant) exponential cuto↵ function [1]. Such an expan-
sion is made possible by the regulator term �S
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The derivative expansion of the e↵ective action is fully
determined by the O(N) symmetry of the model. To
second order,
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where we have introduced the O(N) invariant ⇢ = �2/2.
At zero temperature, Lorentz invariance of the quantum
O(N) model implies that Zx

k

= Z⌧

k

and Y x

k

= Y ⌧

k

(this is
not true anymore at nonzero temperatures).

All thermodynamic quantities can be obtained from
the e↵ective potential
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obtained from the e↵ective action computed in a con-
stant, i.e. uniform and time-independent, field. In par-
ticular, the free energy of the system is simply

⌦ = Ld lim
k!0

U
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0,k

), (7)

where ⇢
0,k

denotes the position of the minimum of the
e↵ective potential (⇢

0,k

vanishes in the disordered phase
while |h'i| = p
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in the ordered phase). Inserting
the ansatz (5) into (4) we obtain coupled equations for
the ⇢-dependent functions U
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, Y x

k

and Y ⌧

k

, which
can be solved numerically. One can thus obtain the free
energy ⌦(T, r) using (7) and in turn the universal scaling
functions F and #.

The scaling function F has been computed in Ref. [4]
using a simpler approximation where the functions Zx
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(⇢) omitted, and the e↵ective po-
tential U

k

(⇢) expanded to quadratic order. The complete
derivative expansion [Eq. (5)] that we use to compute
F and # is exact is the limit N ! 1. Furthermore,
this expansion is known to be very e�cient for small val-
ues of N . For the classical O(N) model, it recovers not
only the one-loop result near four dimensions but also the
one-loop results near two dimensions obtained from the
nonlinear sigma model [1, 2], and provides accurate esti-
mates of the critical exponents in three dimensions [5]. It
also recovers quantitatively the main universal features of
the Kosterlitz-Thouless transition in the two-dimensional
O(2) model [6–8]. In the two-dimensional quantum O(N)
model recent calculations [9] of the T = 0 universal ratio
�/⇢

s

between the excitation gap in the disordered phase
and the sti↵ness in the ordered phase are in very good
agreement with Monte Carlo simulations [10] for N = 2
and N = 3.
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Z

ddr

⇢

Zx

k

(⇢)

2
(r�)2 +

Z⌧
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2
(@

⌧

�)2

+
Y x

k

(⇢)

4
(r⇢)2 +

Y ⌧

k

(⇢)

4
(@

⌧

⇢)2 + U
k

(⇢)

�

, (5)

where we have introduced the O(N) invariant ⇢ = �2/2.
At zero temperature, Lorentz invariance of the quantum
O(N) model implies that Zx

k

= Z⌧

k

and Y x

k

= Y ⌧

k

(this is
not true anymore at nonzero temperatures).

All thermodynamic quantities can be obtained from
the e↵ective potential

U
k

(⇢) =
1

�Ld

�
k

[�]
�

�

�

�=const

(6)

obtained from the e↵ective action computed in a con-
stant, i.e. uniform and time-independent, field. In par-
ticular, the free energy of the system is simply

⌦ = Ld lim
k!0

U
k

(⇢
0,k

), (7)

where ⇢
0,k

denotes the position of the minimum of the
e↵ective potential (⇢

0,k

vanishes in the disordered phase
while |h'i| = p

2⇢
0,k

in the ordered phase). Inserting
the ansatz (5) into (4) we obtain coupled equations for
the ⇢-dependent functions U

k

, Zx

k

, Z⌧

k

, Y x

k

and Y ⌧

k

, which
can be solved numerically. One can thus obtain the free
energy ⌦(T, r) using (7) and in turn the universal scaling
functions F and #.

The scaling function F has been computed in Ref. [4]
using a simpler approximation where the functions Zx

k

(⇢)
and Z⌧

k

(⇢) are set equal to Zx

k

(⇢
0,k

) and Z⌧

k

(⇢
0,k

), the
functions Y x

k

(⇢) and Y ⌧

k

(⇢) omitted, and the e↵ective po-
tential U

k

(⇢) expanded to quadratic order. The complete
derivative expansion [Eq. (5)] that we use to compute
F and # is exact is the limit N ! 1. Furthermore,
this expansion is known to be very e�cient for small val-
ues of N . For the classical O(N) model, it recovers not
only the one-loop result near four dimensions but also the
one-loop results near two dimensions obtained from the
nonlinear sigma model [1, 2], and provides accurate esti-
mates of the critical exponents in three dimensions [5]. It
also recovers quantitatively the main universal features of
the Kosterlitz-Thouless transition in the two-dimensional
O(2) model [6–8]. In the two-dimensional quantum O(N)
model recent calculations [9] of the T = 0 universal ratio
�/⇢

s

between the excitation gap in the disordered phase
and the sti↵ness in the ordered phase are in very good
agreement with Monte Carlo simulations [10] for N = 2
and N = 3.

f = lim
k!0

Uk(⇢0,k)

Theore$cal	approaches	are	scarce	to	compute	scaling	func$ons		
(large	N	or	epsilon	expansion	fail	here).	

AR,	Kodio,	Lecheminant	and	Dupuis	(2014)	:	LPA'+	expansion	up	to	φ4	
Not	good	for	Ising.	

See	also	:	Jakubczyk	and	Napiorkowski	2013		



Casimir	cri$cal	force	from	the	FRG	

Ising	universality	class	

MC	:			Vasilyev	et	al.	2009	
	Hucht	et	al.	2011	
	D.	Lopes	Cardoso	(PhD	thesis	2015)	

XY	universality	class	

MC	:	Vasilyev	et	al.	2009	
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TABLE II. Universal Casimir amplitude #(0, 0)/2.

N 1 2 3

NPRG �0.1527 �0.3006 �0.4472

Monte Carlo [5] �0.1520(2) �0.2993(7)

simulations of the three-dimensional classical spin sys-
tems [5, 18, 22, 23]. In all cases we find very good
agreement between the NPRG and simulation results. In
particular, the non-monotonous form for #(x, 0) is well
reproduced and the amplitude and position of the min-
imum of the scaling function are accurately predicted,
with some small di↵erences between NPRG and simu-
lations occurring in the region around x'�1, with the
former showing a more pronounced minimum for N=1
and N=2. Note that in Ref. [23], the overall scale of
the N=3 scaling function was not determined. We have
rescaled the MC data so that they satisfy the known
asymptotic value when x!�1,�2(N�1)⇣(3)/2⇡, corre-
sponding to the excess free energy of bosons with linear
dispersion [27]; the rescaled function compares well with
the NPRG result.

We show in Table II the NPRG and Monte Carlo es-
timates for the universal Casimir amplitude #(0, 0)/2.
Again the NPRG results are in very good agreement with
MC simulations, with a relative di↵erence below 1% [31].

Finite-size scaling and aspect ratio - The method of
choice for a fully quantitative study of a QCP is QMC.
It provides the flexibility to vary the spatial as well as the
time dimension, allowing for the evolution from slab to
column geometry in the corresponding classical system
through the variation of the ratio y=�~c/L. As a con-
sequence, the standard finite-size and finite-temperature
scaling analysis of the numerical results close to the quan-
tum critical point can be re-cast in the language of crit-
ical Casimir forces in columnar geometry [17]. Indeed
the finite nature of the simulation cell implies that the
quantum limit, �!1, corresponds to column geometry
for the corresponding classical system. With continuous-
time QMC [32], the imaginary time axis becomes a con-
tinuous periodic dimension of length �~c, as in the field
theoretic approach, so that y can be easily tuned to
any value. Furthermore, the internal energy ✏=L�dhĤi,
where Ĥ is the Hamiltonian of the quantum system, is an
easily accessible observable, whereas the numerical meth-
ods for calculating the Casimir force in classical systems
are computationally intensive [5, 7, 18, 33]. Following
Eq. (8) one can fit the numerical calculation for energy
density ✏(�, L, T ) to a suitable scaling function (this kind
of fit has been used to compute #̃ in the limit y � 1 for
quantum systems [34, 35]).

We have studied the quantum critical point of
the transverse-field Ising model in two-dimensions,

0.01 0.1 1 10 100
-0.4

-0.2

0

0.2

0.4

y
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QMC

FIG. 3. Evolution of the Casimir amplitude extracted using
QMC from the quantum Ising model as a function of the
aspect ratio y. We show #(0, y)/2 for y  1 and #̃(0, y) for
y � 1. (Red) squares are classical Monte Carlo (MC) data
from Ref. [18].
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�̂z
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�h
P

i

�̂x

i

, which has a QCP at h=h
c

(�=h � h
c

here) between a ferromagnetic and a para-
magnetic ground-state. We have used a cluster QMC
algorithm [36] to compute the energy density, while the
critical velocity c is extracted from the excitation spec-
trum at the QCP [37], see Supplemental Material. Nu-
merical results for the critical Casimir amplitude esti-
mated from QMC over the range 0<y<1 are shown in
Fig. 3 and compared with classical simulation results for
the three-dimensional Ising model from Ref. [18]. Ex-
cellent agreement is found, confirming the equivalence
of these two critical phenomena away from the limit of
slab geometry. There is a sign change at y=1: for y⌧1,
�# probes the (positive-definite) thermal energy density,
whereas for y�1 it probes the finite-size corrections to
the ground-state energy density, which are usually nega-
tive for quantum systems.
Conclusion - The finite-temperature equation of state

for a quantum critical system in dimension d can in
principle be measured in state-of-the-art experiments on
quantum critical phenomena, including trapped ions [38]
and quantum Ising magnets in a transverse field [39] for
N=1; ultracold Bose gases loaded in optical lattices for
N=2 [40]; and quantum magnets under pressure for N=2
and N=3 [41]. The critical Casimir force for a classical
system in dimension D with a thermal critical point could
hence be experimentally accessed, opening the door to a
new class of critical Casimir force experiments in which
the quantum system becomes a simulator for confinement
e↵ects on critical fluctuations at a classical critical point.
This approach would naturally put periodic boundaries
on the experimental map for the first time, providing new
motivation for detailed theoretical and numerical analysis
of such systems. The measure of the thermal energy can
be achieved in the solid-state context via temperature in-
tegration of the specific heat; and in the atomic physics
context by direct measurement of spin-spin or density-
density correlation functions for the potential part, and

#(0)/2



Scaling	func$ons	for	different	N	
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Conclusion	and	perspec$ves	

- 	Cri$cal	Casimir	forces	with	periodic	BC	is	the	equa$on	of	state	of	a	
quantum	cri$cal	system.	

- 	Corresponding	scaling	func$ons	could	be	measured	in	state	of	the	
art	experiments	on	quantum	systems.	

- 	Tools	of	quantum	many-body	problem	can	be	used	to	study	cri$cal	
Casimir	forces	(Quantum	Monte	Carlo).	

- 	Open	ques$on	:	how	to	tackle	other	boundary	condi$ons	?		
Ex	:	Free	BC,	order	parameter	depends	on	posi$on,	flow	equa$on	
much	harder	to	solve.	

arXiv:1606.03205	



T	

Phase	diagram	:	quantum	vs	classical		

QCP δ	

1/a	

T	
Tc	

bulk	limit	



Finite	size	scaling	for	quantum	systems	

≠
L	

L	

β
β

L	L	

QMC:	β>>L	 Cri$cal	Casimir	:	β<<L	

We	can	thus	expect	that	the	universal	coefficient	of	FSS	depends	on	the	
ra$o	ρ=βc/L	.	
At	the	cri$cal	point	δ=0:	

with	α	a	universal	(non-standard	Casimir)	amplitude	
	(=	0.37	for	Ising)		

Casimir	amplitude	(=-0.32	for	Ising)		

u = E0 �
T 3

c2
�(⇢)

�(0)

lim
⇢!1

�̃(⇢) = ↵⇢3



Aspect	ra$o	and	Finite	Size	Scaling	

Dependence	on	aspect	ra$o	known	in	context	of	Casimir	forces.	

Con$nuous	imaginary	$me	QMC	for	quantum	Ising	in	transverse	field		

0.01 0.1 1 10 100
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MC:	Hucht	et	al.	2011	

y=β/L=a/L	



Subtle	calcula$on	in	4-ε	and	Large	N	for	periodic	BC.	

Here	:	Non-Perturba$ve	Renormaliza$on	Group	(Wegerich	1993)	
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Effec$ve	Ac$on	
(“Gibbs”	free	energy)		

Ansatz	:	Deriva$ve	expansion	(low	energy	fluctua$ons	most	important	close	to	QCP)	

3
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FIG. 2. Casimir scaling function #(x, 0) for the three-dimensional O(N) universality class from the NPRG approach to the
two-dimensional quantum O(N) model (full line), compared to classical Monte Carlo simulations of the corresponding three-
dimensional spin models (symbols). The horizontal dashed line shows the (exact) limit �2(N�1)⇣(3)/2⇡. (left panel) Ising
(N=1) universality class. Monte Carlo simulations are from Ref. [5] (blue diamonds), Ref. [18] (green squares) and Ref. [22]
(red circles). (middle panel) XY universality class (N=2). The Monte Carlo data are from Ref. [5]. (right panel) Heisenberg
universality class (N=3). The Monte Carlo data [23] have been rescaled so as to satisfy the correct asymptotic value for x!�1
(see text); the bare data are shown in the inset.

are formally equivalent and fall in the same universality
class. A finite area LD�1 in the classical model corre-
sponds to a finite volume Ld in the quantum model, and
a finite thickness L? to a nonzero temperature T . The
scaling analysis of the classical model straightforwardly
translates to the quantum model. From Eqs. (1, 2), we
obtain the free energy

⌦(�, L, T ) = ⌦
bulk

+ Ld

(k
B

T )d+1

(~c)d F (x, y) , (7)

where ⌦
bulk

=Ld✏
gs

(�) is the zero-temperature bulk
contribution, proportional to the ground-state en-
ergy density ✏

gs

. The scaling variables are now
x=�(�~c/⇠̃

0,+

)1/⌫ and y=�~c/L. The internal energy
density ✏=L�d@(�⌦)/@� is given by

✏(�, L, T ) = ✏
gs

(�)� (k
B

T )d+1

(~c)d # (x, y) , (8)

where # is the universal scaling function of the critical
Casimir force defined in Eq. (4). Comparing Eqs. (3)
and (8), we see that the Casimir force provides a mea-
sure of the di↵erence between ✏

gs

and ✏(�, L, T ). Notably,
taking the thermodynamic limit, L!1, (y=0), one can
deduce from this analysis, without prior knowledge, that
the critical Casimir force of the classical system in slab
geometry is negative, given that in this limit �# is pro-
portional to the thermal energy, which is always positive.
The situation for general y is discussed further below. A
summary of the conversion from the classical to the quan-
tum terminology is given in Table I.

Renormalization group calculation of the critical
Casimir force in O(N) models - The two-dimensional
quantum O(N) model is defined by the action

S =

Z ~�

0

d⌧

Z

d2r

⇢

(r')2

2
+

(@
⌧

')2

2c2
+

r'2

2
+

u('2)
2

4!

�

,

(9)

where ' is an N -component real field satisfying periodic
boundary conditions '(r, ⌧ + ~�)='(r, ⌧). r and u are
temperature-independent coupling constants and c is the
(bare) velocity of the ' field. The QCP at r=r

c

(�=r�r
c

for this model) is in the universality class of the three-
dimensional classical O(N) model, and the phase transi-
tion is governed by the three-dimensional Wilson-Fisher
fixed point.
The renormalization group is a natural approach to

compute universal quantities in the (quantum) O(N)
model. The calculation of scaling functions of the (2+1)-
dimensional Wilson-Fisher fixed point is however noto-
riously di�cult and perturbative renormalization group
usually fails. In the following, we show that the NPRG
provides us with a scaling function of the critical Casimir
force which compares very well with results obtained
from Monte Carlo simulations of three-dimensional clas-
sical spin systems (see also [24]). We only consider the
thermodynamic limit, i.e. L!1, and thus the scaling
function #(x, 0).
The NPRG is an implementation of the Wilsonian

RG based on an exact equation for the Gibbs free en-
ergy (or “e↵ective action” in the field theory terminol-
ogy) for which powerful approximation schemes have
been designed [25, 26]. Recently, the NPRG has been
used to study the thermodynamics of the quantum O(N)
model [27], the Higgs amplitude mode [28, 29] and the
quantum-to-classical crossover in the dynamics [30]. Our
results, which are exact in the limit N!1, are obtained
from a derivative expansion of the e↵ective action to sec-
ond order and improves on the approach of Ref. [27] (see
the Supplemental Material for more details).
Figure 2 shows the Casimir scaling function # ob-

tained from the two-dimensional quantum O(N) model
within the NPRG approach for the three-dimensional
Ising (N=1), XY (N=2) and Heisenberg (N=3) uni-
versality classes, together with data from Monte Carlo

Quantum	O(N)	model	

Effec$ve	ac$on	:	Legendre	transform	of	Free	energy	with	respect	to	magne$c	field.	

� = h'iDepends	on	the	order	parameter	:	

6

SUPPLEMENTAL MATERIAL
CRITICAL CASIMIR FORCES FROM THE

EQUATION OF STATE OF QUANTUM
CRITICAL SYSTEMS

I. NPRG approach to the quantum O(N) model

The strategy of the NPRG approach is to build a fam-
ily of models indexed by a momentum scale k such that
fluctuations are smoothly taken into account as k is low-
ered from a microscopic scale ⇤ down to 0 [1, 2]. In the
case of the d-dimensional quantum O(N) model, this is
achieved by adding to the action the infrared regulator
term

�S
k

['] =
1

2

X

q

R
k

(q)'(�q) ·'(q), (1)

where q = (q, i!
n

) with q a d-dimensional momentum
and !

n

= 2n⇡T (n integer) a bosonic Matsubara fre-
quency. The partition function

Z
k

[J] =

Z

D['] e�S[']��Sk[']+

R �
0 d⌧

R
d

d
rJ·' (2)

is now k dependent. The scale-dependent e↵ective action
(or Gibbs free energy)

�
k

[�] = � lnZ
k

[J] +

Z

�

0

d⌧

Z

ddr J · ���S
k

[�] (3)

is defined as a (slightly modified) Legendre transform of
the free energy � lnZ

k

[J] which includes the subtraction
of �S

k

[�]. Here �(r, ⌧) = h'(r, ⌧)i is the order param-
eter (in the presence of the external source J). Assum-
ing that fluctuations are completely frozen by the �S

k

term when k = ⇤, mean-field theory becomes exact and
�
⇤

['] = S[']. On the other hand, the e↵ective action of
the original model is given by �

k=0

provided that R
k=0

vanishes. For a generic value of k, the cuto↵ function
R

k

suppresses fluctuations with momentum |q|  k or
frequency |!

n

|  ck but leaves una↵ected those with
|q|, |!

n

|/c � k (c denotes the velocity of the ' field).
The variation of the e↵ective action with k is given by
Wetterich’s equation [3]
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[�] + R
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��1

o

, (4)

where �(2)

k

denotes the second-order functional derivative
of �

k

. In Fourier space, the trace involves a trace over
momenta and frequencies as well as the O(N) index of
the � field.

To solve Eq. (4), we use a derivative expansion of the
scale-dependent e↵ective action with the usual (Lorentz-
invariant) exponential cuto↵ function [1]. Such an expan-
sion is made possible by the regulator term �S

k

which

ensures that all vertices �(n)

k

are smooth functions of mo-
menta q

i

and frequencies !
ni and can be expanded in

powers of q2

i

/k2 and !2

ni
/(ck)2 when |q

i

|, |!
ni |/c ⌧ k.

The derivative expansion of the e↵ective action is fully
determined by the O(N) symmetry of the model. To
second order,
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where we have introduced the O(N) invariant ⇢ = �2/2.
At zero temperature, Lorentz invariance of the quantum
O(N) model implies that Zx

k

= Z⌧

k

and Y x

k

= Y ⌧

k

(this is
not true anymore at nonzero temperatures).

All thermodynamic quantities can be obtained from
the e↵ective potential

U
k

(⇢) =
1

�Ld

�
k

[�]
�

�

�

�=const

(6)

obtained from the e↵ective action computed in a con-
stant, i.e. uniform and time-independent, field. In par-
ticular, the free energy of the system is simply

⌦ = Ld lim
k!0

U
k

(⇢
0,k

), (7)

where ⇢
0,k

denotes the position of the minimum of the
e↵ective potential (⇢

0,k

vanishes in the disordered phase
while |h'i| = p

2⇢
0,k

in the ordered phase). Inserting
the ansatz (5) into (4) we obtain coupled equations for
the ⇢-dependent functions U

k

, Zx

k

, Z⌧

k

, Y x

k

and Y ⌧

k

, which
can be solved numerically. One can thus obtain the free
energy ⌦(T, r) using (7) and in turn the universal scaling
functions F and #.

The scaling function F has been computed in Ref. [4]
using a simpler approximation where the functions Zx

k

(⇢)
and Z⌧

k

(⇢) are set equal to Zx

k

(⇢
0,k

) and Z⌧

k

(⇢
0,k

), the
functions Y x

k

(⇢) and Y ⌧

k

(⇢) omitted, and the e↵ective po-
tential U

k

(⇢) expanded to quadratic order. The complete
derivative expansion [Eq. (5)] that we use to compute
F and # is exact is the limit N ! 1. Furthermore,
this expansion is known to be very e�cient for small val-
ues of N . For the classical O(N) model, it recovers not
only the one-loop result near four dimensions but also the
one-loop results near two dimensions obtained from the
nonlinear sigma model [1, 2], and provides accurate esti-
mates of the critical exponents in three dimensions [5]. It
also recovers quantitatively the main universal features of
the Kosterlitz-Thouless transition in the two-dimensional
O(2) model [6–8]. In the two-dimensional quantum O(N)
model recent calculations [9] of the T = 0 universal ratio
�/⇢

s

between the excitation gap in the disordered phase
and the sti↵ness in the ordered phase are in very good
agreement with Monte Carlo simulations [10] for N = 2
and N = 3.

⇢ = �2/2


