Thermodynamic Evidence of Strong Correlations and proximity to a Mott Insulating State in Iron Pnictide Superconductors

F. Hardy ^{1*}, L. de'Medici ², M. Capone ³, A. E. Böhmer ¹, L. Wang ¹, M. He ¹, G. Giovanetti ³, T. Wolf ¹, R. Eder ¹, P. Schweiss ¹, R. Heid ¹, A. Herbig ¹, P. Adelmann ¹, R. A. Fisher ⁴, and C. Meingast ¹

¹ Karlsruher Institut für Technologie, Institut für Festkörperphysik, 76021 Karlsruhe, Germany
² European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex 9, France
³ CNR-IOM-Democritos National Simulation Centre and International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136, Trieste, Italy
⁴ Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

* frederic.hardy@kit.edu

High-Tc superconductivity in the cuprates occurs at the crossover from a correlated Mott insulating state to a weaker correlated Fermi liquid as a function of doping. The Fe-pnictides were initially thought to be weakly correlated. However, we have recently shown that KFe₂As₂ is in fact a highly correlated metal and that these correlations are even further enhanced in Rb- and CsFe₂As₂. Whereas the correlations in the cuprates result from a large value of the Hubbard U, recent works have stressed the particular relevance of Hund's coupling J in the pnictides. Our data may be interpreted in terms of a close proximity to an orbital- selective Mott transition [1]. We now have good thermodynamic data covering both the hole and electron doping sides of the BaFe₂As₂ system and we will discuss how these correlations are modified by doping and uniaxial pressure.

[1] F. Hardy et al., arXiv:1605.05485