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The HMF model Konishi & Kaneko (1992), Antoni & Ruffo (1995)

I N spins

I Hamiltonian

H =
N∑
i=1

p2i
2

+
1

2N

N∑
i=1

N∑
j=1

[1− cos(θi − θj)]

I Equation of motion

θ̇i = pi

ṗi = −M sin θi

M =
1

N

N∑
i=1

cos θi

I Thermodynamic limit N →∞: Vlasov (collisionless) dynamics
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Quasi-stationary states

Two phases:

I paramagnetic
(M = 0)

I ferromagnetic
(M > 0)
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Virial and non-virial initial conditions

Virial theorem:

−

〈
N∑
i=1

F (qi ) · qi

〉
= 2 〈K〉

K = kinetic energy

I Ex: 3D gravity → 2K = −U .

Initial conditions do not satisfy virial theorem

I Strong mean-field oscillations
I Resonances, core-halo distribution (Friday’s talk by Y.

Levin)

Initial conditions satisfy virial theorem

I Minimal mean-field oscillations
I Quasi-stationary potential
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Lynden-Bell statistics

Initial distribution: f0(r, v) = ηΘ(rm − |r|)Θ(vm − |v|)
Number of microstates W :

I Phase space → macrocells and microcells

I Incompressible dynamics: number of occupied microcells is preserved

I Boltzmann counting
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Lynden-Bell (LB) Statistics

Coarse-grained entropy: sLB = kB lnW
Coarse-grained distribution:

fLB(r, v) =
η

1 + exp [β(ε(r, v)− µ)]
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Lynden-Bell (LB) Statistics

Assumption:

I Equal probability of phase elements occupying any microcell →
ergodicity and mixing
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Virial and non-virial initial conditions

Virial theorem:

−

〈
N∑
i=1

F (qi ) · qi

〉
= 2 〈K〉 , K = kinetic energy

I Ex: 3D gravity → 2K = −U .

Initial conditions do not satisfy virial theorem

I Strong mean-field oscillations
I Resonances, core-halo distribution (Friday’s talk by Y.

Levin)

Initial conditions satisfy virial theorem

I Minimal mean-field oscillations
I Quasi-stationary potential
I Lynden-Bell statistics

?
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Uncoupled pendula approach

QSS:

I Quasi-static field
M = 〈cos θ〉

I Equation of motion
θ̈ = −M sin θ

The model – de Buyl et al, PRE 84 (2011):

I External field H

I Uncoupled particles, equation of
motion θ̈ = −H sin θ

I f (ε) = n(ε)/g(ε) is conserved

I Integrable dynamics → “integrable
model” (IM)
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A.C. Ribeiro-Teixeira et al, PRE 89 (2014)

f (ε;H) =

∫
f0(θ, p)δ[ε− ε(θ, p,H)]dθdp∫

δ[ε− ε(θ, p,H)]dθdp

P(θ;H) =

∫
f [ε(θ, p);H]dp

Association with HMF: H =
∫

cos θP(θ;H)dθ
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Application to the HMF

I Initial conditions:

f0(θ, p) = Θ(θm − |θ|)

×
L∑

i=1

ηiΘ(|p| − pi−1)Θ(pi − |p|)

I Analytical equation for f (ε)
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Comparison with molecular dynamics (MD) and
Lynden-Bell (LB)

Angle and momentum distributions

L = 1
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Comparison MD, IM, LB

Angle and momentum distributions

L = 3
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Comparison MD, IM, LB

Energy distribution

I L = 1

I L = 2
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Comparison MD, IM, LB

RMS deviation of energy distributions
(triangles: IM-MD deviation, circles: LB-MD deviation)
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Summary

I IM: Uncoupled particles subject to external field H = M

I LB: Ergodic, mixing approach; new statistical method

I H = M, M → virial magnetization

I IM (integrable) better results than LB (ergodic) for MD with initial
multilevel waterbag distributions

I Agreement decreases when number of levels increases

I IM can be used for other long-range systems, i.e. 3d self-gravitating
systems (FPCB, A.C Ribeiro-Teixeira, R. Pakter & Y. Levin, PRL 113

2014)
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Comparison with molecular dynamics (MD)

Phase space


