Coulomb Interaction in Transition Metal Dichalcogenides Effects on Many-Body Instabilities

M. Rösner^{1,2}, G. Schönhoff^{1,2}, T. O. Wehling^{1,2} R. E. Groenewald³, S. Haas³

Institut f
ür Theoretische Physik, Universit
ät Bremen
 Bremen Center for Computational Materials Science, Universit
ät Bremen
 Department of Physics and Astronomy, University of Southern California

What about U?, ICTP, October 17, 2016

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Outline

- Transition Metal Dichalcogenides
 - Many-Body Effects
 - Theoretical Description
- Interplay of Screening and Superconductivity
 - Conventional and Unconventional Superconductivity
- Conclusions

Transition Metal Dichalcogenides

- TX₂ T: Mo, W, Nb, ... X: S, Se, Te
- structure: 2H, 1T
- semiconducting or metallic

sensitive to the environment
 no environmental screening
 ⇒ enhanced Coulomb interaction

Transition Metal Dichalcogenides

- TX₂ T: Mo, W, Nb, ... X: S, Se, Te
- structure: 2H, 1T
- semiconducting or metallic

- sensitive to the environment
- no environmental screening
 ⇒ enhanced Coulomb interaction

Transition Metal Dichalcogenides

- TX₂ T: Mo, W, Nb, ... X: S, Se, Te
- structure: 2H, 1T
- semiconducting or metallic

- sensitive to the environment
- no environmental screening
- \Rightarrow enhanced Coulomb interaction

Introduction

Many-Body Instabilities in TMDCs

[left] Ye et al., Science 338, 1193 (2012) [right] Xi et al., Nat. Nano. 10, 765 (2015)

Introduction

Many-Body Excitations in TMDCs

Many-Body Effects in TDMCs

- $\Rightarrow\,$ instabilities and excitations strongly depend on doping levels, thicknesses, and environments
- $\Rightarrow\,$ adequate descriptions need
 - precise electronic dispersions
 - accurate Coulomb interactions

involving doping and environmental screening effects

TMDC Model: MoS₂

red: Mo d_{z^2} blue: Mo $d_{xy}+d_{x^2-y^2}$ green: Mo $d_{xz}+d_{yz}$

 \Rightarrow use Mo d_{z^2} , d_{xy} , and $d_{x^2-y^2}$ orbitals to evaluate $t_{lphaeta}$ and $U_{lphaeta\gamma\delta}$

TMDC Model: MoS₂

 \Rightarrow use Mo d_{z^2} , d_{xy} , and $d_{x^2-y^2}$ orbitals to evaluate $t_{lphaeta}$ and $U_{lphaeta\gamma\delta}$

Introduction

TMDC Model: MoS₂ - Coulomb Interactions

- extract U(q), V(q) and $\varepsilon(q)$ from GW calculations
- in Mo d_{z^2} , d_{xy} , $d_{x^2-y^2}$ basis
- $\varepsilon(q \rightarrow 0) \rightarrow 1$: typical 2D screening in semiconductors
- \Rightarrow interband screening

[right] Steinhoff, MR et al., Nano Lett. 14, 3743 (2014)

Introduction

TMDC Model: MoS₂ - Coulomb Interactions

- · dielectric environment yields additional screening channels
- reduces "internal" Coulomb interaction

either: redo ab initio calculations including surrounding material or: use <u>Wannier Function Continuum Electrostatics!</u>

Introduction

Wannier Function Continuum Electrostatics

MR et al., PRB 92, 085102 (2015)

- changing the dielectric environment is a macroscopic electrodynamic problem
- normally hard to combine with atomistic quantum mechanical description
- \Rightarrow utilize Wannier basis $\{\tilde{\alpha}, \tilde{\beta}\}$
 - macroscopic screening is controlled by a single element of the dielectric matrix $\varepsilon_{\tilde{\alpha},\tilde{\beta}}(q)$
 - changing this element changes the environmental screening

Introduction

TMDC Model: MoS₂ - Coulomb Interactions

 use Wannier Function Continuum Electrostatics (WFCE) to include environmental screening

$$\varepsilon_{\text{inter}}^{\text{env}}(q) = \varepsilon_{\infty} \frac{1 - \beta_1 \beta_2 e^{-2qd}}{1 + (\beta_1 + \beta_2) e^{-qd} + \beta_1 \beta_2 e^{-2qd}} \qquad \beta_i = \frac{\varepsilon_{\infty} - \varepsilon_{\text{sub},i}}{\varepsilon_{\infty} + \varepsilon_{\text{sub},i}}$$

$\Rightarrow\,$ interband and environmental screening

[right] Schönhoff, MR et al., PRB 94, 134504 (2016)

Introduction

TMDC Model: MoS₂ - Coulomb Interactions

evaluate RPA bubble to add doping-induced intra-band screening

 $arepsilon_{\mathsf{full}}(\mathbf{q},\omega) = 1 - V_{\mathsf{inter}}^{\mathsf{env}}(q) \Pi(\mathbf{q},\omega) \qquad V_{\mathsf{inter}}^{\mathsf{env}}(q) = \left[arepsilon_{\mathsf{inter}}^{\mathsf{env}}(q)\right]^{-1} U(q)$

 $\Rightarrow\,$ interband, intraband, and environmental screening

$$W(\mathbf{q},\omega) = \left[arepsilon_{\mathsf{full}}(\mathbf{q},\omega)
ight]^{-1} V^{\mathsf{env}}_{\mathsf{inter}}(q)$$

[right] Schönhoff, MR et al., PRB 94, 134504 (2016)

Interplay of Screening and Superconductivity

Malte Rösner - University of Bremen Interplay of Screening and Superconductivity

Unconventional Superconductivity in Doped MoS₂

 $\mu_{\text{inter}} > \mu_{\text{intra}}$

Malte Rösner - University of Bremen Interplay of Screening and Superconductivity

- ε_{sub} influence to ...
 - μ_{intra} strong
 - μ_{inter} negligible
- $\mu_{\text{intra}} > \mu_{\text{inter}}$
- ⇒ no Coulomb-driven unconventional superconductivity
- ⇒ additional renormalizations or spin fluctuations needed

- ε_{sub} influence to ...
 - μ_{intra} strong
 - μ_{inter} negligible
- $\mu_{\text{intra}} > \mu_{\text{inter}}$
- ⇒ no Coulomb-driven unconventional superconductivity
- ⇒ additional renormalizations or spin fluctuations needed

- ε_{sub} influence to ...
 - μ_{intra} strong
 - μ_{inter} negligible
 - $\mu_{ ext{intra}} > \mu_{ ext{inter}}$
- ⇒ no Coulomb-driven unconventional superconductivity
- ⇒ additional renormalizations or spin fluctuations needed

- ε_{sub} influence to ...
 - μ_{intra} strong
 - μ_{inter} negligible
- $\mu_{\mathsf{intra}} > \mu_{\mathsf{inter}}$
- ⇒ no Coulomb-driven unconventional superconductivity
- ⇒ additional renormalizations or spin fluctuations needed

- ε_{sub} influence to ...
 - μ_{intra} strong
 - μ_{inter} negligible
- $\mu_{intra} > \mu_{inter}$
- \Rightarrow no Coulomb-driven unconventional superconductivity
- \Rightarrow additional renormalizations or spin fluctuations needed

Eliashberg / Allen-Dynes theory

$$egin{aligned} \mathcal{T}_{\mathrm{c}} &= \ & rac{\hbar\omega_{\mathrm{log}}}{1.2k_{\mathrm{B}}} \exp\left[rac{-1.04(1+\lambda)}{\lambda(1-0.62\mu^{*})-\mu^{*}}
ight] \end{aligned}$$

- $\omega_{\rm log}$: typical ph. frequency
 - λ : el.-ph. coupling
 - μ^* : Coulomb pseudo potential

• significant T_c for $\lambda/3 > \mu^*$

- fits reasonable well
- ... but: What about μ^* ?

Eliashberg / Allen-Dynes theory

$$egin{split} T_{
m c} = \ & rac{\hbar\omega_{
m log}}{1.2k_{
m B}} \exp\left[rac{-1.04(1+\lambda)}{\lambda(1-0.62\mu^*)-\mu^*}
ight] \end{split}$$

- $\omega_{\rm log}$: typical ph. frequency
 - λ : el.-ph. coupling
 - μ^* : Coulomb pseudo potential
- significant T_c for $\lambda/3 > \mu^*$
- fits reasonable well
- ... but: What about μ^* ?

Eliashberg / Allen-Dynes theory

$$egin{split} T_{
m c} = \ & rac{\hbar\omega_{
m log}}{1.2k_{
m B}} \exp\left[rac{-1.04(1+\lambda)}{\lambda(1-0.62\mu^*)-\mu^*}
ight] \end{split}$$

- ω_{\log} : typical ph. frequency
 - λ : el.-ph. coupling
 - μ^* : Coulomb pseudo potential
- significant T_c for $\lambda/3 > \mu^*$
- fits reasonable well

• ... but: What about μ^* ?

Eliashberg / Allen-Dynes theory

$$egin{split} T_{
m c} = \ & rac{\hbar\omega_{
m log}}{1.2k_{
m B}} \exp\left[rac{-1.04(1+\lambda)}{\lambda(1-0.62\mu^*)-\mu^*}
ight] \end{split}$$

- ω_{\log} : typical ph. frequency
 - λ : el.-ph. coupling
 - μ^* : Coulomb pseudo potential
- significant T_c for $\lambda/3 > \mu^*$
- fits reasonable well
- ... but: What about μ*?

Malte Rösner - University of Bremen Interplay of Screening and Superconductivity

Conventional Superconductivity in Doped MoS₂

Coulomb pseudo potential $\mu^* = \frac{\mu}{1 + \mu \ln[\frac{E_F}{\omega_{\log}}]}$

 μ^{i}

$$^{*} = rac{\mu}{1+\mu \ln[rac{E_{F}}{\omega_{\log}}]}$$

≙

averaged Coulomb interaction

$$\mu = \frac{1}{N(E_F)} \sum_{\mathbf{k}\mathbf{k}'} W(\mathbf{k} - \mathbf{k}', \omega = 0) \delta(\epsilon_{\mathbf{k}} - E_F) \delta(\epsilon_{\mathbf{k}'} - E_F)$$

• for small doping (K occupation) μ^* strongly depends on doping

- at high doping levels (K and Σ occupation) μ^*pprox 0.15 is reasonable
- environmental screening is negligible for high doping levels
- \Rightarrow no significant T_c reduction via dielectric screening at optimal doping

• for small doping (K occupation) μ^* strongly depends on doping

- at high doping levels (K and Σ occupation) μ^*pprox 0.15 is reasonable
- environmental screening is negligible for high doping levels
- \Rightarrow no significant T_c reduction via dielectric screening at optimal doping

• for small doping (K occupation) μ^* strongly depends on doping

• at high doping levels (K and Σ occupation) $\mu^* pprox 0.15$ is reasonable

• environmental screening is negligible for high doping levels

 \Rightarrow no significant \mathcal{T}_c reduction via dielectric screening at optimal doping

- for small doping (K occupation) μ^* strongly depends on doping
- at high doping levels (K and Σ occupation) μ^*pprox 0.15 is reasonable
- environmental screening is negligible for high doping levels

 \Rightarrow no significant \mathcal{T}_c reduction via dielectric screening at optimal doping

- for small doping (K occupation) μ^* strongly depends on doping
- at high doping levels (K and Σ occupation) μ^*pprox 0.15 is reasonable
- environmental screening is negligible for high doping levels

 \Rightarrow no significant \mathcal{T}_c reduction via dielectric screening at optimal doping

- for small doping (K occupation) μ^* strongly depends on doping
- at high doping levels (K and Σ occupation) $\mu^* pprox 0.15$ is reasonable
- environmental screening is negligible for high doping levels
- \Rightarrow no significant T_c reduction via dielectric screening at optimal doping

- although environment strongly influences the Coulomb interaction
- there is just a vanishing effect to superconducting properties
- \Rightarrow layer dependence of T_c might trace back
 - CDW / SC interaction
 - enhanced impurity concentrations

- although environment strongly influences the Coulomb interaction
- there is just a vanishing effect to superconducting properties
- \Rightarrow layer dependence of T_c might trace back
 - CDW / SC interaction
 - enhanced impurity concentrations

- although environment strongly influences the Coulomb interaction
- there is just a vanishing effect to superconducting properties
- \Rightarrow layer dependence of T_c might trace back
 - CDW / SC interaction
 - enhanced impurity concentrations

- although environment strongly influences the Coulomb interaction
- there is just a vanishing effect to superconducting properties
- \Rightarrow layer dependence of T_c might trace back
 - CDW / SC interaction
 - enhanced impurity concentrations

Malte Rösner - University of Bremen OL

Outlook

Many-Body Excitations in TMDC Semiconductors

Outlook

Many-Body Excitations in TMDC Semiconductors

Malte Rösner - University of Bremen Ou

Outlook

Many-Body Excitations in TMDC Semiconductors

Outlook

Many-Body Excitations in TMDC Metals

Thank you for your attention!