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 In charge-based information devices, perturbations such as 
ionizing radiation can lead to data loss. In contrast, spin-
based devices, in which different magnetic moment orienta-
tions in a ferromagnet (FM) represent the zeros and ones 
(1), are robust against charge perturbations. However, the 
FM moments can be unintentionally reoriented and the da-
ta erased by perturbing magnetic fields generated externally 
or internally within the memory circuitry. If magnetic 
memories were based on antiferromagnets (AFMs) instead, 
they would be robust against charge and magnetic field per-
turbations. Additional advantages of AFMs compared to 
FMs include the invisibility of data stored in AFMs to exter-
nal magnetic probes, ultrafast spin dynamics in AFMs, and 
the broad range of metal, semiconductor, or insulator mate-
rials with room-temperature AFM order (2–7). 

The energy barrier separating stable orientations of or-
dered spins is due to the magnetic anisotropy energy. It is 
an even function of the magnetic moment which implies 
that the magnetic anisotropy and the corresponding 
memory functionality are readily present in both FMs and 
AFMs (8, 9). The magneto-transport counterpart of the 
magnetic anisotropy energy is the anisotropic magnetore-
sistance (AMR). In the early 1990’s, the first generation of 
FM MRAM micro-devices used AMR for the electrical read-
out of the memory state (10). AMR is an even function of the 
magnetic moment which again implies its presence in AFMs 

(11). Although AMR in AFMs was experimentally confirmed 
in several recent studies (12–17), efficient means for manipu-
lating AFM moments have remained elusive. 

It has been proposed that current-induced spin transfer 
torques of the form / ~ ( )dM dt M M pu u , which are used 

for electrical writing in the most advanced FM magnetic 
random access memories (MRAMs) (1), could also produce 
large angle reorientation of the AFM moments (18). In these 
antidamping-like torques, M  is the magnetic moment vec-
tor and p  is the electrically injected carrier spin-

polarization. Translated to AFMs, the effective field propor-
tional to ,( )A BM pu  that drives the antidamping-like torque 

, , ,/ ~ ( )A B A B A BdM dt M M pu u  on individual spin sublattices 

A and B has the favorable staggered property, i.e., alternates 
in sign between the opposite spin sublattices. 

In FM spin-transfer-torque MRAMs, spin polarized car-
riers are injected into the free FM layer from a fixed FM 
polarizer by an out-of-plane electrical current driven 
through the FM-FM stack. In analogy, Ref. (18) assumes in-
jection of the spin polarized carriers into the AFM from a 
fixed FM polarizer by out-of-plane electrical current driven 
in a FM-AFM stack. However, relativistic spin-orbit coupling 
may offer staggered current-induced fields which do not 
require external polarizers and which act in bare AFM crys-
tals (19). The effect occurs in AFMs with specific crystal and 
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Semiconductors with strong spin–orbit interaction as the underlying mechanism for the

generation of spin-polarized electrons are showing potential for applications in spintronic

devices. Unveiling the full spin texture in momentum space for such materials and its relation

to the microscopic structure of the electronic wave functions is experimentally challenging

and yet essential for exploiting spin–orbit effects for spin manipulation. Here we employ a

state-of-the-art photoelectron momentum microscope with a multichannel spin filter to

directly image the spin texture of the layered polar semiconductor BiTeI within the full

two-dimensional momentum plane. Our experimental results, supported by relativistic ab

initio calculations, demonstrate that the valence and conduction band electrons in BiTeI have

spin textures of opposite chirality and of pronounced orbital dependence beyond the standard

Rashba model, the latter giving rise to strong optical selection-rule effects on the

photoelectron spin polarization. These observations open avenues for spin-texture

manipulation by atomic-layer and charge carrier control in polar semiconductors.
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V=0

!
• no spin polarization in direct space m(r) = 0	
• finite polarization in the k-space m-k = -mk	
!
~ can be realized in non-centrosymmetric systems with spin-
orbit coupling (Rashba/Dresselhaus SOC).	
!
!
Here I will present how spin textures can be generated by 
spontaneous symmetry breaking in multi-band Hubbard 
models.	
!
The key ingredients are:	
	 condensation of spinful excitons	
	 generalized double-exchange	
!
!
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FIG. 2: (color online) The typical q-dependence of the lead-
ing eigenvalues of the susceptibility matrix: spin longitudinal
(red), OD (green) and OO (blue) in a system with a large
band asymmetry ζ = 0.22, ∆ = 3.40 at temperatures 773 K,
644 K and 580 K (left to right).

briefly discuss the classical limit, which provides the sim-
ple understanding of the HS-LS phase, and then focus on
various aspects of the excitonic phase. In Section V we
summarize our main findings.

II. COMPUTATIONAL PROCEDURE

We consider the two-band Hubbard mode with nearest-
neighbor (nn) hopping on a bipartite (square) lattice with
the kinetic Ht and the interaction Hint = Hdd

int + H ′
int

terms given by

Ht =
∆

2

∑
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(

na
iσ − nb
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+
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†
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†
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†
iσajσ + c.c.

)

Hdd
int = U
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i
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na
i↑n

a
i↓ + nb

i↑n
b
i↓
)

+ (U − 2J)
∑

i,σ

na
iσnb

i−σ

+ (U − 3J)
∑

iσ

na
iσnb

iσ

H ′
int = J

∑

iσ

a†
iσb†i−σai−σbiσ + J ′

∑

i

(

a†
i↑a

†
i↓bi↓bi↑ + c.c.

)

.

(1)

Here a†
iσ , b†iσ are the creation operators of fermions with

spin σ =↑, ↓ and nc
iσ = c†iσciσ. Symbol

∑

i,j implies
summation over ordered nn pairs, while

∑

⟨ij⟩ implies
summation over nn bonds (pairs without order). The
model is studied at half filling, two electrons per site on
average. The crystal field ∆ and the Hund’s exchange
J are chosen so that the system is in the vicinity of the
LS-HS transition.

The numerical calculations were performed in the dy-
namical mean-field approximation24,25 with the density-
density interaction Hdd

int only. The effect of adding H ′
int
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FIG. 3: (color online) Left: Leading eigenvalues for equal
bandwidths (ζ = 1) and ∆ = 3.40 eV at 1160 K. The blue
OO mode diverges faster than the green OD mode. Right:
Splitting of the OO mode from (b) due to added cross-hopping
V1,2 = 0.1 eV . The leading mode (two-fold degenerate) has
the form a†

σb−σ + b†σa−σ with σ =↑, ↓.

is considered in Section IV. We use the hybridization
expansion continuous time quantum Monte Carlo (CT-
HYB)26,27 to solve the auxiliary impurity problem and
obtain the local one-particle (1P) and two-particle (2P)
propagators. For selected parameters we have bench-
marked the CT-HYB results against those obtained with
the Hirsch-Fye implementation of the present proce-
dure11.

In order to study phase transitions, we search numer-
ically for divergent static particle-hole susceptibilities in
the disordered high temperature phase. The lattice sus-
ceptibility χαβ,γδ(T,q) is a q-dependent matrix function
indexed by pairs of spin-orbital indices. It is calculated
from the Bethe-Salpeter equation as a function of the full
1P propagator and the 2P-irreducible vertex. The cru-
cial DMFT simplification consists in the fact that the 2P
irreducible vertex is k-independent and equals the impu-
rity 2P irreducible vertex24. Therefore the momentum
dependence of χ(T,q) comes entirely from the 1P prop-
agator.

We calculate χ(T,q) on dense q-mesh in the Brillouin
zone, diagonalize for every q, and identify the largest
eigenvalues with the corresponding eigenvectors. The
transition temperature is obtained from the zero cross-
ing χ−1

λ (Tc) = 0 of the inverse of the largest eigenvalue
χ−1

λ (T,q) = 0. The advantage of this approach is that
no prior assumptions about the symmetry of the ordered
phase is needed.

III. NUMERICAL RESULTS

Following Ref. 11, we set U=4, J=1 and use eV as
energy units to allow for a straightforward comparison.
The basic phase diagram of model (1) at half filling was
computed by Werner and Millis9 and its cartoon version
is presented in Fig. 1. We are interested in a small region

The model
 Two-band Hubbard model at n=2 (half filling)

ta

tb

V

｜a ⟩

｜b ⟩

John Hubbard

doping 
cross-hopping
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ing eigenvalues of the susceptibility matrix: spin longitudinal
(red), OD (green) and OO (blue) in a system with a large
band asymmetry ζ = 0.22, ∆ = 3.40 at temperatures 773 K,
644 K and 580 K (left to right).

briefly discuss the classical limit, which provides the sim-
ple understanding of the HS-LS phase, and then focus on
various aspects of the excitonic phase. In Section V we
summarize our main findings.

II. COMPUTATIONAL PROCEDURE

We consider the two-band Hubbard mode with nearest-
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summation over nn bonds (pairs without order). The
model is studied at half filling, two electrons per site on
average. The crystal field ∆ and the Hund’s exchange
J are chosen so that the system is in the vicinity of the
LS-HS transition.

The numerical calculations were performed in the dy-
namical mean-field approximation24,25 with the density-
density interaction Hdd

int only. The effect of adding H ′
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is considered in Section IV. We use the hybridization
expansion continuous time quantum Monte Carlo (CT-
HYB)26,27 to solve the auxiliary impurity problem and
obtain the local one-particle (1P) and two-particle (2P)
propagators. For selected parameters we have bench-
marked the CT-HYB results against those obtained with
the Hirsch-Fye implementation of the present proce-
dure11.

In order to study phase transitions, we search numer-
ically for divergent static particle-hole susceptibilities in
the disordered high temperature phase. The lattice sus-
ceptibility χαβ,γδ(T,q) is a q-dependent matrix function
indexed by pairs of spin-orbital indices. It is calculated
from the Bethe-Salpeter equation as a function of the full
1P propagator and the 2P-irreducible vertex. The cru-
cial DMFT simplification consists in the fact that the 2P
irreducible vertex is k-independent and equals the impu-
rity 2P irreducible vertex24. Therefore the momentum
dependence of χ(T,q) comes entirely from the 1P prop-
agator.

We calculate χ(T,q) on dense q-mesh in the Brillouin
zone, diagonalize for every q, and identify the largest
eigenvalues with the corresponding eigenvectors. The
transition temperature is obtained from the zero cross-
ing χ−1

λ (Tc) = 0 of the inverse of the largest eigenvalue
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λ (T,q) = 0. The advantage of this approach is that
no prior assumptions about the symmetry of the ordered
phase is needed.

III. NUMERICAL RESULTS

Following Ref. 11, we set U=4, J=1 and use eV as
energy units to allow for a straightforward comparison.
The basic phase diagram of model (1) at half filling was
computed by Werner and Millis9 and its cartoon version
is presented in Fig. 1. We are interested in a small region

 Proximity to spin-state crossover 
 Two-band Hubbard model at n=2 (half filling)

low spin	
S=0

high spin (triplet)	
   S=1

 Competition of Hund’s coupling J and	
crystal-field Δ 	
!
We are interested in ELS ≃ EHS

t

t
V

｜

｜

Δ

Friedrich H. Hund



Strong-coupling limit  
(hard-core bosons)

What is exciton condensate?



 Strong coupling theory 

• Define restricted low-energy Hilbert space  		 	 	 	  

LS -> HS transition 

｜ ⟩

｜ ⟩｜ ⟩｜     ⟩+, ,

Fermions		 	 	 	 	 	 	 	 	            Bosons (hard-core) 

low-spin state  

high-spin state  

vacuum  

S=1 boson

a†#b" d†�1

, ,

creation of a boson

, … , …

Balents 2000 
Rademaker et al. 2012-2014 
bilayer Heisenberg model 



 Strong coupling theory 
• Decouple it from the high-energy states (Schrieffer-Wolff transformation)

Typical 2nd order processes:
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Effective Hamiltonian:
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d

d-bosons  are mobile !



 Mean-field theory 
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α β｜⟩ + ｜⟩

Exciton condensate

Degenerate excitations -> distinct condensates possible

ferromagnetic condensate

｜⟩α β’｜⟩+ ｜⟩+ β’ polar condensate
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Back to fermions 
(DMFT)

“ fermion = boson1/2 “ adds a lot of extra structure



 Undoped system - polar condensate
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FIG. 3: Left, the evolution of the one-particle spectral function corresponding to a and b orbitals with tem-

perature between 1160 K (bottom) and 290 K (top). Right, the optical conductivity in the same temperature

range. In the normal phase (red) the height of the Drude peak increases with decreasing temperature. Low-

ering the temperature below Tc (blue) leads to suppression of the Drude peak and transfer of the spectral

weight to higher energy. The inset shows the evolution of the dc resistivity.

captures the features (i)-(iii) observed in PCCO.

Next, we address the Pr3+ →Pr4+ valence transition and the fact that experimental transition

is observed in a doped system. An isostructural valence transition points to a near degeneracy

of the two charge states of the Pr 4f shell, which therefore acts as a charge reservoir keeping the

CoO3 subsystem at a fixed chemical potential rather than fixed particle density. Therefore we

have repeated the calculations at fixed chemical potential. In Fig. 2 we show the temperature

dependences of the order parameter |φ| and the particle density n, which reflects the average Pr

valence in the real material. Doping the system away from half filling leads to reduction of Tc.

While n(T ) is almost constant above Tc, below Tc the system draws particles from the reservoir to

approach the half filling in a process controlled by gain in the condensation energy and the energy

cost of adding electrons. This agrees well with the experimental behavior of the Pr valence6. Both

in experiment and in the model the average Pr valence changes rapidly, but continuously around Tc.
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While n(T ) is almost constant above Tc, below Tc the system draws particles from the reservoir to

approach the half filling in a process controlled by gain in the condensation energy and the energy

cost of adding electrons. This agrees well with the experimental behavior of the Pr valence6. Both

in experiment and in the model the average Pr valence changes rapidly, but continuously around Tc.
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and compare them to the V
1,2

= 0 phase diagram from
Ref. 18. Characteristics for the di↵erent phases are sum-
marised in Table I. We start from the V = 0 phase dia-
gram18 in Fig. 2a. The V

1,2

= 0 phase diagram contains
three distinct ordered states: polar exciton condensate
(PEC) and ferromagnetic exciton condensates (FMEC,
FMEC’). We do not distinguish between the FMEC and
FMEC’ here as they become indistinguishable for any fi-
nite V

1,2

. PEC has not ordered spin moments, M = 0,
and � = ei'x (real vector x times an arbitrary scalar
phase '). FMEC is characterised by finite M and the
order parameter of the form � = x + ix0 (with non-
collinear real vectors x and x

0). In the undoped systems
PEC is stabilized by anti-ferromagnetic nearest-neighbor
interaction.14

Cross-hopping removes the '-degeneracy of the PEC
state and selects, depending on the sign of the product
V
1

V
2

,12 the PEC order parameter � to be either real or
purely imaginary. These spin-density-wave (SDW; real
�) and spin-current-density-wave (SCDW; imaginary �)
condensates, introduced by Halperin and Rice,13 are dis-
tinguished by their symmetry under time reversal, re-
flected in the presence or absence of spin polarization
m(r) = 0.22

Doping has a profound e↵ect on the phase diagrams in
Fig. 2. It can be understood by invoking the generalized
double exchange mechanism, recently used by Chaloupka
and Khaliullin to study ruthenates.19 Analogous to the
well-known Zener double exchange20 in manganites, the

TABLE I: The characteristics of di↵erent condensate phases:
M? and Mk is magnetic moment per atom perpendicular and
parallel to the order parameter �, respectively; m(r) magne-
tization in direct space, mk magnetization is reciprocal space.
Mk in FMEC state is finite for even and zero for odd cross-
hopping.

Condensate state M? Mk m(r) mk Re� Im�
FMEC 3 3, 0 3 3 3 3
SDW 0 0 3 0 3 0
SCDW 0 0 0 0 0 3
SDW’ 0 3 3 3 3 0
SCDW’ 0 0 0 3 0 3

exciton condensate acts as a filter for propagation of
doped carriers. The stable phase is determined by the
competition between the kinetic energy of doped carriers
and the energy di↵erence between possible condensates.
In the strong coupling limit, propagation of a single

electron through the condensate with order parameter �
is described by an e↵ective Hamiltonian (see SM for the
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interaction of the electron spin with the uniform magnetic
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The analogy to double-exchange in manganites is quite
straightforward. At low doping the anti-ferromagnetic
interactions between the HS states dominates, rendering
the system PEC with spin-independent hopping in (2).
For some critical doping, however, the gain in the kinetic
energy of dopes carriers in FMEC outweighs the cost in
the HS-HS exchange energy and the systems adopts the
FMEC state.
With finite cross-hopping a �-linear term appears in

(2) that dominates over the �-quadratic term close to the
normal-phase boundary. Indeed, the normal to FMEC
transition disappears except for an isolated point. In the
low doping SDW and SCDW phases V
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and V
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contributions in (2) cancel out. The
c-fermions in (2) thus propagate as free particles with
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. As for V
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= 0 case, there is
a critical doping at which the system lowers its energy
by polarizing the doped carriers along with changing the
type of the condensate from CSDW to SDW’ for even
and from SDW to CSWD’ for odd cross-hopping. At
higher temperatures the transition proceeds via the inter-
mediate FMEC phase while at low temperatures charge
separation leads to a first-order transition. The oder pa-
rameter � in the primed phases has the same properties
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ita
4s2

(�⇤ ^ �) · �̄ +
1

2
(V1�+ V2�

⇤) · �̄

h
(ij)
↵� = h↵iCj |H|Ci�ji

↵,� 2 {", #}

He↵ =
X

hiji

h̄↵�c
†
i↵cj� + h.c.

with

h̄ = tsĪ �
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Conclusions

• Solids close to spin-state transition are unstable towards condensation of 
spinful excitons.	
!
• Excitonic condensation can give rise to a number of phases with rather 
diverse properties.	
!
• Doping activates generalised double-exchange mechanism with interesting 

consequences (e.g. spontaneous spin texture)	
!
J. Phys.: Condensed. Matter 27, 333201 (2015) - Topical Review	
Phys. Rev. Lett.  116, 256403 (2016)
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plane. Full lines mark continuous transitions, dotted lines
mark the boundaries of phase coexistence regions. (b) Model
without cross-hopping reproduced from Ref. 18. The lines
lin. resp. ... Model with even (a) and odd (c) cross-hopping
V = 0.05. (d) Spin texture in the SCDW’ phase.
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FMEC’ here as they become indistinguishable for any fi-
nite V

1,2

. PEC has not ordered spin moments, M = 0,
and � = ei'x (real vector x times an arbitrary scalar
phase '). FMEC is characterised by finite M and the
order parameter of the form � = x + ix0 (with non-
collinear real vectors x and x

0). In the undoped systems
PEC is stabilized by anti-ferromagnetic nearest-neighbor
interaction.14

Cross-hopping removes the '-degeneracy of the PEC
state and selects, depending on the sign of the product
V
1

V
2

,12 the PEC order parameter � to be either real or
purely imaginary. These spin-density-wave (SDW; real
�) and spin-current-density-wave (SCDW; imaginary �)
condensates, introduced by Halperin and Rice,13 are dis-
tinguished by their symmetry under time reversal, re-
flected in the presence or absence of spin polarization
m(r) = 0.22

Doping has a profound e↵ect on the phase diagrams in
Fig. 2. It can be understood by invoking the generalized
double exchange mechanism, recently used by Chaloupka
and Khaliullin to study ruthenates.19 Analogous to the
well-known Zener double exchange20 in manganites, the

TABLE I: The characteristics of di↵erent condensate phases:
M? and Mk is magnetic moment per atom perpendicular and
parallel to the order parameter �, respectively; m(r) magne-
tization in direct space, mk magnetization is reciprocal space.
Mk in FMEC state is finite for even and zero for odd cross-
hopping.

Condensate state M? Mk m(r) mk Re� Im�
FMEC 3 3, 0 3 3 3 3
SDW 0 0 3 0 3 0
SCDW 0 0 0 0 0 3
SDW’ 0 3 3 3 3 0
SCDW’ 0 0 0 3 0 3

exciton condensate acts as a filter for propagation of
doped carriers. The stable phase is determined by the
competition between the kinetic energy of doped carriers
and the energy di↵erence between possible condensates.
In the strong coupling limit, propagation of a single

electron through the condensate with order parameter �
is described by an e↵ective Hamiltonian (see SM for the
derivation)

H
e↵

=
X

hiji

h̄
↵�

c†
i↵

c
j�

+ h.c.

with

h̄ = t
s

Ī � it
a

4s2
(�⇤ ^ �) · �̄ +

1

2
(V

1

�+ V
2

�⇤) · �̄,

(2)

and t
s

= �t
b

s2 � t
a

�
1� s2

�
. Here, Ī and �̄ are the

unit and Pauli matrices, respectively, and s2 is the LS
fraction in the condensate. Without cross-hopping, only
the �-quadratic term in (2) is present, which describes the
interaction of the electron spin with the uniform magnetic
polarisation of the condensate M

C

= �i (�⇤ ^ �) /s2.
The analogy to double-exchange in manganites is quite
straightforward. At low doping the anti-ferromagnetic
interactions between the HS states dominates, rendering
the system PEC with spin-independent hopping in (2).
For some critical doping, however, the gain in the kinetic
energy of dopes carriers in FMEC outweighs the cost in
the HS-HS exchange energy and the systems adopts the
FMEC state.
With finite cross-hopping a �-linear term appears in

(2) that dominates over the �-quadratic term close to the
normal-phase boundary. Indeed, the normal to FMEC
transition disappears except for an isolated point. In the
low doping SDW and SCDW phases V

1

� + V
2

�⇤ = 0,
as the V

1

and V
2

contributions in (2) cancel out. The
c-fermions in (2) thus propagate as free particles with
renormalised hopping t

s

. As for V
1,2

= 0 case, there is
a critical doping at which the system lowers its energy
by polarizing the doped carriers along with changing the
type of the condensate from CSDW to SDW’ for even
and from SDW to CSWD’ for odd cross-hopping. At
higher temperatures the transition proceeds via the inter-
mediate FMEC phase while at low temperatures charge
separation leads to a first-order transition. The oder pa-
rameter � in the primed phases has the same properties
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poor man’s treatment (using 𝜮B=0)
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