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Introduction Background independence

Background independence

Background field method:

I Split field into background plus fluctuations to be able to
evaluate traces in flow equation, e.g.

g̃µν = ḡµν + h̃µν

I But physical quantities are functions of full field g̃µν only, so
there should be no artificial dependence of the split

But in gravity additionally:

I Have to define scale via spectrum of Laplacian operator −∇̄2

built from background metric ḡµν .

I Then Background Independence lost (at intermediate k) through
cutoff function Rk(−∇̄2).

I Modified split Ward identity (msWI) restores background
independence in limit k → 0.
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Introduction Conformally Reduced Gravity

Conformally Reduced Gravity

We want to study the functional RG of conformally reduced gravity:

g̃µν = f (φ̃)ĝµν = f (χ+ ϕ̃)ĝµν and ḡµν = f (χ)ĝµν ,

where the conformal factor f (φ̃) is kept arbitrary.

Set ĝµν = δµν , split conformal factor field φ̃ = χ+ ϕ̃ into background
and fluctuation field and define classical fluctuation field ϕ = 〈ϕ̃〉.

The parametrisation does not depend on k , because it is introduced
at the bare level and does not depend on the infrared cutoff.

No gauge fixing required, no ghosts.
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Introduction Flow Equation and Ward Identity

Flow Equation and Ward Identity

The effective action satisfies the Functional RG Equation (FRGE)

∂tΓk [ϕ, χ] =
1

2
Tr

[
1√
ḡ
√
ḡ

δ2Γk

δϕδϕ
+ Rk [χ]

]−1

∂tRk [χ] , t = log(k/µ)

Background independence is obtained by imposing split symmetry :

ϕ̃(x) 7→ ϕ̃(x) + ε(x) , χ(x) 7→ χ(x)− ε(x) .

The msWI encodes the extent to which the effective action violates
this symmetry.

1√
ḡ

(
δΓk

δχ
− δΓk

δϕ

)
=

1

2
Tr

[
1√
ḡ
√
ḡ

δ2Γk

δϕδϕ
+ Rk [χ]

]−1
1√
ḡ

{
δRk [χ]

δχ
+

d

2
∂χlnf Rk [χ]

}
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Compatibility The full functional system

The full functional system

Compatibility: msWI is compatible with the flow if it is satisfied
everywhere along the flow: Wk0 = 0⇒Wk = 0, ∀k

Rewriting Ward Identity as W = 0 the flow of the msWI reads

∂tWω = −1

2
tr

(
∆ ṙ ∆

δ2

δϕδϕ

)
Wω

I Trivial on the functional level, because both identities are derived
form the same partition function.

I Not clear however is the overlap of information of flow and msWI

I Compatibility also non-trivial within truncations
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Compatibility The derivative expansion

The derivative expansion to O(∂2)

Assume slowly varying background field χ.

Γk [ϕ, χ] =

∫
ddx
√
ḡ

(
−1

2
K (ϕ, χ)ḡµν∂µϕ∂νϕ+ V (ϕ, χ)

)
Two equations at every order of expansion.

Flow and msWI, here only potential V :

∂tV (ϕ, χ) = f (χ)−
d
2

∫
dp pd−1QpṘp

∂χV − ∂ϕV +
d

2
∂χlnf V = f (χ)−

d
2

∫
dp pd−1Qp

(
∂χRp +

d

2
∂χlnf Rp

)
with the propagator

Qp =

(
∂2
ϕV − p2K

f
+ Rp

)−1
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Compatibility Compatibility in the derivative expansion

Compatibility in the derivative expansion I

Flow of Ward identity for V :

Ẇ(V ) =−
∫
p

Q2
p Ṙp

(
∂2
ϕW(V )−p2W(K)

)
−
∫
p,q

Q2
p

(
∂2
ϕQq−2p2Pq

)
[Ṙ, ∂χR+γR]qp ,

where
∫
p
≡ f (χ)−d/2

∫
dppd−1 and γ ≡ d

2∂χlnf .

Compatibility may be realised by setting[
Ṙ, ∂χR + γR

]
qp
≡ Ṙq(∂χRp + γRp)− Ṙp(∂χRq + γRq) = 0

This implies the compatibility condition:

∂χRp + γRp = F (χ, t) Ṙp
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Compatibility Compatibility in the derivative expansion

Compatibility in the derivative expansion II

Flow of Ward identity for K :

I more involved

I additional commutator-like terms

(∂χRp + γRp) ∂kp2Ṙp − Ṙp∂
k
p2 (∂χRp + γRp)

But again, vanish if

∂χRp + γRp = F (χ, t) Ṙp

This provides a necessary and sufficient condition to ensure
compatibility in the derivative expansion.
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Compatibility Compatibility in the derivative expansion

Required form of cutoff Rk

∂χRp + γRp = F (χ, t) Ṙp

In dimensionless variables one can show:

I If η = 0 compatibility condition automatically satisfied

I If η 6= 0 the compatibility condition implies

p̂
d

dp̂
r(p̂2) = −2n r(p̂2)

for some constant n = d/2(ηF/(dvF − γ)− 1) and thus

r(p̂2) ∝ p̂−2n
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Three Observations in the LPA

1. Fixed points are forbidden in general

In dimensionless variables

∂tV̄ + dV V̄ −
η

2
ϕ̄
∂V̄

∂ϕ̄
− η

2
χ̄
∂V̄

∂χ̄
=

∫ ∞
0
dp̂ p̂d−1 dR r − dV

d p̂ r ′

p̂2 + r − ∂2
ϕ̄V̄

∂V̄

∂χ̄
− ∂V̄

∂ϕ̄
+ γ̄ V̄ = γ̄

∫ ∞
0
dp̂ p̂d−1 r − 1

d p̂ r ′

p̂2 + r − ∂2
ϕ̄V̄

where crucially

γ̄ =
d

2

∂

∂χ̄
lnf̄
(
eηt/2µη/2χ̄

)
.

Ward identity forces V̄ to depend on t through γ̄, thus fixed points
are forbidden in general unless again

1. η = 0 or

2. set f to be power law: f ∝ χρ =⇒ γ̄ = d
2
ρ
χ̄ , ρ const.
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Three Observations in the LPA

2. Incompatibility implies no solutions

Combine (incompatible) equations to (d = 4, opt. cutoff):

2∂tV̄ + ηV̄ − (ηϕ̄− αχ̄) ∂ϕ̄V̄ − (η + α)χ̄∂χ̄V̄ = 0

Separate scale dependence by method of characteristics:

V̄ = e−ηt/2 V̂ (φ̂, χ̂) ,

where hatted variables V̂ , φ̂, χ̂ are initial data. Substitute V̄ back into
flow equation:

χ̂∂χ̂V̂ + 2ρV̂ =
ρ

3

1

e−
η
2
t − ∂2

φ̂
V̂

No solutions unless η = 0.
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Three Observations in the LPA

3. Background independent flow for η = 0

Flow and msWI can be combined and after redefinition of scale

t̂ = t +
ln f̄

2− df

one finds background independent flow equation

∂t̂V̂ + dV V̂ =
dV
6

1

1− ∂2
φV̂

.

I independent of χ and parametrisation f .

I Fixed points in t coincide with fixed points in t̂:

∂tV̄ = ∂t̂V̂

I When flow and Ward identity compatible can uncover a
background independent (and f independent) description.
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Summary and conclusions

Summary and conclusions

I Investigated the potential conflict between fixed points and
background independence.

I Compatibility guaranteed at exact level. But in the derivative
expansion, compatibility only guaranteed if η = 0 or cutoff Rk is
power law.

I If incompatible then no solutions - confirmed with LPA example.

I If compatible, fixed points can still be forbidden.

I If compatible, can combine flow and Ward identity to uncover a
background independent description.
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