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Two problems

Basic features of the Kohn-Sham potential of a correlated
system across the transition from weak to the strong
correlation,

Relation between lattice and continuum approaches to the
electronic properties of matter, i.e.

o Wwhat is the best single-particle basis to write a lattice
model?



Many-body problem

Non-relativistic guantum Hamiltonian:

He = Z Ul (r)h U, (r)dr|+ 1 Z \I!I,(r)\Ilj,,(r')'w(r — 1)Uy ()W, (r)drdr’
~ 2

o,0’

V.= nhuclear potential

* Lbodypart  hy = —1V24V,
ody part /i, 3V Vexe (1) (Born-Oppenheimer Approximation)

* Interaction w(r—r') Coulomb interaction

* Electronic fields W, (r) WU (r) Electron annihilation and
creation at r with spin O



Two classes of approaches

Ab-initio approaches

e Standard functional theories, e.g. LDA, ...

 Wave-function approaches: Quantum
Chemistry methods

Lattice approaches (minimal basis
models)

Based on effective models with only few
relevant degrees of freedom, e.g. Hubbard

 Analytical methods, DMFT, Gutzwiller,
RG...

Generally inadequate for
strongly correlated
solids

Not ab-initio, require
input

Good description of
strong correlation
effects




Combine methods in the two classes for an ab-
initio description of strongly correlated systems

Many successful works in this directions, such as

- LDA+U
- Gutzwiller +DFT
- DMFT+DFT

yet many open questions remain, namely,

what is a systematic and practical way to:
- relate lattice and continuum models?

- extend lattice methods to the continuum?

- when are lattice methods quantitative and not only qualitative?




Lattice-continuum mapping principle can be done exactly...

Complete single particle-basis Y, (r) = Z@ Cio Pio (T)

7 — . Generalized
Z L ija Z Wik ﬂcw ja’CZU’C’W —  single-band
ijo wklmf’ Hubbard model

hij = /dr¢§(r)ﬁr¢j<r)
Wikl = / d’rd’r' ¢y () o7 (v )w(r, x')p; (x") i (r)

But actually...

» Truncate the basis, e.g. keep just one band: @ (I') =Wannier orbital at site i

* Neglect some matrix elements; then e.g. H>H, Uandt
= —tz (chga + H. C) + UznzTnZl + sznw = —hij
) U = wi, is

e Lattice-continuum mapping is basis dependent



Our playground: a one-electron ions lattice

e
Scaled Hartee {Distance: ayZ

@ O O @
‘ ‘?‘ . Units Energy: Z2E,,

L= number of sites= number of electrons

Z-independent > 1 9 1
he = =5Vi=)

single-particle Hamiltonian ; ’I‘ — R’
1

Electron-electron / 1

. . . w(r —r') =

interaction scaling as 1/Z Z’I‘ _ I"|

Two knobs to drive the system into different regimes: Z and R



The one-band Hubbard limit: large Z

"‘Zs,p,d,...

IncreasingZ... mmp

1s A Uoc1 A o 7°
- oC
y4

1S< U

Large Z limit at fixed U/
t, e.g. Ne’* (Z=10)

H lattice (Z=1)

Lattice description only qualitative Quantitative agreement

-R
[ Xe

Large/small U/t implies

Z and R can be used to tune independently: strong/weak correlation
correlation and mixing with higher energy bands




Warning: order of limits is important!
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U/t =

R —>x© / —
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* At large Z lattice models become quantitatively correct, tune R to change U/
t and “see” the emergence of strong-correlation effects, WITH QUANTITATIVE

ACCURACY!
* At small Z mixing with higher states become important

- Atomic orbitals
- Molecular orbitals

Single-particle basis choices Hartree-Eock states

Different lattice models, different accuracy of approximations,
different correlation functions when going back to continuum

How to make a choice valid across different regimes?

Two nested problems to be solved self-consistently
* Choice of the basis;

e Solution of the lattice model.



Optimum basis for a one-electron ion lattice

* Single-band Ansatz: the ground state lives in the “low-energy subspace”
spanned by {qbl ---¢L}

* Lattice Hamiltonian: single-band generalized Hubbard model, H

e Lattice solver: any

|(I)L>=Lattice ground-state Variational energy: E[qﬁz, (b:, (bL] — <(I)L |H|(I)L>

]

W[gpz,gpz,q)L Z wzk,]l ZO' jafcla’ckza>
zgklaa

Evp i, 05, Pr] = Z hi <C’]L'Lacj0>
)0

Interacting electrons problem - determination of lattice ground-state
decomposed into two: - basis optimization



Orbital optimization OE|pi, 7, PL]

* — O
equations 07 (r)

Z (;Lr pij + Z Wit (r)Dij ki — Qij) ¢j(r) =0
ki

J

Effective potentials : wkl(r) :/dgr’qﬁk(r)w(r, r')¢l(r)

Diir = el el e
Spin-averaged 0,k Z‘m'< i0 ko' “lo ]O> Determined by the
density matrices pij = Z(;(C;-racjﬂ lattice ground-state

Lattice ground-state has to be self-
consistently determined by solving

H|®L) = Eo|®,)

J. Spalek and co-workers, Phys. Rev. B (2013).



DFT exchange-correlation potential
across the weak-strong correlation
crossover

o Anomalous scaling of the xc-potential
o Lattice + Reverse engineering potential (L+REP)



2-site 2 @ Two orbitals in the
single-band limit
molecule .
_R/2 R/2 ¢a ’ ¢b

Density n(r) = ¢u(r)? + 0p(r)? + 2papda (r)dp(r)

O O + Pab

\ / \ / Z<Ciacba><_| / dPron =0

g

Bond charge encodes correlation effects no(r) = ¢g + ¢% + 20,0

g = Pap Hopping reduction Can be expressed in terms of

0 factor lattice parameters, U, V, t...
pab



Weak-strong correlation cross-over
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Mott barriers Mimic the effect of band renormalization
on the density by an external potential

Mott transition R
Emergence of Mott barriers

A




e Mott barriers are of order A

In the single-band limit the only non-interacting ground state
possible is

nt(r) = ¢a(r)® + dy(r)° + 204 (r) g(r)

Mixing with higher states required to have a barrier in KS of
order A

 LDA does not have a barrier

1
Hartree initial guess is solution 7 (r) = —=[0a(r) + @p(1)]

V2
vEPAIn(e)]/A ~ 1/Z K state

in “single-band” limit



No-go theorem

To describe Mott phenomena v...(r) mustbe O(Z°)

Corollary |
DFT an a single band description are incompatible.

Corollary Il

It is not possible to describe Mott phenomena with a local or
semilocal functionals since they are all O(1/72)




Hxc potentials 2
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Exact lattice ground-state and
basis optimization




L+REP potential

P _
VHa:c -

2/7

V2P

— VN —1

Optimization
equations

Vhxe(r) = V() + 0P (r) 4+ vi2(r)

(1 — g%) |¢a(X)Vp(r) — ¢p(X) Vo (r)|?

* Order Z°
* Independent of R for large R

e Order Z°
* Scales as e®

) = " n2(r)
1 — @)[a(r) — dy(r)]?
reSp( ) — t( Q)[(png:; ¢b(r)] + 8Eg
cond __ — FQ I‘ I‘ r
UHxe — / |I‘ . I"|

* Order Z'1
e Scales as 1/R

Diagonal two-particle density matrix: I'y(r, r')

= (Ul ()v!, ()

W, (r')Us(r))

In this form the potential becomes insensitive to the choice of the orbitals!




Two contributions to barrier height
in the bond region
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Many-site extension

cond res
UHxc = vch + UHxc + v C P

cond __ Fz 1' 1‘ o Simple generalization of
UHXC — 2_ . .
r _ r site expression

Most relevant in the strong-correlation limit:

in () (1-¢°) 3 |6i(r) Vo, (r) — ¢;(r)Vi(r)]”
Uxe\I) = 2 Only nearest-
2 — n?(r)
(i7) neighbor correlation
res ¢z r)— Cb r : 7
o) = 11— q) 3 GO i) -
- n(r)
(15)
1- and 2- body lattice correlations, e.g. g and d, estimated by lattice methods

L+REP potential



Example: Hubbard plaquette

L+REP potential o A




Charge difference, » - n,

Plane view Along a bond
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Consequences of basis optimization and
properties of the best single-particle basis



Gutzwiller Ansatz: 2" interacting system should have less doubly
occupied sites than a non-interacting one

D (D)
)= L |H.) 7 Slater =v(d) 4= L
) Ci/gl 0) determinant v )/( ) L
_ o dis the in th ti -
€[0.1 D — LT in the continuum:
y€10.1] EZ: T fundamental == pair density
variational object functional
kinetic interaction

A

Alternative view: g is the
fundamental variational object Y = )/(Q)

In the continuum: one-particle
density matrix functional

— Reduced Density Matrix Functional Theory (RDMFT)
S. Sharma et al. Phys. Rev. Lett. (2013).



- . Pa T Pb Pa — @b
Natural orbital basis by = —
W="r- =5

Gutzwiller 1
wavefunction: ’(I)“/> — 12
C5

To write the energy we just need the one-body and the diagonal two-body
density matrices

T (r,r’) = (1+ q)o(r)vo(r') + (1 — q)tbr (r)e (r')
I§(r,r) = (v1+qwo<r>wo<r’>— ¢1—qw1<r>w1<f’>)2

(7 + Dalya, + (v =1l al, ] 10)

Optimized Gutzwiller <:> Lowdin and Shull
theory RDMF in a truncated basis

Lowdin and Shull wavefunction in terms of NOs (1956)

\I}LS r r E 1/% Cz——> Exact

:fivpi/2

Ji==x1



Optimization equations > H,, ¢, = Q¢ v e(0,1]

7(r) = [ﬁ(r)‘F)\@oo(r)]ﬁo A—>\1D01(1')\//W,51
) ( —Aw1o(r)/Pop1 (h(r)-l—A'u_Jll(r))pl)

Occupation of the{ P, =1+¢ Self-consistent potentials

natural orbitals
p=l-q ] Wy (£ (x)
wlw(r) — / M|r —r/| dr’

In the non-interacting limit the antibonding
orbital is undetermined since p, =0

b

(r) %o(r) = €otbo(r) Q =peE,

() 1 (6) — o or (o) = €1t ()

On the contrary for a
vanishingly small interaction

Optimization equations are singular at in the weak-interaction limit!



Orbital optimization algorithm

Initial guess for the orbitals,
e.g. molecular orbitals

l

Calculation of parameters of the lattice model <

l

Determination of the lattice ground-states and the
corresponding 1- and 2- body lattice density
matrices

l

Solution of the optimization equations —
determination of the optimal orbitals

v

END «<—— YES «—— LrlafiiE] —> NO —

converged ?




Optimized orbitals

1D Toy model: two-well potential + 6-interaction

o= coupling constant
plays the role of 1/Z

Significant effects of
orbital optimization
on the density




Renormalization of U-V and t

vvvvvvvvvvvvvvvvvvvvvvvvvvvvv

1.20 :
1.15 - ""'::::::____::::::“—j
1.10} _
1.05}
1.00 @
095} No interaction

— toolt - - i
OO/™NIO NIO = non-interacting orbitals

— (U-V)oo/(U-V)nio | 00 = optimized orbitals

(U =V)yo/(aty,)=3

Within our model, orbital optimization always increases
local Hubbard correlation, i.e. (U-V)/(at) increases



Renormalization of exchange interactions

Super-exchange interaction:
2
J - 4(t-1,)
U-V
Direct exchange:

K =af @ (r) g (r)dr

Strong renormalization of K by
orbital optimization prevents
magnetic ordering

E -E ~J-2K

025[
020}
0.15
0.10;
005¢
000!

J,2K




Take-home messages

“No-go” theorem for local DFT

approaches applied to strongly
correlated systems

Orbital optimization can give significant
qgualitative and quantitative effects

In progress
Designing RDMFT functionals starting
from Gutzwiller
Implementation of L+REP potential approximation



Screening effects on U




Recent applications of RDMFT

Molecules and clusters:

Solids:

Time-Dependent:

N. Lathiotakis et al. Phys. Rev. A (2005)
N. Helbig et al. Phys. Rev. A (2009)

O. Gritsenko et al. J. Chem Phys. (2005)
M. Piris, Int. J. of Quant. Chem. (2014)

S. Sharma et al. Phys. Rev B (2008).
S. Sharma et al. Phys. Rev. Lett. (2013).

K. Giesbertz et al. Phys. Rev. Lett. (2013)
K. Pernal Phys. Rev. Lett. (2008)



What is RDMFT?

There exist a one-to-one correspondence
Fundamental theorem by Gilbert: between the one-body density matrix and
the ground state wave-function

The energy can be written as a function
the one-body density matrix

al of

Ti(r,r') = (T ()P (r'))

E [F1] = T[Fl] + Egn [Fl] +

Exact!

EXC [Fl]

Unknown

+ /v(r)Fl(r, r)dr

* The one-body density matrix is determined by the

natural orbitals and their occupancies

* E,. depends on the diagonal two body
density matrix:

Functional of the natural orbitals
and their occupancies

[(r,r') = Z U (1) (1)

n

Lo(r,r') =) (U ()WL, ()W (/) Uy (r))

N

oo’

Implicit functional of I’



