Molecular orbitals vs. relativistic orbitals in 7,,

honeycomb lattices: as compared to Na,IrQO,,
RuCl;, and Li,RuO;.

I.I. Mazin, U.S. Naval Research Laboratory

1. Hierarchy of one-electron energies: ¢, A=10Dq, A
2. Concept of quasi-molecular orbitals (QMO)

3. One hole (Kramers singlet) vs. two holes vs. three
holes (half-filling).

4. Mysterious properties of StRu,O, and how they are
explained through molecular orbitals

Na,IrO;: IIM, K. Foyevtseva, H. Jeschke, R. Valenti; RuCl;: IIM, Y. Li, HJ, RV
Li,RuO;: IIM, S. Streltsov, J. Shen, D. Khomskii; SrRu,O: IIM, SS, Z. Pchelkina



The importance of being properly occupied

One hole (Kramers singlet) vs. two holes vs. three
holes (half-filling).
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One hole in #,, 1s always 1n a halt-filled
Kramers doublet -> importance of Hubbard U




Molecular orbitals

It is like an isolated benzene molecule!



Molecular orbitals: 1st approximation

We get 4 levels,
corresponding to
2x3=6 t,, orbitals.

They are occupied by
10 electrons

One hole in
h, 18 again 1n
a half-filled
Kramers
doublet!
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Molecular orbitals + spin-orbit

In pure molecular orbitals the spin
orbit interaction is fully quenched.

However, the upper two subbands,
since they overlap, develop substantial
SO-1nduced hybridization
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RuCl;: moderate SO, still one hole

6(a) RuCl; (C2/m)

DOS (states/eV/formula unit)
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Even 3-4 times smaller SO does not prevent RO from taking over,
if U singles out the KK doublet!



Li,RuO,: two holes in the KK singlet

—_ —— * o orbitals always form strong
woAal = | covalent bonds

« T may or may not form weaker
covalent bonds

Ru d, d
Ru d, +J

Ru d,z

Ru dxz_};

 As a result, strong dimerization
occurs (20%)
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Strongly MO, non-relativistic, uncorrelated SrRu,O,

EXPERIMENTAL FACTS
1. Ruw’' has 3 d electrons, i.e., half-filled b
2. Could be a Slater-Mott insulator with S=3/2 (M=3 ny)

3. Measured M=1.3-1.4 ug (55%); hybridization suppression in other
ruthenates 1s <30% (in metals) or a few % (in insulators)

4. Very high for a strongly 2D material T ~560 K
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Strongly MO, non-relativistic, uncorrelated SrRu,O,

COMPUTATIONAL FACTS COROLLARIES
1. Only Neel state stable (not a single FM bond can be stabilized!)
Magnetic interactions are strongly non-Heisenberg; weak correlations
2. Calculated moment exactly agrees with the experiment
Confirms that correlations are weak
3. Fully insulating without magnetism, despite half-filling
Opens a covalent-type gap without any dimerization
4. The gap (no correlation corrections) 1s ~400 meV, too large (!)
Confirms weak correlations once again
5. Interlayer coupling is ~1.5 meV, anisotropy ~1.4 meV

n.n. antiferromagnetic coupling must be extremely strong (>1500 K)



Principal questions:

1. Why ferromagnetism is impossible (gap?)
2. Why gap?

3. Why AFM so strong (weak correlations?)
4

. Why weak correlations?

All answers provides by MOs

- SO hardly changes anything

- Electrons are highly
delocalized over hexagons,
but MO are highly localized
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CONCLUSIONS

 Structurally similar honeycomb 4d and 5d compounds
behave totally different, depending of whether they have 1,
2, or 3 t,, holes

* One hole promotes SO effects; Hubbard U is a requisite
for 4d, but not 5d

 Two holes strive to form dimers, kill both SO+U and
molecular orbital effects

* Three holes gain large covalent advantage from forming
MOs

» SrRu,0; is a perfect example of a MO solid, and thus has
unique magnetic properties: there is considerable penalty
for creating local moments, but if the latter are created,
they are stabilized by enormous AF n.n. interaction, also
driven by MOS' PHYSICAL REVIEW B 92, 134408 (2015)

Localized itinerant electrons and unique magnetic properties of SrRu,;QOg



Direct experimental test: optics
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Nontrivial behavior of matrix
elements 1s a direct
consequence of molecular
orbitals!



Orbital
occupation

Spin-orbit

- T

Molecular
orbitals

U
God did not make all men equal. ~€ofonef—€oft did.



End of the talk
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