

Molecular orbitals vs. relativistic orbitals in t_{2g} honeycomb lattices: $SrRu_2O_6$ as compared to Na_2IrO_3 , $RuCl_3$, and Li_2RuO_3 .

I.I. Mazin, U.S. Naval Research Laboratory

- 1. Hierarchy of one-electron energies: $t, \Delta = 10Dq, \lambda$
- 2. Concept of quasi-molecular orbitals (QMO)
- 3. One hole (Kramers singlet) vs. two holes vs. three holes (half-filling).
- 4. Mysterious properties of SrRu₂O₆ and how they are explained through molecular orbitals

Na₂IrO₃: IIM, K. Foyevtseva, H. Jeschke, R. Valenti; RuCl₃: IIM, Y. Li, HJ, RV Li₂RuO₃: IIM, S. Streltsov, J. Shen, D. Khomskii; SrRu₂O₆: IIM, SS, Z. Pchelkina

One hole (Kramers singlet) vs. two holes vs. three holes (half-filling).

One hole in t_{2g} is *always* in a half-filled Kramers doublet -> importance of Hubbard U

Molecular orbitals

It is like an isolated benzene molecule!

Molecular orbitals: 1st approximation

 $\omega = \exp(i\pi/3)$

We get 4 *levels*, corresponding to $2x3=6 t_{2g}$ orbitals.

They are occupied by 10 electrons

$\omega = cap(v)$		
Symmetry	Eigenenergy	Eigenvector(s)
A_{1g}	$2(t_1' + t_2')$	1,1,1,1,1,1
E_u	$t'_1 - t'_2$	1, ω , ω^2 , -1, ω^4 , ω^5
(twofold)		$1,\omega^5,\omega^4,-1,\omega^2,\omega$
E_g	$-t_{1}'-t_{2}'$	$1,\omega^{2},\omega^{4},1,\omega^{2},\omega^{4}$
(twofold)		$1,\omega^4,\omega^2,1,\omega^4,\omega^2$
B_{1u}	$-2(t_1'+t_2')$	1,-1,1,-1,1,-1

One hole in *t*_{2g} is *again* in a half-filled Kramers doublet!

 $\lambda/(\lambda+t)$

Molecular orbitals + spin-orbit

In pure molecular orbitals the spin orbit interaction is fully quenched.

However, the upper two subbands, since they overlap, develop substantial SO-induced hybridization

RuCl₃: moderate SO, still one hole

Even 3-4 times smaller SO does not prevent RO from taking over, if U singles out the KK doublet!

Li₂RuO₃: two holes in the KK singlet

- $\bullet \ \sigma$ orbitals always form strong covalent bonds
- π may or may not form weaker covalent bonds
- As a result, strong dimerization occurs (20%)

) Strongly MO, non-relativistic, uncorrelated SrRu₂O₆

EXPERIMENTAL FACTS

- 1. Ru⁵⁺ has 3 *d* electrons, *i.e.*, half-filled t_{2g}
- 2. Could be a Slater-Mott insulator with S=3/2 (M=3 μ_B)
- 3. Measured $M=1.3-1.4 \mu_B$ (55%); hybridization suppression in other ruthenates is <30% (in metals) or a few % (in insulators)
- 4. Very high for a strongly 2D material $T_N \sim 560 \text{ K}$
- 5. Barely semiconducting behavior

COMPUTATIONAL FACTS COROLLARIES

1. Only Neel state stable (not a single FM bond can be stabilized!)

Magnetic interactions are strongly non-Heisenberg; weak correlations

2. Calculated moment exactly agrees with the experiment

Confirms that correlations are weak

3. Fully insulating without magnetism, despite half-filling

Opens a *covalent-type* gap without any dimerization

- 4. The gap (no correlation corrections) is ~400 meV, too large (!)
 Confirms weak correlations once again
- 5. Interlayer coupling is ~1.5 meV, anisotropy ~1.4 meV

n.n. antiferromagnetic coupling must be extremely strong (>1500 K)

- 1. Why ferromagnetism is impossible (gap?)
- 2. Why gap?
- 3. Why AFM so strong (weak correlations?)
- 4. Why weak correlations?

All answers provides by MOs

- SO hardly changes anything
- Electrons are *highly delocalized* over hexagons, but MO are *highly localized*

CONCLUSIONS

- Structurally similar honeycomb 4d and 5d compounds behave totally different, depending of whether they have 1, 2, or 3 t_{2g} holes
- One hole promotes SO effects; Hubbard U is a requisite for 4d, but not 5d
- Two holes strive to form dimers, kill both SO+U and molecular orbital effects
- Three holes gain large covalent advantage from forming MOs
- SrRu₂O₆ is a perfect example of a MO solid, and thus has unique magnetic properties: there is considerable *penalty* for creating local moments, but if the latter *are* created, they are stabilized by enormous AF n.n. interaction, *also* driven by MOs!

Localized itinerant electrons and unique magnetic properties of SrRu₂O₆

Direct experimental test: optics

Im
$$\varepsilon_{\alpha\beta}(\omega) = \frac{e^2}{\pi p^{\ell^2} \omega^2} \sum_{c,v} \int \underline{\langle c, \mathbf{k} | p^{\alpha} | v, \mathbf{k} \rangle \langle v, \mathbf{k} | p^{\beta} | c, \mathbf{k} \rangle} \times \delta(\epsilon_c(\mathbf{k}) - \epsilon_v(\mathbf{k}) - \hbar \omega) d\mathbf{k}.$$
 (5)

$$J(\omega) = \sum \int \delta(\epsilon_c(\mathbf{k}) - \epsilon_v(\mathbf{k}) - \hbar\omega) d\mathbf{k},$$

$$B_{1u} \times A_{1g} = B_{1u} \qquad P_{x,y}$$

$$B_{1u} \times E_{2g} = E_{1u} \qquad P_{x,y}$$

$$E_{2g} \times E_{1u} = B_{1u} + B_{2u} + E_{1u}$$

$$E_{1u} \times A_{1g} = E_{1u}$$

Nontrivial behavior of matrix elements is a direct consequence of molecular orbitals!

WE NEED

U God did not make all men equal. Colonel Colt did.

End of the talk

