Spontaneous spin textures in Hubbard systems

Jan Kuneš TU Wien Institute of Physics CAS Prague

in collaboration with *Dominique Geffroy* (Masaryk University, Brno)

European Research Council

DFG Research Unit FOR1346

Cite as: P. Wadley *et al.*, *Science* 10.1126/science.aab1031 (2016).

Electrical switching of an antiferromagnet

P. Wadley,^{1*†} B. Howells,^{1*} J. Železný,^{2,3} C. Andrews,¹ V. Hills,¹ R. P. Campion,¹ V. Novák,² K. Olejník,² F. Maccherozzi,⁴ S. S. Dhesi,⁴ S. Y. Martin,⁵ T. Wagner,^{5,6} J. Wunderlich,^{2,5} F. Freimuth,⁷ Y. Mokrousov,⁷ J. Kuneš,⁸ J. S. Chauhan,¹ M. J. Grzybowski,^{1,9} A. W. Rushforth,¹ K. W. Edmonds,¹ B. L. Gallagher,¹ T. Jungwirth,^{2,1}

ARTICLE

OPEN

Spin-texture inversion in the giant Rashba semiconductor BiTel

Henriette Maaß¹, Hendrik Bentmann¹, Christoph Seibel¹, Christian Tusche², Sergey V. Eremeev^{3,4,5}, Thiago R.F. Peixoto¹, Oleg E. Tereshchenko^{5,6,7}, Konstantin A. Kokh^{5,7,8}, Evgueni V. Chulkov^{4,5,9,10}, Jürgen Kirschner² & Friedrich Reinert¹

Spin texture

- no spin polarization in direct space $\mathbf{m}(\mathbf{r}) = 0$
- finite polarization in the k-space $\mathbf{m}_{-\mathbf{k}} = -\mathbf{m}_{\mathbf{k}}$

~ can be realized in non-centrosymmetric systems with spinorbit coupling (Rashba/Dresselhaus SOC).

Here I will present how spin textures can be generated by spontaneous symmetry breaking in multi-band Hubbard models.

The key ingredients are: condensation of spinful excitons generalized double-exchange

The model

Two-band Hubbard model at n=2 (half filling)

$$\begin{split} H_{\rm t} &= \frac{\Delta}{2} \sum_{i,\sigma} \left(n_{i\sigma}^a - n_{i\sigma}^b \right) + \sum_{i,j,\sigma} \left(t_a a_{i\sigma}^{\dagger} a_{j\sigma} + t_b b_{i\sigma}^{\dagger} b_{j\sigma} \right) \\ &+ \sum_{\langle ij \rangle, \sigma} \left(V_1 a_{i\sigma}^{\dagger} b_{j\sigma} + V_2 b_{i\sigma}^{\dagger} a_{j\sigma} + c.c. \right) \\ H_{\rm int}^{\rm dd} &= U \sum_i \left(n_{i\uparrow}^a n_{i\downarrow}^a + n_{i\uparrow}^b n_{i\downarrow}^b \right) + (U - 2J) \sum_{i,\sigma} n_{i\sigma}^a n_{i-\sigma}^b \\ &+ (U - 3J) \sum_{i\sigma} n_{i\sigma}^a n_{i\sigma}^b \\ H_{\rm int}' &= J \sum_{i\sigma} a_{i\sigma}^{\dagger} b_{i-\sigma}^{\dagger} a_{i-\sigma} b_{i\sigma} + J' \sum_i \left(a_{i\uparrow}^{\dagger} a_{i\downarrow}^{\dagger} b_{i\downarrow} b_{i\uparrow} + c.c. \right). \end{split}$$

John Hubbard

Proximity to spin-state crossover

Two-band Hubbard model at n=2 (half filling)

$$H_{t} = \frac{\Delta}{2} \sum_{i,\sigma} \left(n_{i\sigma}^{a} - n_{i\sigma}^{b} \right) + \sum_{i,j,\sigma} \left(t_{a} a_{i\sigma}^{\dagger} a_{j\sigma} + t_{b} b_{i\sigma}^{\dagger} b_{j\sigma} \right)$$
$$+ \sum_{\langle ij \rangle,\sigma} \left(V_{1} a_{i\sigma}^{\dagger} b_{j\sigma} + V_{2} b_{i\sigma}^{\dagger} a_{j\sigma} + c.c. \right)$$
$$H_{int}^{dd} = U \sum \left(n_{i\uparrow}^{a} n_{i\downarrow}^{a} + n_{i\uparrow}^{b} n_{i\downarrow}^{b} \right) + (U - 2J)$$

Competition of Hund's coupling J and crystal-field Δ

We are interested in $E_{LS} \simeq E_{HS}$

Friedrich H. Hund

Strong-coupling limit (hard-core bosons)

What is exciton condensate?

Strong coupling theory

Balents 2000 Rademaker et al. 2012-2014 bilayer Heisenberg model

Strong coupling theory

• Decouple it from the high-energy states (Schrieffer-Wolff transformation)

Effective Hamiltonian:

$$H_{\text{eff}} = \varepsilon \sum_{i} n_{i} + K_{\perp} \sum_{\langle ij \rangle} \left(\mathbf{d}_{i}^{\dagger} \cdot \mathbf{d}_{j} + H.c. \right) + K_{\parallel} \sum_{\langle ij \rangle} n_{i}n_{j} + K_{0} \sum_{\langle ij \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + K_{1} \sum_{\langle ij \rangle} \left(\mathbf{d}_{i}^{\dagger} \cdot \mathbf{d}_{j}^{\dagger} + H.c. \right) + \dots$$

Strong coupling

d-bosons are mobile !

Effective Hamiltonian:

$$H_{\text{eff}} = \varepsilon \sum_{i} n_{i} + K_{\perp} \sum_{\langle ij \rangle} \left(\mathbf{d}_{i}^{\dagger} \cdot \mathbf{d}_{j} + H.c. \right) + K_{\parallel} \sum_{\langle ij \rangle} n_{i}n_{j} + K_{0} \sum_{\langle ij \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + K_{1} \sum_{\langle ij \rangle} \left(\mathbf{d}_{i}^{\dagger} \cdot \mathbf{d}_{j}^{\dagger} + H.c. \right) + \dots$$

Mean-field theory

$$H_{\text{eff}} = \underbrace{\varepsilon}_{i} n_{i} + K_{\perp} \sum_{\langle ij \rangle} \left(\mathbf{d}_{i}^{\dagger} \cdot \mathbf{d}_{j} + H.c. \right) + K_{\parallel} \sum_{\langle ij \rangle} n_{i} n_{j} + K_{0} \sum_{\langle ij \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$

excitations in the normal state

d-occupancy: $\langle n \rangle = 0$

Mean-field theory

$$H_{\text{eff}} = \underbrace{\varepsilon}_{i} n_{i} + K_{\perp} \sum_{\langle ij \rangle} \left(\mathbf{d}_{i}^{\dagger} \cdot \mathbf{d}_{j} + H.c. \right) + K_{\parallel} \sum_{\langle ij \rangle} n_{i} n_{j} + K_{0} \sum_{\langle ij \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$

excitations of the condensate

Mean-field theory

 $H_{\text{eff}} = \varepsilon \sum_{i} n_{i} + \underbrace{K_{\perp}}_{\langle ij \rangle} \left(\mathbf{d}_{i}^{\dagger} \cdot \mathbf{d}_{j} + H.c. \right) + K_{\parallel} \sum_{\langle ij \rangle} n_{i}n_{j} + K_{0} \sum_{\langle ij \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$

Augustinský and Kuneš, 2014

Bose-Einstein condensate of d-bosons

d-occupancy: $0 < \langle n \rangle < 1$

Exciton condensate

Degenerate excitations -> distinct condensates possible

$$|C_{i}\rangle \begin{cases} \alpha |\cdots\rangle + \beta | \downarrow\rangle \\ \alpha |\cdots\rangle + \beta' | \downarrow\rangle + \beta' | \uparrow\rangle \end{cases}$$

ferromagnetic condensate

polar condensate

$$|C\rangle = \prod_i |C_i\rangle$$

approx. condensate wavefunction

order parameter

$$\overrightarrow{\phi} = \sum_{\sigma,\sigma'} \langle a^{\dagger}_{\sigma} b_{\sigma'} \rangle \overrightarrow{\tau}_{\sigma\sigma'} \quad \sim \alpha^* \beta$$

Back to fermions (DMFT)

" fermion = $boson^{1/2}$ " adds a lot of extra structure

Undoped system - polar condensate

Spectral density (diagonal elements)

Undoped system - polar condensate

Doping (V=0)

n-T phase diagram

Competition between AFM super-exchange (PEC) and **double-exchange** (FMEC)

$$\overrightarrow{\phi} = \sum_{\sigma,\sigma'} \langle a^{\dagger}_{\sigma} b_{\sigma'} \rangle \overrightarrow{\tau}_{\sigma\sigma'}$$

$$\overrightarrow{\phi} = \exp(i\varphi)\overrightarrow{x}$$
$$\overrightarrow{M} = i\overrightarrow{\phi}^* \wedge \overrightarrow{\phi}$$

PEC - polar condensate

FMEC - ferromagnetic condensate

Finite cross-hopping

 α, β

Spin texture

Dynamically generated Dresselhaus-Rashba spin-orbit coupling centrosymmetric Hamiltonian, no spin-orbit coupling

$$H_{\rm eff} = \sum_{\langle ij \rangle} \bar{h}_{\alpha\beta} c^{\dagger}_{i\alpha} c_{j\beta} + {\rm h.c.}$$

 $h_{\alpha\beta}^{(ij)} = \langle \alpha_i C_j | H | C_i \beta_j \rangle$ $\alpha, \beta \in \{\uparrow, \downarrow\}$

$$\bar{h} = t_s \bar{I} - \frac{it_a}{4s^2} \left(\boldsymbol{\phi}^* \wedge \boldsymbol{\phi} \right) \cdot \bar{\boldsymbol{\sigma}} + \frac{1}{2} \left(V_1 \boldsymbol{\phi} + V_2 \boldsymbol{\phi}^* \right) \cdot \bar{\boldsymbol{\sigma}}$$

$$\bar{h} = t_s \bar{I} - \frac{\imath t_a}{4s^2} \left(\phi^* \wedge \phi \right) \cdot \bar{\sigma} + \frac{1}{2} \left(V_1 \phi + V_2 \phi^* \right) \cdot \bar{\sigma}$$

Field acting on bonds is local in k-space:

$$\bar{h}_{\mathbf{k}} = 2t_s \bar{I} C_{\mathbf{k}} + 2V_1 \boldsymbol{\phi} \cdot \bar{\boldsymbol{\sigma}} \begin{cases} C_{\mathbf{k}} & \text{SDW'} \\ iS_{\mathbf{k}} & \text{CSDW'} \end{cases}$$

with $C_{\mathbf{k}} = \cos k_x + \cos k_y, \quad S_{\mathbf{k}} = \sin k_x + \sin k_y$

- PEC state (intra atomic level)
- effective exchange on the bonds (inter atomic level)
- global spin-currents or FM polarization (inter cell level)

- PEC state (intra atomic level)
- effective exchange on bonds (inter atomic level)
- global spin-currents or FM polarization (inter cell level)

 $\cos k_x + \cos k_y$

- PEC state (intra atomic level)
- effective exchange on bonds (inter atomic level)
- global spin-currents or FM polarization (inter cell level)

 $\cos k_x + \cos k_y$

 $\cos k_x - \cos k_y$

- PEC state (intra atomic level)
- effective exchange on bonds (inter atomic level)
- global spin-currents or FM polarization (inter cell level)

Conclusions

- Solids close to **spin-state transition** are unstable towards **condensation of spinful excitons**.
- Excitonic condensation can give rise to a **number of phases** with rather diverse properties.
- **Doping** activates generalised double-exchange mechanism with interesting consequences (e.g. spontaneous spin texture)

J. Phys.: Condensed. Matter **27**, 333201 (2015) - Topical Review Phys. Rev. Lett. **116**, 256403 (2016)

Spin texture

Spin-galvanic effect

Magnetic field generates charge current

Spin-galvanic effect

Magnetic field generates charge current

poor man's treatment (using $\Sigma_{B=0}$)

spin distribution m_k @ B=0

