
QuasiParticle Self-Consistent GW + DMFT for 
Magnetic Systems	


Motivation: 
By far the largest many-body effects have to do with 
screening of the bare coulomb interaction. 
Strong correlations beyond the screening tend to be local 

Mark van Schilfgaarde,  King’s College London 

Observation: 
RPA screening is reasonably good 
Strong correlations tend to be local. 
Example: magnetic susceptibility 
 

spin waves in NiO 

Nonlocal … independent 
particle picture sufficient 

Site local effective 
interaction 

  χ
−1  = χ0

−1 − I



Properties of the GW Approximation 

þ ω-dependent W and Σ – outside one-electron picture. 
þ Nonlocal W and Σ --- very important. 
þ Van der Waals treated exactly.  

ý W screens v in the charge channel only  …  its dynamical 
fluctuations are plasmons. 

ý Σ knows has spin through the Fock exchange only. 
ý Other interactions (particle-particle) are missing 

0G

0G
v 

0G

0G

Conclusion: 
If correlations are not strong, GW should be sufficient. 
If dominant higher order correlations are local,           
DMFT should address the primary weaknessess of GW 



Characteristics of Dynamical Mean Field Theory 

þ   Nonperturbative theory. Diagrams taken to all orders 
-  A veritable soup of low-order diagrams! Hard to 

determine which diagrams are dominant if any. 
þ ω dependence of Σ(k,ω) is handled very well. 
þ LDA+DMFT : primary approach to strong correlations today 

ý Select out subspace of the full Hilbert space.   
-  Answer depends on choice of subspace 

ý Ambiguities in both effective interaction and (especially) 
double counting … difficult to fix. 

ý Single site approximation : nonlocality on-site only.  
-   Σ(k,ω) has no k-dependence … Nor does LDA!  

ý ω dependence on Matsubara frequencies 

Dynamical Mean Field Theory: Many body approach that 
goes beyond low-order diagrammatic theory 



GW Approximation and Starting Point 

GW neglects vertex 
( )1,2 ,     = − Σ =P iGG iGWG and Σ are usually generated from 

some effective noninteracting one-
body hamiltonian H0, usu. H0=HLDA 
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But this description is often 
problematic … particularly when 
magnetism is present 

FeTe 

Nonsensical FS 

NiO 

Severe gap errors 
Nonsensical M, Ex 

↑  MnAs  ↓ 



Fully self-consistent GW 

Iterate G to self-consistency to 
remove starting-point dependence 
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True self-consistent GW looks good as formal theory:  
 à Based on Luttinger-Ward functional.  
 à Keeps symmetry for G 
 à Conserving approximation 

But poor in practice, even for the electron gas 

B. Holm and U. von Barth,    PRB57, 2108 (1998) 

Fully self-consistent GW self-energy of the electron gas

B. Holm and U. von Barth
Department of Theoretical Physics, University of Lund, S-22362 Lund, Sweden

~Received 28 January 1997!

We present fully self-consistent results for the self-energy of the electron gas within the GW approximation.
This means that the self-consistent Green’s function G , as obtained from Dyson’s equation, is used not only for
obtaining the self-energy but also for constructing the screened interaction W within the random-phase ap-
proximation. Such a theory is particle and energy conserving in the sense of Kadanoff and Baym. We find an
increase in the weight of the quasiparticle as compared to ordinary non-self-consistent calculations but also to
calculations with partial self-consistency using a fixed W . The quasiparticle bandwidth is larger than that of
free electrons and the satellite structure is broad and featureless; both results clearly contradict the experimental
evidence. The total energy, though, is as accurate as that from quantum Monte Carlo calculations, and its
derivative with respect to particle number agrees with the Fermi energy as obtained directly from the pole of
the Green’s function at the Fermi level. Our results indicate that, unless vertex corrections are included,
non-self-consistent results are to be preferred for most properties except for the total energy.
@S0163-1829~97!04148-9#

I. INTRODUCTION

The present paper represents the second in a series of
papers describing our investigations of the effects of self-
consistency within the GW approximation for the electronic
self-energy. In our previous paper,1 we stressed that the ef-
ficiency of our present-day computers and our thorough
knowledge of the one-electron structure of real solids have
now enabled us to apply various approximations within
many-body perturbation theory ~MBPT! to real solids. As a
result, the last decade has seen a wealth of calculations of the
physical properties of real solids using MBPT. Most calcu-
lations employ the so-called GW approximation2 ~GWA!

meaning that the electronic self-energy is obtained from the
one-electron Green’s function in a Hartree-Fock-like fashion
but with a screened interaction W in place of the bare Cou-
lomb interaction v .

S5iGW . ~1!

Such calculations can be carried out in a number of dif-
ferent ways. The one-electron Green’s function is usually,
and often as a matter of convenience, taken to be that (GLD)
obtained from a self-consistent density-functional ~DF!

calculation3 based on the local-density approximation
~LDA!.4 Another choice would be the Green’s function ob-
tained from Dyson’s equation:

G5GLD1GLD
~

S2vxc
LD

!

G , ~2!

where ( is the GW self-energy and vxc
LD is the local energy-

independent exchange-correlation potential of the LDA.
Sometimes a hybrid scheme is used in which the Green’s
function is almost that of the LDA. The constituent LDA
eigenenergies are, however, replaced by quantities closer to
true one-electron excitation energies. Such a scheme has
proven to be valuable and necessary, e.g., in NiO.5 For the
screened interaction W , on the other hand, most calculations

employ the random-phase approximation ~RPA! using orbit-
als and eigenenergies from the LDA. Thus,

W5v1vP0W , ~3!

where the irreducible polarizability P0 , within the RPA, is
approximated by the non-interacting density-density re-
sponse function x0 given by

iP05ix052GLDGLD. ~4!

Sometimes, further approximations are introduced such
as, e.g., describing the energy dependence of W as a sum of
plasmonlike poles. Other calculations have included particle-
hole interactions in the polarizability P0 . Most often such
vertex corrections have been energy independent and they
are usually constructed from the LDA. Since the early days
of MBPT, it has, however, been known to be inappropriate to
include even static vertex corrections without simultaneously
dressing up the Green’s function. There are strong cancella-
tions between the self-energy effects on the Green’s function
and the effects of adding particle-hole interactions.
The point we wish to make here is that we have so far no

a priori reason to prefer one or the other of all these different
computational procedures. We simply try them out and judge
their merits by comparing to experiment. The problem is
fundamental in nature and can only be rectified by finding a
systematic way of going beyond the GW A. We then remind
the reader that we are dealing with a divergent or condition-
ally convergent perturbation expansion and an infinity of
terms must always be summed in order to obtain reasonable
results. Thus, physical reason and intuition must be made to
bear when constructing approximations beyond the GWA.
Until we have found a systematic way of proceeding, we
believe it to be worthwhile to investigate the consequences
of the different computational procedures proposed so far.
In the early 1960s, bearing in mind transport properties,

Kadanoff and Baym6,7 proposed to judge the merits of dif-
ferent approximations by their ability to conserve quantities
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Bandwidths in scGW	

Holm and von Barth compared 
scGW to G0W0 in the 
homogeneous electron gas.  

Noninteracting 

G0W0 

GW 

PRB57, 2108 
(1998) 

The G0W0 bandwidth narrows 
noninteracting  by ~10%. 

The scGW  bandwidth widens 
it by ~20% (30% error) 

Spectral functions in 
real materials broaden 

too much and get 
washed out. Often 
worse than LDA! 

From Belashchenko et al, PRB 73, 073105 



Quasiparticle self-consistent GW Approximation 
Fully self-consistent many-body perturbation theory is 
problematic in many contexts … 

The problem appears to be connected with limits to the 
domain of the fully interacting G.  
Stick with perturbation theory around some noninteracting 
G0 . How to find the best possible G0? 
Key: minimize the difference between the full G and G0 
(requires a definition of norm measuring the difference) 
QSGW : a self-consistent perturbation theory where self-
consistency determines the best G0 (within the GW 
approximation) PRL 96, 226402 (2006) 



Optimal G0 

   

H0 =
−1
2m

∇2 +V ext (r) +V H (r) +V xc (r, ′r )

H0ψ i = Eiψ i ⎯→⎯ G0 (r, ′r ,ω ) =
ψ i (r)ψ i

*( ′r )
ω − Ei

i∑

Start with some trial Vxc  (e.g. from LDA, or …).  Defines G0 : 

GWA determines ΔV  and thus  H : 

   G0
RPA⎯ →⎯⎯ ε(iG0G0 ) GWA⎯ →⎯⎯ Σ(r, ′r ,ω ) = iG0W ;       ΔV = Σ −V xc

( )xc 1 |Re ( ) ( ) |
2 i i j j

ij
V E Eψ ψ= 〈 Σ +Σ 〉∑

Find a new Vxc that minimizes norm M, a measure of ΔV G0. 

(approximate) result 
of min M 

Iterate to self-consistency. At self-consistency, Ei of G 
matches Ei of G0 (real part).  See Phys. Rev. B76, 165106. 



Residual of this pole (loss of QP weight) is reduced by Z

Write G as 

Z-factor cancellation 
Exact Σ=iGWΓ  .  Suppose W is exact.   Then 

( ) ( ) ( )
0

0 0 0

1
/xc

G
H V iωω ω ω ω ω δ

=
⎡ ⎤− − − +Σ + ∂Σ ∂ − +⎣ ⎦

0 (incoherent part)G ZG= +
1     for ', ' 0Z q ω−Γ→ →0 (incoherent part)GW G WΓ ≈ +

( ) 11 /Z ω −= − ∂Σ ∂

Similar argument for W.  Ishii et al (arxiv 1003.3342) 
reversed argument: postulate Γ that satisfies Ward Identity 

∴ 
Ward identity 

Results from GW ΓWI 
similar to G0W0. 

skip 



Formal Justification of QSGW 

Original justification for QSGW:  find the G0 which miminizes 
the difference 〈G−G0〉, according to some definition of 〈…〉, 
within the GW approximation. 

Justifying quasiparticle self-consistent schemes via gradient optimization in

Luttinger-Ward theory
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The question of which non-interacting Green’s function “best” describes an interacting many-body
electronic system is both of fundamental interest as well as of practical importance in describing
electronic properties of materials in a realistic manner. Here, we study this question within the
framework of Luttinger-Ward theory, an approach where one extremizes a total energy functional
of the one-particle Green’s function in order to find the total ground-state energy as well as all
one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy
spectrum and quasiparticle wave functions. Our basic finding is that minimizing the length of the
gradient of the total energy functional over non-interacting Green’s functions yields a set of self-
consistent equations for quasiparticles that is identical to those of the Quasiparticle Self-Consistent
GW (QSGW ) [1] approach, thereby providing an a priori justification for such an approach to
electronic structure calculations. In fact, this result is general, applies to any self-energy operator,
and is not restricted to any particular approximation, e.g. the GW approximation for the self-energy.
The approach also naturally shows why solving the diagonal part of the self-consistent equations
is of primary importance while the o↵-diagonals are of secondary importance, a common prior
observation in the literature of electronic structure calculations based on self-energy calculations.

PACS numbers: 71.15.-m,71.15.Qe,71.15.Mb,71.15.Nc

1. INTRODUCTION

Single-particle approaches for computing the electronic
structure of materials have proven very useful in prac-
tice for understanding and predicting the properties of
materials, particularly when they are ab initio methods
such as Density Functional Theory (DFT) [2, 3]. The
local density (LDA) or generalized gradient (GGA) ap-
proximations [3–5] for DFT provide practical computa-
tional approaches that are the de facto workhorses for
obtaining total energies, atomic geometries, vibrational
modes, thermodynamic data, chemical properties, kinetic
barriers, etc. of a great variety of materials. Aside
from practical usefulness, the single-particle nature of
these approaches permits one to straightforwardly an-
alyze the link between the atomic-scale structure of the
material and the resulting electronic structure, e.g., via
tight-binding or nearly free-electron models. The rela-
tive straightforwardness of a single-particle framework
permits one to then propose materials design principles
whereby one can tune or engineer desirable materials
properties. Nevertheless, there are some shortcomings to
such a general approach. One can categorize the main
drawbacks of single-particle schemes such as DFT for
electronic structure predictions into two broad categories.

The first is fundamental to the single-particle approach
itself when it is applied to strongly correlated electronic
systems. When the basic behavior of electrons is deter-
mined by strong and localized electronic repulsions, it
is essentially di�cult to properly describe such a situ-
ation using single-particle approaches where each parti-

cle moves separately in an e↵ective potential [6, 7]. A
number of methods have been proposed to date to deal
with such situations, and at present Dynamical Mean
Field Theory [6, 7] represents a workable scheme with
the requisite compromise between reasonable computa-
tional complexity (obtained by approximating the many-
body correlated problem in certain ways) and realistic
description of actual materials. Even in such cases, how-
ever, building a many-body description of the correlated
system in a method such as DMFT requires inclusion
of important single-particle terms that reflect the struc-
ture and local chemistry and bonding, and the strong
interactions are added on top of this, as exemplified by
the canonical Hubbard model and its various extensions.
Thus one needs a high-quality or in some sense “optimal”
single-particle description to begin the process.
A second drawback is due to the ground-state nature

of DFT approaches and the use of a local e↵ective poten-
tial: even without strong correlations, a theory designed
to describe the ground state with a local potential will
have a di�cult time predicting excited state properties
such as band energies and band gaps [8–10]. In a num-
ber of cases, one can correct the main faults with self-
interaction corrected approaches [4] or explicit inclusion
of a degree of Fock exchange in hybrid approaches [11–
13]. The widely popular LDA+U approach [14] falls into
this category where Fock-type corrections are included
for a subspace of states spanned by pre-chosen localized
atomic-like orbitals. The main idea in all these methods
is to add more complexity to the e↵ective potential in or-
der to better incorporate the important physics of Fock
exchange and to remove the closely related problem of
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A different justification (Ismail-Beigi) 
Minimize square of gradient of 
Luttinger Ward energy 

Why not just find G0 that 
minimizes the RPA total 
energy ERPA ?   

δ ERPA

δG0

= 0
Not possible … there 
is no lower bound 
(PRB76, 165106). 

Vxc 

Σ−Vxc 

  
D

2
→ min   where    D =

δ F[G0]
δΣ
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Single-particle approaches for computing the electronic
structure of materials have proven very useful in prac-
tice for understanding and predicting the properties of
materials, particularly when they are ab initio methods
such as Density Functional Theory (DFT) [2, 3]. The
local density (LDA) or generalized gradient (GGA) ap-
proximations [3–5] for DFT provide practical computa-
tional approaches that are the de facto workhorses for
obtaining total energies, atomic geometries, vibrational
modes, thermodynamic data, chemical properties, kinetic
barriers, etc. of a great variety of materials. Aside
from practical usefulness, the single-particle nature of
these approaches permits one to straightforwardly an-
alyze the link between the atomic-scale structure of the
material and the resulting electronic structure, e.g., via
tight-binding or nearly free-electron models. The rela-
tive straightforwardness of a single-particle framework
permits one to then propose materials design principles
whereby one can tune or engineer desirable materials
properties. Nevertheless, there are some shortcomings to
such a general approach. One can categorize the main
drawbacks of single-particle schemes such as DFT for
electronic structure predictions into two broad categories.

The first is fundamental to the single-particle approach
itself when it is applied to strongly correlated electronic
systems. When the basic behavior of electrons is deter-
mined by strong and localized electronic repulsions, it
is essentially di�cult to properly describe such a situ-
ation using single-particle approaches where each parti-

cle moves separately in an e↵ective potential [6, 7]. A
number of methods have been proposed to date to deal
with such situations, and at present Dynamical Mean
Field Theory [6, 7] represents a workable scheme with
the requisite compromise between reasonable computa-
tional complexity (obtained by approximating the many-
body correlated problem in certain ways) and realistic
description of actual materials. Even in such cases, how-
ever, building a many-body description of the correlated
system in a method such as DMFT requires inclusion
of important single-particle terms that reflect the struc-
ture and local chemistry and bonding, and the strong
interactions are added on top of this, as exemplified by
the canonical Hubbard model and its various extensions.
Thus one needs a high-quality or in some sense “optimal”
single-particle description to begin the process.
A second drawback is due to the ground-state nature

of DFT approaches and the use of a local e↵ective poten-
tial: even without strong correlations, a theory designed
to describe the ground state with a local potential will
have a di�cult time predicting excited state properties
such as band energies and band gaps [8–10]. In a num-
ber of cases, one can correct the main faults with self-
interaction corrected approaches [4] or explicit inclusion
of a degree of Fock exchange in hybrid approaches [11–
13]. The widely popular LDA+U approach [14] falls into
this category where Fock-type corrections are included
for a subspace of states spanned by pre-chosen localized
atomic-like orbitals. The main idea in all these methods
is to add more complexity to the e↵ective potential in or-
der to better incorporate the important physics of Fock
exchange and to remove the closely related problem of
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Failings of LDA:   
• La 4f  states much too low. 
• O 2p ~1.3 eV too shallow 
[typical; see Dang et al, 
PRB90, 125114 (2014)]  
 Too much O 2p admixes 
into Cu x2−y2 . 

• Ordered antiferro state 
is still a metal 

Why not LDA + DMFT?	

La2CuO4 : antiferromagnetic insulator, gap ~2 eV 
Nonmagnetic calculation: LSCO is metal with Cu x2−y2 at EF. 

Significant intermixing of 
O 2p with Cu 3d. 

LDA+DMFT:  Opens a gap of 1.5-1.8 eV  

La f 

x2−y2 

Cu 3d 

O 2p 



Quasiparticle Self-Consistency for NiO	


NiO looks ok, but gaps too big! 
(clear marker of RPA 
overestimating W) 

BIS 

QSGW 

J. Phys. Cond. Matt. 20, 95214 

Spin waves in MnO and NiO 
very well described.  Nothing 
adjustable, all electrons on 
same footing. 



Why the NiO Bandgap is too large	


ε∞ is universally 20% too 
small in insulators (missing 
ladders) 

+ + + … 
0G

0G
W 

Plasmon peaks 
in Im ε(ω) are 
too high 

This makes 
ε∞=Re ε(0) 
too small 



Better screening in the charge channel fixes much	


Expt 

QSGW 

Estimate error  
W ~ [ε∞−1(expt)/ε∞−1(QSGW)] WRPA 

Γ→Γ 

SrTiO3 

Result: spectra aligns almost exactly with BIS.  Peaks 1, 2, 3 
shift different amounts 
Seen in most TM oxides and universally seen in sp systems 



ARPES Measurements of Ni	


L3  

Trends in 3d series 

WRPA is screened 
in the charge 
channel only … no 
spin fluctuations. 

QSGW : vast 
improvement 
over LDA for 
TM in general.  
But for Ni, 
problems 
appear 

Calculated ΔEx : 
QSGW   LDA 
   0.76       0.71 
Calculated M : 
QSGW   LDA 
   0.76       0.60 

QSGW misses a 
satellite at -6 
eV seen in 
photoemission 



Spin Fluctuations 	

In Ni spin fluctuations are important (Nolting et al, 1989) 
Quite generally, QSGW appears to:  

•  predict M in local-moment systems very well  
•  overestimate M in itinerant systems. 

Spin fluctuations reduce 〈M〉.  Moriya estimated 〈∆M〉 from FD 
theorem.  Requires ∫dω Imχ   (Mazin et al PRL 2004). 
… Better fluctuations are built into higher order diagrams. 

LDA has two distinct errors:  
〈M〉 is too large in itinerant 
materials. 
〈M〉 is too small in local-
moment systems (CoPt, MnAs) 
In Ni the errors cancel … 〈M〉 
is fortuitously good! 



Spin Fluctuations in Fe are not important 
QSGW matches  ARPES and inverse PE (Santoni & Himpsel, 
Phys. Rev. B 1991) extremely well … 

Much better than LDA.  Small discrepancies at ~0.1 eV scale:   
e.g. the VI↓ dispersion near k=0 … But it turns out that 
differences are largely artifacts of final-state effects in PE! 



QSGW + ”Magnetic” DMFT	

Basic idea : combine  
charge ΣQSGW(k) with 
spin     ΣDMFT(ω). 

  

Σ± = ΣQSGW (k)+ ΣDMFT,± (ω )
ΣQSGW   =   [Σ+ (k)+ Σ− (k)] / 2
ΣDMFT,± = ±[Σ+ (ω )− Σ− (ω )] / 2

• ΣGW(k,ω) mainly misses spin 
fluctuations 

• DMFT should treat spin 
fluctuations well, but no Σ(k). 

Complications :  
ΣGW(k,ω) on the real axis, for 
the full hilbert space 
ΣDMFT(ω) at the Matsubara 
frequencies for the d subspace 

Avoids double counting 

How to quasiparticlize Σ? 
What kind of self-consistency? 



Parititioning of k and ω Dependence of Σ(k,ω) 	

Consider the superconductor BaFe2As2. 
Restrict consideration to the the Fermi liquid regime (~ EF ±2eV) 
At least in BaFe2As2, Z is nearly k-independent 

  
Ω dk

BZ∫ (Z − Z )2⎡⎣ ⎤⎦ < 0.005 < Z / 10

If ∂Σ(k,ω) is independent of k, 
then Σ(k,ω) becomes vastly 
simpler … it implies that Σ can be 
partitioned into a sum of k 
dependent and ω dependent 
terms: 

   
 Σ(k,ω )  Σs (k)+ ∂Σ

∂ω
f (ω )

Locality of quasi-particle dynamics

How frequency dependent are the non-local correlations?

Measure: k–variance of qp-weight Z k

L =
⇥
1� h 

RL|@!<⌃QSGW(k,!)| 
RLi

⇤�1

�kZ(! = 0) =
qP

kL |Z k

L � Z loc
L |2 ⇡ 0.5% 8 GW calculations here.

�kZ(!) ⌧ Z/10 for |!|<2eV:
momentum variance very small in
Fermi liquid regime

�! quasiparticle dynamics is local

�! non-local and dynamical correlations are separable!
⌃(k,!) = ⌃non�local(k) + ⌃loc(!) (|!|<2eV)

Jan M. Tomczak (Rutgers) non-local vs dynamic correlations in pnictides 18 March 2013 15 / 10

…  If partitioning is valid, it “saves the day” for DMFT 
provided  DMFT is built around a framework that generates a 
suitable Σs(k).  See  Phys. Rev. Lett.  109, 237010 (2012) 



Implementation of QSGW + ”magnetic DMFT” 
1.  Make QSGW ΣGW(k,ω) ⇒ quasiparticlize ⇒ ΣQSGW(k)  
2.  Projectors from d partial waves in augmentation sphere. 
3. Calculate Uijkl within constrained RPA (For now just pick U, J) 

2. Project G → Gloc ; with U, J  generate ΣDMFT from CTQMC.  
3. Construct a new G, new density and Hartree potential 
4. Quasiparticlize† G → G0  to generate new  ΣGW(k,ω), ΣQSGW(k). 

  Σ
± = ΣQSGW (k)+ ΣDMFT,± (ω ) (Initially 0)

†We use static limit of ΣDMFT for now   

--- Iterate the following nested loops to self-consistency --- 
1. Make 



QSGW + Magnetic DMFT, ARPES	

                             ΔEx       M: 
LDA          0.71  0.60 
QSGW         0.76  0.76 
QSGW+DMFT     0.3  0.51 
QSGW+DMFT(QP)  0.3  0.55 
Experiment    0.3  0.57 

Dynamical Σ 
washes out  
DOS 

QP weight 
pushed to a 
plasmon near 
-4.5 eV 

Exchange splitting 
well described by QP 

Self-consistency has 
minimal effect 



Renormalization of ΔEx by effective field	

If Ni is reasonably described by a QP picture, fluctuations will 
modify the static (QSGW) 1-body Bsf. 
Simulate DMFT Σ with an external static Bsf added to  ΣQSGW.  
Iterate  QSGW + Bsf to self-consistency. 

Bsf at 〈M〉=〈Mexpt〉 Bsf=0 Result almost identical to 
QSGW+magnetic DMFT  



Spectral functions, QSGW+BSF and QSGW+DMFT	


DMFT more strongly suppresses QP weight, pushes to 
satellite deeper in energy.  



Spin Waves in QSGW	


Assume spin |m(r)〉rotates 
rigidly.  Then 

   χ
−1(q,r, ′r ,ω ) = χ0

−1(q,r, ′r ,ω )− I (q,r, ′r ,ω )

J. Phys. Cond. Matt. 20, 95214 

   χ
−1(q,r, ′r ,ω ) ∝|m(r)〉 〈m( ′r ) |

Assume further I is static and site-
local.  Then I can be can be inferred  
from condition that the pole go to zero 
for q → 0: 
 

Transverse spin 
susceptibility 

    〈m | χ0
−1(q = 0,ω = 0) |m〉 = 〈m | I |m〉

Find SW’s from pole in χ-1. 
Avoid “hard” problem of calculating 
effective (Stoner) interaction. 
Works very well in NiO, MnO, MnAs 
(local-moment systems) … 



Spin Waves in Ni	

For larger q,  ω(q) is too high.   
Similar to conclusions by Karlsson and 
Aryasetiawan (J Phys C12, 7617) --
vertex δ ︎Σ/δφ calculated in GW-ASA Σ/δφ calculated in GW-ASA 

They got better agreement by scaling 
matrix elements to reduce ΔEx. 

Similar improvement with QSGW + Bsf  
(RSA ⇒ no optical mode) 

In progress: 
(Swagata Acharya) 
Use DMFT to 
calculate I. 

Adopt approach by 
Park, Haule, and 
Kotliar (PRL 107, 
137007) 



Community Code: Questaal Package 	

CCP9 Flagship code: transform our electronic structure code into 
a community code (CCP9 flagship) with wide user base



Join with the “real materials” part of the Simons Foundation : 
collaboration on the many-electron problem





Questaal Website	


Web site with documentation, tutorials, ticketing system. 
Parts are working; still under development (time consuming!) 
Website temporarily at:  https://lordcephei.github.io/


Download the package at https://bitbucket.org/lmto



Community Aspects 



Unique Features of Questaal Pacakge	

• A long and venerable tradition: descendant of O.K.Andersen 
(Stuttgart) LMTO-ASA (1980’s) and first all-electron GW 
evolved from Aryasetiawan’s GW-ASA (1990’s) 

Unique Attributes 
• A very accurate but minimal and short-range basis – 
essentially optimal 1-particle basis for given hamiltonian rank 
(Pashov)  ⇒  LAPW accuracy, Siesta size (next page) 
• QSGW, and QSGW+BSE (Myrta Gruening) 
• QSGW + electron phonon interaction from MBPT (N. Bonini) 
• Interface to K Haule’s DMFT plans to link to other engines 
 
Future :  
• basis + algorithmic improvements : much faster, more accurate


• Diagrammatic Monte Carlo, FCIQMC





One-Particle Basis : Jigsaw Puzzle Orbitals	

One-particle basis sets play a key role in this business. 
Today these are normally Wannier functions or partial waves. 

1.  Division of labor: 1 partial wave 
carries nearly entire ψ at a point 

   Solves the SE with minimum 
number of basis functions for a 
given accuracy in the four 
dimensions (r,E) 

2. Very short ranged 
3. Atom centered with a fixed l 

Very efficient framework both 
for DFT and many-body theories. 

  (−Δ +V )χ = 0JPO functions satisfy except where it is centred 



Results:   
• Lowest CB is Cu x2−y2 with 
significant O 2p admixed. 

• VBM is O 2p. 
• Cu x2−y2 ↑and ↓ split by 
~10eV 

• Remaining Cu d  pushed 
below O 2p. 

• Magnetic moment M~0.8. 

QSGW  La2CuO4 ordered antiferromagnetic state	

Low To phase: AFM with (π, π) ordering 
QSGW: insulating state with Eg~4eV. 

Failings:   
• Gap ~4eV  >> expt (2 eV) 
• Disorder is expensive 

La f 

x2−y2 

Cu 3d 

O 2p 



CoO shows a pattern very similar to La2CuO4 ….	


LDA QSGW 
EG 0 4.5 
M 2.4 2.8 

Co↓ 

Co↑ 

AFM II spin configuration:   
The 5 Co↑ states are filled   
The 5 Co↓ states split into 3(occ)+2(unocc) separated by a gap.   
The QSGW gap (4.4 eV) is 2 eV too big (experiment ~2.4 eV). 

LDA: a stable AFM state with no gap (TR symmetry). 
The O(2p) – Cu (3d) alignment is ~2 eV  different from GW 

LDA QSGW 



… where NiO does not	


Expt 

QSGW 

The BIS spectra show 3 
distinct peaks: 
• 1 near 4.5 eV (Ni d) 
• 2 near 10 eV (O sp) 
• 3 near 14 eV (mixed) 
QSGW overestimates : 
• 1 by ~1.1 eV (similar to SrTiO3 
and many nonmagnetic TM 
oxides) 
• 2 by 0.3 eV (similar to sp 
semiconductors) 
• 3 by 0.5 eV. 

Conclusion: 
For NiO spin fluctuations less important than in LSCO and CoO,  



Spin fluctuations in LSCO	


Conclusion: 
For NiO spin fluctuations less important than in LSCO and CoO,  

Static χ in LSCO 
DMFT, χ calculation by Swagata Acharya.  Gap ~2.6 eV. 



Novel features of the “Haule” DMFT Philosophy 
Use a wide energy window (20 eV) so : 

•  the orbitals are highly localized (>90% 
overlap with Cu atomic d orbital)   

•  The screening from the bath is greatly 
reduced so the effective interaction 
U(ω) becomes weakly ω-dependent.  
Replace with U(ω) with U(0) for the 
DMFT solver (CTQMC)  

•  The hybridization function  
   has an additional contribution  
   (mostly O 2p) which substitutes  
   for the missing screening of U 

2 2Re
x y−

Δ
Cu d 

O p 



A Q(P,S)GW+DMFT study of La2CuO4	


• QPGW is intermediate between COHSEX and QSGW 
 Σ(ω) is linearized: Σlin(ω)   =  Σ(0)   +  ω Σ’(0) 

Quasiparticlize Σlin(ω) →[Σlin(ωi) +Σlin(ωj)]/2 

QSGW scGW QPGW 

EG 4.0 4.0 3.5 
M 0.8 0.8 0.8 

COHSEX Linear term 

Σlin increases without bound ⇒ QPGW should underestimate 
gaps , while COHSEX should overestimate them 

• QPGW+DMFT performed at Rutgers See NPJ Quantum 
Materials 1, 16001 (2016).  Compare to QSGW+DMFT (KCL) 

Σlin 

ΣGW 

ω 

skip 



La2CuO4 within QPGW+DMFT 

QPGW(A) QPGW(A)
+DMFT 

QPGW(N)
+DMFT 

QSGW(A) QSGW
+DMFT 

Expt 

EG 3.5 1.6 1.5 4.0 2.6 ~2 
M 0.7 0.8 0.8 0.8 0.8 0.4-0.8 

skip 



Conclusions	

1.  GW provides an ab initio framework for optimal G0, through 

QSGW.  QSGW dramatically improves the consistency and 
reliability of G0 and is universally applicable. 

2.  QSGW  alone sometimes sufficient.  (ARPES in Fe, SW in 
NiO, MnO).   But spin fluctuations are missing and they can 
be important (Ni, CoO, La2CuO4) 

3.  LDA+DMFT has been highly successful … 
but LDA is has serious weaknesses.   
Results should be much better using 
QSGW (optimal G0) for bath. 

4.  A new QSGW+”magnetic” DMFT 
approach was developed and applied 
to Ni. 

5.  QSGW+DMFT seems a bit different 
from QPGW+DMFT (LaCu2O4) 



On the QSGW+DMFT Implementation 
1.  Local orbitals from d partial waves in augmentation sphere. 
2.  From quasiparticlized G0 calculate Uijkl within constrained 
RPA and extract static U and J. (For now just pick U and J) 
--- The following steps are iterated to self-consistency --- 
1. Make QSGW ΣGW(k,ω) and quasiparticlized ΣQSGW(k) . 
2. Project G onto Gloc (initially G is the quasiparticlized G0).  
Use Gloc, U, J as inputs to generate ΣDMFT from DMFT.  
5. From ΣDMFT calculate ΣDC (Here, use ΣDC=U(n−1/2)−J(n−1)/2) 
6. Embed (ΣDMFT − ΣDC) into the quasiparticlized G0 to 
construct a new G and generate a new density and Hartree 
potential. 
7. Quasipoarticlize  



QPGW+DMFT(RPA) 
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Figure 3. (color online) (a) Electronic bandstructures within LSDA and spectral functions from (b) non spin-polarized
MQSGW+DMFT (c) and spin-polarized MQSGW+DMFT calculations along the path shown in Fig. 1(b). The Dashed lines
in (b) and (c) represent electronic bandstructures within non spin-polarized MQSGW and spin-polarized MQSGW, respectively

in which there are ∼82 bands at each k point, where
EF is the Fermi level. Then we confirmed that absolute
value of its overlap to the muffin-tin orbital (of which
radial function is determined to maximize electron oc-
cupation in it) is more than 95%. Our choice of energy
window is justified by the Cu-3d spectra being entirely
contained in this window. Using constructed MLWFs
in large energy window, we defined our local-projector
Pi,n(k) =

∑

R ⟨WRi|ψnk⟩ e−ik·R/
√
Nk, where WRi(r) is

MLWF with an index i, ψnk(r) is quasiparticle wavefunc-
tion with an index n, and Nk is the number of k points
in the first Brillouin zone.
Static Ud and JH are evaluated by a modification of

the constrained RPA method [40], which avoids screen-
ing by the strongly hybridized bands. This screening
by hybridization is included in our large energy window
DMFT. For details, see Supplemental Material [38]. We
divide dynamic polarizability within MQSGW approxi-
mation χQP into two parts, χQP = χlow

QP + χhigh
QP . Here,

χlow
QP is defined by all transitions between the states in

the energy window accounted for by the DMFT method
(EF ±10eV ). Using χhigh

QP , we evaluate partially screened

Coulomb interaction U−1(r, r′,k, iωn) = V −1(r, r′,k) −
χhigh
QP (r, r′,k, iωn) and parametrize static Ud and JH by

Slater’s integrals [41, 42], where V is bare Coulomb in-
teraction.
The Feynman graphs included in both MQSGW and

DMFT (double-counting) are the local Hartree and the
local GW diagram. They are computed using the lo-
cal projection of the MQSGW Green’s function (ĜQP )

Ĝloc
QP (iωn) = 1

Nk

∑

k
P̂ (k)ĜQP (k, iωn)P̂ †(k) and the lo-

cal Coulomb matrix Uiklj=
∫

drdr′W ∗
R=0,i(r)W

∗
R=0,k(r

′)
WR=0,l(r′)WR=0,j(r)U(r, r′,R=0, iωn=0):

ΣDC
i,j (iωn) =

∑

k,l=Cu-d

2Gloc
QP,l,k(τ = 0−)Uiklj

−
∑

k,l=Cu-d

∫

dτGloc
QP,l,k(τ)W

loc
ikjl(τ)e

iωnτ ,
(3)

computed by W loc
ikjl(iωn)=Uikjl +

∑

mnpq=Cu-d Uimnlχloc
mpqn(iωn)W loc

pkjq(iωn) and

χloc
mpqn(iωn) = 2

∫

dτGloc
QP,n,p(τ)G

loc
QP,q,m(−τ)eiωτ .

Finally, for the stable numerics, we approximated
Σ̂DC(iωn) ≃ Σ̂DC(iωn = 0) since these low order dia-
grams are dominated by the Hartree-Fock contribution.

Results. Fig. 2(a) shows the frequency dependence
of real and imaginary parts of Ud. It is calculated on
an imaginary frequency axis and analytically continued
using a Pade approximant [44]. We also plot the fully
screened Coulomb interaction Wd for comparison. Static
Ud is 12.5 eV and Ud remains almost constant up to
10 eV. In contrast, in Wd, there are several peaks due
to low-energy collective excitations below 10 eV. At very
high energy, Ud approaches the bare coulomb interac-
tion of 28 eV. Calculated JH is 1.4 eV and has negli-
gible frequency dependence. By contrast, conventional
constrained-RPA, in which 10 bands of mostly Cu-3d
character are excluded from screening, results in static
Ud = 7.6 eV, which is too small to open the Mott gap,
and which is also inconsistent with photoemission exper-
iments on CuO charge transfer insulators [45].

We also computed the static Ud and JH by
requiring that the calculated excitation spectra of
MQSGW+DMFT with (local) GW as the impurity solver
matches the spin-polarized MQSGW spectra. Here we
used non spin-polarized MQSGW band structure and
allowed spontaneous magnetic long range order by em-
bedding impurity self energy, which is function Ud and
JH , within spin-polarized GW approximation. In Fig.
2(b), we allowed Ud to vary between 8-13 eV (at fixed
JH = 1.4 eV) and we plot the size of the indirect gap. The
gap size of this method matches the gap of spin-polarized
MQSGW when Ud ≈ 12 eV. If the choice of Ud and JH is
correct, the resulting spectra must be similar to the pre-
diction of spin-polarized MQSGWmethod. We show this
comparison in Fig. 2(c) to confirm a good match. In ad-
dition, the relative position of Cu-d band (the lowest en-
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QPGW on an Imaginary Frequency axis 
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Self-consistent DMFT from QPGW 

Using MLWF, U and J from cRPA 

From CTQMC impurity solver 
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