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Mermin-Wagner theorem (1966)

No spontaneous breaking of continuous  
symmetries in d=2 at T>0.

No long range order (LRO) 

Special situation: U(1) symmetry group

No LRO, but (at T sufficiently small): 

At T sufficiently large: 

- Algebraic decay of order-parameter correlations  
- Order-parameter stiffness  
- Spin-wave (phase) excitations 

- The usual behavior ( exponential decay of correlations) 



The Berezinskii-Kosterlitz-Thouless (BKT) transition 

- Driven by topological excitations (vortices) 

- The free energy is a smooth (but not analytical) function 

- Universal jump of order-parameter stiffness  

- Essential singularity of the correlation length

Amplitude fluctuations in the BKT phase

Standard approach: “Amplitude fluctuations are suppressed”

Effective Hamiltonian for (only) phase fluctuations 
Heff =

K

2

Z
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Governs the low-T phase 
Higher T - vortices



BKT from FRG (�4
model)

Graeter, Wetterich, PRL 1995 

Gersdorff, Wetterich, PRB 2001 

PJ, Dupuis, Delamotte, PRE 2014 

PJ, Eberlein, PRE 2016  

PJ, Metzner, arXiv:1606.04547

Common feature: 

Vortices not captured 

Amplitude fluctuations kept…

  Examine the role of the amplitude mode.



Motivation:

Coupling between the amplitude and phase modes

Strong renormalization of the amplitude mass

E.g. for the ground state of the interacting Bose gas the amplitude  
mass is reduced to zero…  

Effect of the effectively massless amplitude mode on  
quasi long-range order unknown ?

e.g. Castellani et al (1997)



Model:
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Is this really true?

The radial mode is supposed to be irrelevant in the standard BKT theory. 
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Functional renormalization group (1PI scheme)

Derivative expansion:
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Flow equations:
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Full derivative expansion: Derivative expansion + vertex expansion:

@⇤U⇤(⇢) = . . .

@⇤Z⇤(⇢) = . . .

@⇤Y⇤(⇢) = . . .

Closed system of nonlinear PDEs Closed system of nonlinear ODEs
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Reproducing the standard BKT phase: 
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Discard amplitude fluctuations
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This reproduces the line of BKT  
fixed points in the low-T phase

But what about the  
amplitude fluctuations?

PJ, Metzner, arXiv:1606.04547



Power counting: 

At the BKT fixed point: ↵2
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Conclusion: Phase and amplitude modes equally relevant for 

Justification for dropping the amplitude mode is illusive

⇤ ! 0



Coupled amplitude and phase fluctuations 
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BKT fixed point is (marginally) destabilised by  
amplitude fluctuations

RG flow ultimately ends up in the phase with  
vanishing stiffness (even if this happens at very low scales)

s = � log(⇤/⇤UV )

Logarithmic flow of  
amplitude stiffness

-50

-40

-30

-20

-10

 0

-5  0  5  10  15  20  25  30

ln
(m

σ

2
)

s

T=0.2
T=0.4
T=0.6
T=0.8
T=1.0
T=1.2



Coupled amplitude and phase fluctuations 
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BKT fixed point is (marginally) destabilised by  
amplitude fluctuations

RG flow ultimately ends up in the phase with  
vanishing stiffness (even if this happens at very low scales)
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Critical scale: 
⇤c ⇠ ⇠�1
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Summarizing picture:

“Bare” model: Massless  
Goldstone mode

Massive  
radial mode

� �mode

⇡ �mode

(�)(⇡)

Interactions between the modes Softening of the radial mode

Feedback of the softened  
radial mode on stiffness

Collapse of quasi long-range  
order at any T>0.

Absence of BKT transition  
in 2d systems hosting the  

amplitude mode 

Instead a very  
sharp crossover

BKT phase may still exist in systems without the amplitude mode 

No contradiction to rigorously established results



BKT phase not restored by  
any higher-order terms in  �

Derivative expansion at order @2

Gersdorff, Wetterich, PRB 2001 

PJ, Dupuis, Delamotte, PRE 2014 

PJ, Eberlein, PRE 2016

- No fixed points at low T 
- Integrating the flow at T low not possible 
- Limited analytical insight 
- Presence of quasi-plateaus    
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But….  

possibility of tuning the regulator to  
obtain a true BKT-type behavior  

(for some choices of renormalization point, some  
T-dependent cutoffs, only for sufficiently high T…)  

agreement on the values of  
and     despite the absence of vortices… 
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On the other hand… other choices of the regulator  
yield absence of any fixed-point…   



Summary:

G-W type calculation: Full DE: 

Reproduces the BKT f-p line  
(upon neglecting the amplitude fluctuations).  

Leads to a marginal instability of quasi  
long-range order due to the amplitude mode.

No contradiction with rigorous results,  
but implies a reinterpretation of the  
whole BKT theory.

Has the potential of enforcing  
quasi long range order in a range  
of temperatures close to TKT by  
manipulating the cutoff.  
(In a somewhat unnatural way.) 

At TKT   agrees with the standard  
BKT theory at a quantitative level. 
(Despite the crucial difference in the mechanisms  
driving the transition…)


