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2 Lecture Plan

PART I (1.5 lectures) : A brief introduction to the problem of SF in cosmology

PART II (0.5 lectures): 1D toy models for astrophysics and cosmology



Caveat: References

All of Part I 1s a review for a broad physics audience of “the basic essentials” of
this field, or at least what I myself consider these to be. It is based on many
different sources, and only the perspective and emphasis are my own. I have not
attempted to provide a full bibliography or cite the original references
exhaustively, and indeed references are given only for specific results which
are less part of the standard ‘““canon” of the field. Although written now over
30 years ago, Peebles “The Large Scale Structure of the Universe” (Princeton
1980) remains a basic reference the analytical theory described; fairly up to date
reviews of N body numerical simulations are easy to find; for halo models the
review of Cooray and Sheth (Phys. Rep. 2002) is a good starting point.

In Part IT on the other hand I provide more extensive (but not exhaustive)
references, as the topic is a more circumscribed one where this is easily done.



PART I
Intro to cosmological structure formation



Things I would hope an uninitiated listener may
"take away":



Things I would hope an uninitiated listener may
"take away":

* What the “problem of structure formation” (SF) is

*  Why the Newtonian limit of purely self-gravitating matter is a good approx.
* What the problem of SF then reduces to formally (equations!)

* How initial conditions are described and derived

* Some basic analytical results about SF

*  What numerical methods for simulation of SF are
* What main qualitative results are for non-linear SF

* A few major open issues, some connections to other LR systems



The problem of
cosmological structure formation



Modern cosmology

Homogeneous and isotropic universe in GR = FRW solutions of gravity

“Real universe’:
perturbed FRW metric coupled to perturbed matter/energy content

—> “The standard cosmological model”
+ 4 parameters specifying FRW model

(radiation, baryons, dark matter, dark energy)
+ 2 parameters specifying initial initial fluctuations
(+”standard physics”)

—> Predictions for evolution of universe!!

Linearized version for small perturbations is impressively successful...



Cosmology
“WMAP” : the universe at ~10° years...

Density fluctuations ~10-* to 10>



Cosmology

“PLANCK” : the universe at ~10 years...

Density fluctuations ~10-* to 10~



Cosmology

“SDSS” : the universe “today” (10" years)

Fluctuations >> 1 at corresponding scales



The problem of structure formation

How do we get from tiny fluctuations in ‘“primordial universe” to large
fluctuations today ?

What is full quantitative theoretical prediction for observations?



The problem of structure formation:
simplifying (valid) approximations

Simplification of this very complex non-linear problem

- Non-linearity becomes important essentially only in “matter dominated
era’”, dominant matter component is non-relativistic

- After “decoupling” non-gravitational forces can be neglected except at
“small” (< galaxy) scales

- Perturbed FRW metric remains a good approximation (weak fields)

- Treatment in Newtonian limit of purely self-gravitating system



Newtonian approximation:
time and length scales

(Very roughly) valid for
Length scales: from galaxy scales (~ 0.01 Mpc) to “horizon” scales (~ 10* Mpc)

Time scales: from ~ 10° years (“matter domination”) to today (~ 109 years)



Cosmological structure formation in
the Newtonian limit



The Newtonian limit of FRW cosmology

What “Newtonian limit” ?

Newtonian gravity is badly defined in the infinite system limit..!



Newtonian gravity: Finite and infinite

= —Gm
JZ#Z |rz—rj\3

Finite system: N particles in a finite region of (infinite) space
Infinite system: an infinite number of particles distributed throughout space

For latter case the sum is badly defined !



The Newtonian limit of FRW cosmology

It is GR which prescribes how to regularize Newtonian gravity
GR has well defined (FRW cosmologies) for an infinite matter distribution

= Regularize Newtonian sum to obtain these !



FRW cosmology in the Newtonian limat

Self-gravitating particles distributed uniformly in infinite space
Calculate force summing in spheres about a chosen centre

. . r, — I,
r, = —Gm lim E J

Rs—o0 r; —ril3
J#Z,]ES(R&;,PO) I J

Uniform mass density: = force proportional to distance from centre
—> homologous expanding/contracting solutions:

ri(t) = a(t) r:(0) g = — #p(t)

a(t) obeys the Friedmann equation for scale factor as in GR
Note: relative motion of particles is independent of choice of centre!



Perturbed FRW cosmology in the Newtonian limit

Same equations as above, but now not exact FRW initial conditions

1.e. infinite distribution of mass which is
close to uniform and close to Hubble flow above some finite scale

Convenient to change to “comoving coordinates”

xi(t) = — kz-(t)=$[i'z-—Hri] i

ISHESE

r; — H r; is“peculiar velocity”, i.e. velocity relative Hubble flow



Perturbed FRW cosmology in the Newtonian limit

In these comoving coordinates equations of motions become

d*x; dx; 1 _Rric H =2
diz TG = gl M ¢

deskskok

where

e . GTn(x,- — X ) 476
Fi{u’ = — lim %) _ x.
Hs—00 Z Ixi . xj[‘; 3 PoX;

i#£1,7€S(R,,rg)

This ‘“‘regulated force” is zero for the case of an infinite uniform density
[“Jeans regulated force™]

The motion in comoving coordinates is due only to inhomogeneities



Regulated Newtonian force 1n an infinite system

The regulated force can be written formally in different ways
1) As the limit of a symmetrical sum about each point

REG X Gm(xi — X
F; = — lim E ( i)

Hy—o0 = = |Xi —')(jl3
]#t,]{;b(lfﬂ,!‘,‘)

2) As the limit of a screened gravitational force (cf. Kiessling 1999):

Gm(xi — X;) _uix;—x;

Fl'{EG _ '
] 0 r |xi _ led

3) In terms of a “Jeans regulated” potential

F;5C = —aVx®™""% (x = x:)

AnG
Vi@ (x) = e > mé&® (x —x;) — po]
J#Fi



Remark: Expansion and fluid damping

Redefining the time variable as 7 = / t

.; €quations can be rewritten as
a\ /

d*x; dx; REG
- F R F'i ’
dr? T dr
where
I' =+/27Gpo/3

—> Dynamics of inhomogeneities in comoving coordinates is equivalent to that
of self-gravitating particles in a static universe subject to a fluid damping..



An important remark on “physical coordinates”

Suppose S a finite subsystem of the infinite uniform mass distribution
The force on a particle in S can be written as

Force relative to CM due to mass in S + Force on CM (due to mass outside S)
+ (tidal) forces due to mass outside S

If the substructure is “sufficiently dense and far from other mass” so that the
tidal forces can be neglected it follows that

Equation of motion for the particles in S relative to its centre of mass are,
in physical coordinates, those in an isolated self-gravitating system

Thus e.g. stars in a galaxy, or planets in the solar system are “decoupled” from
the Hubble flow. In comoving coordinates they “shrink™.



Dynamics of self-gravitating matter in an
expanding universe



Dynamics of self-gravitating matter in an
expanding universe: continuum limit

In cosmology use a continuum description of matter: particles are microscopic
Just want to determine e.g. phase space density
- Vlasov-Poisson equations

In physical coordinates: “usual” VP equations + infinite system regularisation
In comoving coordinates this gives

1
8uf +7- Oaf + [~ —5 02 — 2H(t)7] - 85f = 0

030 = 20t [ 1@ Dd v -l (- %

Remark: different writings of this equation abound = different conventions for f

Here f defined b
fiiinle dm = fd’rd’vynys = (fa®)d’zd’v



“Linear theory:
Evolution of small perturbations about FRW

Zeroth moment of VP: continuity equation

First moment of VP :  Euler equation

- Neglect “velocity dispersion” term (=2 cold matter)
- Linearize in

mass density fluctuation

5(5’ t) — p(x’ t) — Po
Po

d .
1 [of(Z, v)dv
[ f(Z,7)d3v bulk velocity

@(Z,t) =




Pressureless linearized fluid equations

- Matter density fluctuations have a growing mode



“Linear theory:
Evolution of small perturbations about FRW

“Linear amplification”, just gravitational instability!
4(Z,t) = a(t)é(Z, 0) é(k,t) = a(t)é(k,0) (Fourier Transform)
NOTE.: The amplification is scale-independent (property of Newtonian gravity)
Irrotational component of physical ‘“‘peculiar velocity field”’ is amplified
ik-d(k,t) = 8(k,1)

[BUT gravitational potential @ is not amplified, it is constant and weak!]



Lagrangian formulation: “Zeldovich approximation™

Fluid equations can be cast in Lagrangian formalism
Z(t) = ¢+ u(q,t)

where q Lagrangian coordinate = initial position of the fluid element
At linear order, the displacement field in the growing mode obeys
ﬁ(q’a t) — a(t)ﬁ(q'a tO) where U’(Qa to) X VQ(I)(Qa to)

i.e. just motion parallel to gravitational field (thus irrotational)



Initial conditions
for cosmological structure formation



Cosmological initial conditions:
origin and description

Some physical process in “primordial” universe
—> Initial low amplitude metric/matter/energy fluctuations to FRW

(e.g. amplification of quantum fluctuations during “inflation”)
Fluctuation fields are realizations of a (statistically translation and rotation

invariant) stochastic process, which is (usually) assumed gaussian

Evolve with linearized but fully relativistic theory (of all fields and
interactions..) until the matter dominated era

(Note: Linear evolution propagates gaussianity trivially)



Initial conditions for structure formation in
matter dominated era

“Cold dark matter fluid”, in “growing mode”

f(Z,0,t=t:) = p(Z,t:) 6 (¥ — 4(Z, t:))

Density field : p(f ) tz) realization of a correlated gaussian process
Fully characterized by power spectrum P(k)
e.g. “CDM” or “LambdaCDM?” spectrum or variants

Velocity field derived assuming growing mode of linear theory.



Initial conditions for structure formation:
power spectrum

Standard cosmological model assumes (and e.g. inflation produces) a so-called
“scale invariant spectrum”:
variance of potential fluctuations is (almost) independent of scale

When “processed” through cosmological evolution, it gives, at matter
domination a power spectrum for matter fluctuations:

2
P(k) = AT?(k)k
where T(k) 1s “transfer function”, and A a constant.

T(k)=1 corresponds to “primordial spectrum” : P(k)=Ak

Note: Measurements of CMB fluctuations fix (in particular) the amplitude



Initial conditions for structure formation:
“transfer function” for standard CDM

Numerical fit to the “transfer function” of “standard CDM”

~In[1 + 2.34¢] ~0.25

T (q = k/Th .\"IP(‘-_I) - (2.34q)

[1 +3.89q+(16.2¢)%+(5.47¢)* + (6.71q)“]

Lo — -

(seee.g.)
I is constant determined by the ratio of matter/radiation, fixes “turnover scale”

Schematically:




Initial conditions for structure formation:
power spectra for different models

" ; ..A...l.o-z ; 10-1 ; 100




Fluctuations in real space

Define volume averaged relative mass fluctuation

1
§(V)= = / 6(7) d°r
Vv
Its variance is related to power spectrum by

Bdiik

V)= @ W) = [ PEIG

where Wy, (E) i1s FT of window function for volume V



Cosmological initial conditions:
averaged density fluctuation in a sphere

V = sphere of radius R, and P(k) = Ak™ (andn<1)

A
R3+n

o’(R) ~ k:SP(k)‘kzw/R ~

For all standard type cosmological models -3 < d(In P)/d(Ink) <1
9

density fluctuations are a monotonically decreasing function of scale

[Note: also true for n>1, some subtleties in relation of real and k space]



From the linear to the non-linear regime:
some analytical approaches



Linear theory (LT)

The most impressive observational successes of the standard cosmological
model are in the linear regime, i.e., where linear perturbation theory applies

Notably
—> Fluctuations in CMB (WMAP, Planck and many others..)

—> very large scale structure in galaxies (“‘baryon acoustic oscillations™ )

Latter described to a very good approx. by linear theory applied up to today..



Breakdown of linear theory?

29 €6

Assumption of LT: “small density fluctuations”, “small velocity dispersion”

Criterion for its validity? In general depends on full spectrum of fluctuations

9

LT valid for density/velocity field smoothed on some scale R if density/velocity
fluctuations on this scale, and larger scales, are small
....."provided not too much fluctuations below scale R”

Taking P(k) o< k™ expect on simple grounds that it is sufficient to have n<4
(Zeldovich/Peebles)

Linear evolution at a given scale is then negligibly affected by
non-linear fluctuations at smaller scales



Evolution of non-linearity in cold matter:
“hierarchical structure formation”

For cosmological spectra, smoothed density/velocity field is a monotonically
decreasing function of scale

—> LT itself then prescribes scale at which LT break downs as function of time

e.g. for power law spectra P(k) o< k™ obtain Rxw(a) x aFi

Cold matter with cosmological spectra = "hierarchical structure formation" :
* monotonically growing non-linearity scale driven by linear amplification,

* time of non-linearity for each scale essentially independent of all others

What happens to a given scale when it "goes non-linear"?



Evolution of non-linearity in cold matter:
“hierarchical structure formation”

Cold matter with cosmological spectra = "hierarchical structure formation" :

* monotonically growing “non-linearity scale” driven by linear amplification,

* time of non-linearity for each scale essentially independent of all others

What happens to a given scale when it "goes non-linear" ?



A guide for non-linear evolution:
The “spherical collapse model”

“Spherical collapse model”’:
spherical “top-hat” over-density in an otherwise uniform expanding universe
Exact analytical solution, for comoving radius R(a) (in parametric form):

1 —cosf

(6 —sinf)3

R(a) 4.2
R, ~ 3

ado = 6, (a) = g(?-l)%(o—sino)%

01 (a) is linearly extrapolated amplitude at a,dg is initial amplitude (a0, R>R,)



The ““spherical collapse model”:
linear density fluctuation at singularity

R(a) (ﬂ)ﬁ 1 —cosf
Ry 3" (6 —sin6)3
ado = dr(a) = S 3) 3 (60— sm9)d

01 (a) 1s linearly extrapolated amplitude at a,d¢ is initial amplitude (a0, R>R)

—> Linear evolution at low amplitude

= Singularity in a finite time depending only on initial fluctuation amplitude
[R(a)=0 when 0=2m,ie. §;, = %(377')32 ~ 1.68 |
9

Thus non-linear collapse is “more efficient” than linear amplification



Spherical collapse model:
evolution of density fluctuation

Exact density fluctuation as a function of linear evolved density fluctuation:

8

T
delta_L
delta_NL

7L

6

delta

delta_L



Spherical collapse model:
extrapolation beyond collapse

With additional assumptions SC model can give further predictions

Model defines a time of “turnaround” (at O=5) when physical velocity is zero

—> from this time evolution of a “cold” isolated uniform sphere (in these coords)
Real system: collapse not singular because of fluctuations

Instead obtain a finite stationary (and virialized) system



form sphere

1 unl

Evolution of a cold quas
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Collapse and virialization
of a cold quasi-uniform sphere




b(t)

Collapse and virialization
of a cold quasi-uniform sphere
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Extending the SC model:
mean density/size at virialization

Assuming

* virialization at time of theoretical singularity

e energy conservation (?)

—> Simple estimate of characteristic mean density of systems at virialization
6V IR ~ 200

Thus virialized structure about 1/6 of initial (comoving) size of collapsed mass



Extending the SC model:
“Press-Schecter” formalism

Using

+ SC model’s “linear threshold for virialization” (0 = 1.68) [a region will give
rise to a virialized structure when its extrapolated linear amplitude is 1.68]

+ initial power spectrum of fluctuations [statistics of regions with given initial 0]

9

prediction for number density of virialized systems of given mass at any time,
or so-called “mass function”

+ many refinements/modifications..

[Dark matter clumps virializing “today” => large galaxy clusters]



Beyond collapse and virialization:
the stable clustering approximation

Assume that these virialized clumps then evolve like isolated systems

They “decouple from Hubble flow” and are “stable”

—> just “shrink” as 1/a in comoving coordinates

—> Fluctuations at a given scale is then a calculable function of initial fluctuations

at a larger scale in linear regime..

In practice expect non-linear structures of different sizes to interact, and

even merge...only numerical simulation can tell us how much!



Scale free models and “‘self-similarity”™

Initial power spectrum P (k) = Ak" (+UV cut-off)
+ a(t) which is power law

— No characteristic scale other that non-linear scale

—> If structure formation is UV insensitive, clustering must be “self-similar” e.g.

2 point correlation function

)

T 2
£(z,a) = & R,(a)) where R, = a*+» (from linear theory)




Non-linear clustering in scale-free models

If non-linear clustering is also assumed stable, it must then be scale-free e.g.

€ ( CB) ~ 1 Ysc
The exponent y,. can be determined analytically

_3(3+n)
7 54n

(Davis and Peebles 1977)

—> Testable analytical predictions for such models



Numerical simulations of cosmological
structure formation



Numerical simulation of structure formation:
equations

The equations one would like to solve are the VP equations

In practice use “N-body method”: solve the N body particle problem!

; a. G’m —
X; +2—-X; = — E 3
a |x — le

(Ix: — x;])

where regularisation of sum in infinite periodic system is left implicit here

W, : regularisation of interaction when Ix;- x;/ =0
N body particles are “softened macro-particles”

[ Direct solution of VP?

See Yoshikawa K. et al., MNRAS (2013), Colombi et al., MNRAS (2015)]



Initial conditions of NBS
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Initial power spectrum P(k) « k' +velocities as prescribed by “Zeldovich Approx™
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Simulating the joint evolution of quasars, galaxies

and their large-scale distribution

Volker Springel*, Simon D. M. White!, Adrian Jenkins?, Carlos S. Fr
Naoki Yoshida®, Liang Gao?, Julio Navarro®, Robert Thacker®, Darre
John Helly?, John A. Peacock®, Shaun Cole®, Peter Thomas’, Hugh
August Evrard®, Jorg Colberg® & Frazer Pearce!?

! Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, 85740 Garching, Gen
2Inst. for Compwtarional Cosmology, Dep. of Physics, Umiv. of Durham, South Road, Dwi
*Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

*Dep. of Physics & Astron., University of Victoria, Victoria, BC, V8P 5C2, Canada
SDep. of Physics & Astron., McMaster Univ., 1280 Main St. West, Hamilton, Ontario, L8
SInstitute of Astronomy, University of Edinburgh, Blackford Hill, Edinbwrgh EH9 3HJ, Ul
"Dep. of Physics & Astron., University of Sussex, Falmer, Brighton BNI 90H, UK

#Dep. of Physics & Astron., Univ. of Michigan, Ann Arbor, MI 48109-1120, USA

9Dep. of Physics & Aswron., Univ. of Pintsburgh, 3941 O"Hara Street, Pittsburgh PA 1526
°Physics and Astronomy Department, Univ. of Notringham, Nottingham NG7 2RD, UK

The cold dark matter model has become the leading theoretical par:
mation of structure in the Unmiverse. Together with the theory of cos
model makes a clear prediction for the initial conditions for structu
predicts that structures grow hierarchically through gravitational i
this model requires that the precise measurements delivered by gala:
compared to robust and equally precise theoretical calculations. Here
framework for the quantitative physical interpretation of such survey
the largest simulation of the growth of dark matter structure ever car
techmques for following the formation and evolution of the visible com
that baryon-induced features in the mitial conditions of the Universe a
torted form in the low-redshift galaxy distribution, an effect that can be

the nature of dark energy with next generation surveys.

Figure 1: The dark matter density field on various scales. Each individual image shows the projected
dark matter density field in a slab of thickness 154 'Mpc (sliced from the periodic simulation volume
at an angle chosen to avoid replicating structures in the lower two images), colour-coded by density
and local dark matter velocity dispersion. The zoom sequence displays consecutive enlargements by
factors of four, centred on one of the many galaxy cluster halos present in the simulation.
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Figure 1: The dark matter density field on various scales. Each individual image shows the projected
dark matter density field in a slab of thickness 15k~ 'Mpc (sliced from the periodic simulation volume
at an angle chosen to avoid replicating structures in the lower two images), colour-coded by density
and local dark matter velocity dispersion. The zoom sequence displays consecutive enlargements by
factors of four, centred on one of the many galaxy cluster halos present in the simulation.




Evolution of 2 point correlations: schematic
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Clustering 1n cold dark matter simulations:
“Hierarchical structure formation™

* Linear theory describes evolution well at sufficiently large scales (small k)
e Non-linearity scale grows monotonically at a rate predicted by linear theory

* In non-linear regime “flow of power” from large to small scales
(via collapse dynamics exemplified by “spherical collapse model”)

This is “HIERARCHICAL STRUCTURE FORMATION”



Clustering 1n cold dark matter simulations:
non-linear regime

Distribution of masses of largest “non-linear clumps” (“mass function™) is
roughly as predicted by spherical collapse model + “improved” Press Schecter
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Figure 2: Differential halo number density as a function of mass and epoch. The function n(M, z) gives

the comoving number density of halos less massive than M. We plot it as the halo multiplicity function

M?p~'dn/dM, where p is the mean density of the universe. Groups of particles were found using
a friends-of-friends algorithm® with linking length equal to 0.2 of the mean particle separation. The
fraction of mass bound to halos of more than 20 particles (vertical dotted line) grows from 6.42 x 104
at z=10.07 to 0.496 at z = 0. Solid lines are predictions from an analytic fitting function proposed in
previous work!!, while the dashed lines give the Press-Schechter model'* at z = 10.07 and z = 0.



Clustering 1in non-linear regime: halos

Distribution of masses of largest “non-linear clumps” (“mass function™) is
roughly as predicted by spherical collapse model + “improved” Press Schecter

These halos have some substructure but are smooth to good approximation
[“Stable clustering” breaks down (see e.g. Smith et al., MNRAS 2006)]

Halos are (putatively) approximately virialized finite systems
1.6. quasi-stationary states, stationary solution of Vlasov-Newton Egs.

Halos have apparently “universal” properties (i.e. independent of cosmology and
initial conditions), notably

- Density profiles (e.g. “NFW?)
- “Phase space density” profiles



The non-linear regime
as now seen (understood?) by cosmologists

Huge (N > 1019 !) studies focussed on “realistic” cosmological IC
Increasing N = increasing range of scale resolved in non-linear regime
—> increasing resolution of interior of largest clumps
—reveals “nested substructure” but most of mass smoothly distributed

—> phenomenological descriptions of non-linear regime in terms of these clumps

These are so called ‘‘halo models”



“Halo models” of non-linear clustering

Matter density field = o 0 0.4 0.6 0.8 1
collection of (non-overlapping) spherical smooth virialized structures
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A UNIVERSAL DENSITY PROFILE FROM HIERARCHICAL CLUSTERING

JuLio F. NAVARRO'
Steward Observatory, 933 North Cherry Avenue, University of Arizona, Tucson, AZ 85721-0065; jnavarro@as.anzona.edu.
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ABSTRACT

We use high-resolution N-body simulations to study the equilibrium density profiles of dark matter
halos in hierarchically clustering universes. We find that all such profiles have the same shape, indepen-
dent of the halo mass, the initial density fluctuation spectrum, and the values of the cosmological param-
eters. Spherically averaged equilibrium profiles are well fitted over two decades in radius by a simple
formula originally proposed to describe the structure of galaxy clusters in a cold dark matter universe.
In any particular cosmology, the two scale parameters of the fit, the halo mass and its characteristic
density, are strongly correlated. Low-mass halos are significantly denser than more massive systems, a
correlation that reflects the higher collapse redshift of small halos. The characteristic density of an equi-
librium halo is proportional to the density of the universe at the time it was assembled. A suitable defini-
tion of this assembly time allows the same proportionality constant to be used for all the cosmologies
that we have tested. We compare our results with previous work on halo density profiles and show that
there is good agreement. We also provide a step-by-step analytic procedure, based on the Press-
Schechter formalism, that allows accurate equilibrium profiles to be calculated as a function of mass in
any hierarchical model

Subject headings: cosmology: theory — dark matter — galaxies: halos — methods: numerical

NPAC Cosmological Structure
Formation
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Fic. 1.—Particle plots illustrating the time evolution of halos of different massinanf), = 1, A = 0, and n = — 1 cosmology. The box sizes of each column
are chosen so as to include approximately the same number of particles. At z; = 0, the box size corresponds to about ér, . Time runs from top to bottom.
Each snapshot is chosen so that M increases by a factor of 4 between each row. Low-mass halos assemble earlier than their more massive counterparts. This
is true for every cosmological scenario in our series.
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the density profiles using eg. (1). The arrows indicate the value of the gravitational softening The virial radius of cach system is in all cases 2 orders of
magnitude larger than the gravitational softening.



The Density and Pseudo-Phase-Space Density Profiles of
CDM halos
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ABSTRACT

Cosmological N-body simulations indicate that the spherically-averaged density pro-
files of cold dark matter haleos are accurately described by Einasto profiles, where the
logarithmic slope is a power-law of adjustable exponent, v = dlnp/dInr x r®. The
pseudo-phase-space density (PPSD) profiles of CDM hales also show remarkable reg-
ularity, and are well approximated by simple power laws, Q(r) = p/o® x r™*. We
show that this is expected from dynamical equilibrium considerations, since Jeans'
equations predict that the pseudo-phase-space density profiles of Einasto halos should
resemble power laws over a wide range of radii. For the values of a typical of CDM
halos, the inner @Q profiles of equilibrium halos deviate significantly from a power law
only very close to the center, and simulations of extremely high-resolution would be
needed to detect such deviations unambigucusly. We use an ensemble of halos drawn
from the Millennium-II simulation to study which of these two alternatives describe
best the mass profile of CDM halos. Our analysis indicates that at the resolution of the
best available simulations, both Einasto and power-law PPSD profiles (with adjustable
exponents a and x, respectively) provide equally acceptable fits to the simulations. A
full account of the structure of CDM halos requires understanding how the shape pa-
rameters that characterize departures from self-similarity, like & or y. are determined
by evolutionary history, environment or initial conditions.

11UZ2.0002v1 |astro-ph.CU| 51 )

arXxi1iv

Key words: cosmology: dark matter — methods: numerical



“Halo profiles” :

(see e.g. Cooray and Sheth, Phys. Rep. 2002)

- Density profiles of these “halos” fitted by “universal” form, e.g.,

“NFW vprofile” — PO ‘ or e.g. “Einasto I'Oﬁle”)
i PO = Gy rfrge OO 3

2 parameters fitted from simulation: usually, halo mass m and “‘concentration”
defined by

J— ""‘

C=E —
I's

where 1, 18 halo radius or “virial radius”, where density 1s 200 x mean density

Physical origin? Extensive literature, no definitive answer..



“Halo models” : ingredients
(see e.g. Cooray and Sheth, Phys. Rep. 2002)

Ingredients:

- Density profiles of these “halos” fitted by “universal” form, e.g.,

Po
“NFW profile” p(r) = (r/rs)(1 +7/75)2 (or e.g. “Einasto profile”)

2 parameters fitted from simulation: usually, halo mass m and “‘concentration”
defined by

where 1, 1s halo radius or “virial radius”, where density 1s 200 x mean density



“Halo models™ : ingredients
(see e.g. Cooray and Sheth, Phys. Rep. 2002)

Ingredients:

- Density profiles of these “halos” fitted by “universal” form, e.g.,

Po
“NFW profile” p(r) = (r/rs)(1 +7/75)2 (or e.g. “Einasto profile™)

2 parameters fitted from simulation: usually, halo mass m and “‘concentration”
defined by

where 1, 1s halo radius or “virial radius”, where density 1s 200 x mean density

+ “Mass function” n(m) for halos



“Halo models™ : ingredients
(see e.g. Cooray and Sheth, Phys. Rep. 2002)

Ingredients:

- Density profiles of these “halos” fitted by “universal” form, e.g.,

Po
“NFW profile” p(r) = (r/rs)(1 +7/75)2 (or e.g. “Einasto profile”)

2 parameters fitted from simulation: usually, halo mass m and “‘concentration”
defined by
where 1, 18 halo radius or “virial radius”, where density 1s 200 x mean density

+ “Mass function” n(m) for halos
+ “Mass- concentration relation”



“Halo models™ : ingredients
(see e.g. Cooray and Sheth, Phys. Rep. 2002)

Ingredients:

- Density profiles of these “halos” fitted by “universal” form, e.g.,

Po
“NFW profile” p(r) = (r/rs)(1 +7/75)2 (or e.g. “Einasto profile™)

2 parameters fitted from simulation: usually, halo mass m and “‘concentration”
defined by

—_— ”"’

c=E —
I's

where 1, 1s halo radius or “virial radius”, where density 1s 200 x mean density

+ “Mass function” n(m) for halos
+ “Mass- concentration relation”
+ Correlation properties of halo centres (~ linear theory at large distances)



Halo model example: 2 point correlations
(see e.g. Cooray and Sheth, Phys. Rep. 2002)

- Measured (deterministic) mass concentration relation

- Density profiles

where . )
p(r|m, c) = mu(r|m) 47r/ u(r|m,¢)r*dr =1
0

+ statistics of halo (centre) distribution: mass function n(m), correlation fns.

We have
(p(Z)p(y)) = <Z Z mimju(r|m)u(rim;))

Two point correlation function of mass density

Em(|Z — ) = ﬁ%w(wr)p(y')) -1 (p(&)) = p

divides into ‘“‘one-halo term” (i=j) and *“‘two halo term” (i # )



2 point correlations 1n halo model:
two contributions

One halo term depends only on average mass function and density profiles:

1 d z/dm m*n(m)u(@ — 2\m)u(y — Z)m)
p*

This describes the strongly non-linear regime

Two halo term depends also on spatial correlation properties of halos:

1 d*z /d Zg/d"l] mln(m])/dmz man(ms;)
p*

(n(ma, Z1)n(mz, 22)) 1]
n(mi)n(msz)

xu(# — 2y |m)u(yf — Z2lm) |

To a reasonable approximation this can be just be approximated by linear regime



Halo models : exploitation

These models give analytical forms for n-point correlation properties (real
and k space) in terms of a finite number of parameters measured in simulations..

These are then used in making observational predictions (e.g. lensing)

Galaxy distributions are constructed positing Prob(galaxylm)
(with numerous free parameters then adjusted to observations..)

Halos models can be “refined” to model e.g. fraction of “substructure”, more
complex mass-concentration relations, at price of additional fit parameters..

“Halo bias’’: relation between correlation of halos and those of all matter



Cosmological structure formation:
Some open 1ssues



General questions about the “non-linear regime”

- How is non-linear clustering best characterized ?
(mathematical tools..)
- How does non-linear clustering depend on initial conditions and cosmology?

(and can we understand and precisely characterize this..)

Both questions are also of fundamental importance observationally



Halo models: open problems...

Problems with ‘“halo model” approach
 “Halos” are poorly defined objects..

* The approximation of smoothness is problematic; increased resolution has

revealed layer after layer of “substructure”..
*  Unclear what “universality” means, what is its origin if it exists..

(Huge literature on these issues..)



Resolution of N body simulations

How accurately does discrete NBS reproduce clustering of
underlying continuum physical model (VP limit)?

i.e. What are finite N effects?

Practically:
what is “resolution scale’” R(a) ?

i.e. above which a given clustering stat i1s measured with desired
precision?

93



The resolution/discreteness problem

N Body method introduces several non-physical parameters

* A: mean interparticle distance (““mass resolution”)

e g: force softening length (“force resolution™)

[+ others: Box size L, starting red-shift, choice “pre-initial” configuration (grid/glass...)

How does R(a) depend on A, €,a ? On model simulated ?

94



Why 1s there a *7” ?

Numerical convergence studies do not in practice resolve the question..
+ Prima facie problem:
Naively might expect condition:

R >> max{A, ¢}

However N-body simulations typically use A >> ¢

R(final) ~ ¢

i.e. resolution is given by the smoothing length, even when ¢ << A

95



Example: “Millenium” simulation

Simulating the joint evolution of quasars, galaxies
and their large-scale distribution

Volker Springel’, Simon D. M. White', Adrian Jenkins?, Carlos S. Frenk?,

Naoki Yoshida®, Liang Gao’, Julio Navarro®, Robert Thacker®, Darren Croton ',
John Helly?, John A. Peacock”, Shaun Cole®, Peter Thomas’, Hugh Couchman?,
August Evrarc®, Jarg Colberg® & Frazer Pearce'”

N=20583, L=500 h'! Mpc
THUS

A =0,.25 h'! Mpc

¢ =~5h!kpc

ie. e/A= 0.02

1000.00 Y T T T Ty L 11F§
AN 3
‘\, —
LN
100.00 & -
. 3
LN

10.00E N -
N B
“u 3
= :\.‘ -

- .
e 1.00 ). 4
‘\$ :
\ -
0.10 \ —
» { 3
\ .
0.01& \ 3

APPPIY BTN -
0.1 1.0 10.0 100.0

N.B: a large part of the non-linear
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Figure 4: Galaxy 2-point correlation function at the present epoch. Red symbols (with vanishingly
small Poisson error-bars) show measurements for model galaxies brighter than M x = 23. Data for the
large spectroscopic redshift susvey 2dFGRS™ are shown as blue diamonds. The SDSS™ and APM™!
surveys give similar results. Both, for the observational data and for the simulated galaxies, the coere-
lation function is very close 1o a power-law for r << 204 ~"Mpe. By contrast the correlation function for
the dark matter (dashed line) deviates strongly from a power-law.

eE<r<A
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Resolution at starting time
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Initial (small) fluctuations of model accurately reproduced for scales > A

Large fluctuations due to discreteness for scales < A 3



Evolution of resolution in linear regime

MIJ, B. Marcos, A. Gabrielli, T. Baertschiger, F. Sylos Labini
Gravitational evolution of a perturbed lattice and its fluid limit,
Phys. Rev. Lett. 95:011334 (2005)]:

Small displacements from an infinite periodic lattice:
Evolution can be calculated exactly ! It’s just an eigenmode problem
- “Particle Linear Theory”

98



M. Joyce and B. Marcos,
Quantification of discreteness effects in cosmological N body simulations. II: Early time evolution

Phys. Rev. D76:103505 (2007)
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e Simulation begins at a=1

e Deviation from unity is the discreteness effect

Linear evolution of power on a lattice

k/kn=KA/mt
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Resolution in the non-linear regime

Modes now couple.....
Role of “missing power”? Role of added (discrete) power ?
Claim: R(a) decreases strongly and “follows’ non-linear clustering

Justification: Non-linear gravitational clustering

“efficiently transfers power from large scale to small scale”

ctf. spherical collapse model

- At sufficiently long times all memory of initial conditions at
“missing” scales is lost

100



Despite “convergence studies” basic questions
remain..

How efficient is transfer power from large scale to small scale?

How much does it really “wipe out” dependence on discreteness in IC?

9
Can we quantify R(a) ? Is it model dependent ?

101



Initial conditions a=

R

e S TR A

D L

PR TR S e
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Evolved to a=23

2 5
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Evolved to a=2°
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Evolved to a=27
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END PART 1!



PART II:
1D toy models for cosmology
(and astrophysics)



Newtonian Gravity 1n 1D

Poisson equation in 1D
>

Attractive pair force independent of separation

Equations of motion:

T; = —nggn(wi — ;)

J#1

—>Forces are constant except at crossing
—“Exact” numerical integration using an event driven algorithm



Newtonian Gravity 1n 1D

Many studies in literature going back to 50s at least, for references see e.g.
M. Joyce and T. Worrakitpoonpon, J. Stat. Mech., P10012 (2010)

Also now a relevant model of a real laboratory system:

Long-range one-dimensional gravitational-like interaction in a neutral atomic cold gas
Chalony, M.; Barré, J.; Marcos, B.; Olivetti, A.; Wilkowski, D.

Phys. Rev. A (2013)



1D gravity: thermal equilibrium

1D analytical solution (Spitzer 1942, Rybicki 1971)

1 ]_ o , L P \2
). ) = - sech?2(Z)e— ()
f(p.7) = 5= - Sasech?(3)
where
> AmPE AE
o2 = i and A

3M ~ 3gM?



A simple diagnostic of macroscopic evolution

M. Joyce and T. Worrakitpoonpon
Relaxation to thermal equilibrium in the self-gravitating sheet model, J. Stat. Mech., P10012 (2010)

To monitor macroscopic evolution useful to consider e.g.

6511 _ <|JH’U|> B 1 _ f |.1:||’U|fd;l:(h) B
| (|} {[v]) [ |z|fdxdv [ |v|fdxdv

—> Measure of “phase space entanglement’:

1

It 1s
ezero in thermal equilibrium

'non-zero and constant in QSS
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Evolution of a 1D self- gravitating system

------------------------------------------------------------------------------------------------------------------------



Evolution of density profiles

Density Profile : Lyon

Density Profile :

Lyon
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Green curve: Thermal equilibrium (Rybicki 1971)
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Evolution of 1D gravitating systems : different 1C

N=100 | Pt
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0.4 - N=100 R=0.1 500 realizations

N=100 R=0.5 500 realizations

N=100 R=1.0 500 realizations
0.2 A
\\
D s B oot oS R O s B R o Sl
-0.2 \/_/

0.4 |

¢11

1 ! 10 100 1000 10000 100000 1e+06
t

T., ~ (1010 N T,



1D models of cosmological structure formation



1D gravity: infinite system limit ?

Just as in 3D the sum

= —nggn i — ;)

J#1

1s not defined for an infinite uniform distribution..

- Proceed as in 3D??



Gravitational dynamics in
a 1D “expanding” universe

1D gravity does not have expanding universe solutions analagous to 3D!

-> Work directly with comoving coordinates,
Just replace by hand 3D forces with 1D forces

dzfi dfi 1 . Gm(:i',, — fj) —p|&;—F|
—_ —— b J
iz * 2H dt a’ [;ltl—I)I%J — |Z; — z;|3 © |
JF#i
by
d2a:i da:,' 1 . —plz;—x;]
iz TH g = _a_‘»*[,lgh;gsgn(xz —zj)e 7]
VE

where a(t) is the 3D expansion (but particle motion in 1D!)



Regulated 1D gravitational force

The expression

FREG — _ hm 2:gsgn(a:z — z;)e T
JF#i

can be calculated exactly in an infinite periodic system

In 1D position of a particle 1 at any time can be written as its displacement u,
from a nearby lattice site (without overlapping).
The force is

F*C = 2gno[u; — (u)]

where <u> is average value of u.



1D gravity in an expanding universe:
damped 1nverted oscillators

Like in 3D one can change to time variable to obtain equations as

dzuz- + T du,;
dr? dr

= 2gnou;

where «damping » is

' =+/gno/3

— Dynamics of an infinite set of damped inverted harmonic oscillators
displaced off a regular lattice (and which bounce elastically when they
collide)

Motion is exactly integrable between crossings > similar exact event driven
methods as for finite system



1D gravity in an expanding universe:
a family of models

It is natural to consider

dzui + I du,;
dr? dr

= 2gnou;

where «damping » is a free parameter.

['=ky\/gno/3

This corresponds to taking a 3D expansion law derived from

2 47rG
3a?

a
a

i.e. « speeding up » expansion by a factor of 2



Cosmology 1n a 1D universe: an “historical note”

In cosmological literature: studies of model kK =1 by Melott (1982) PRL
Yano & Gouda (1998) Astrophys. J. Supp.

In Stat. Phys. literature

- “RF” Model, corresponding to x = /3 introduced by Rouet et al. (1990) ,
studied extensively by Miller et al. (e.g. PRE 2002, 2007)
These authors also studied ‘‘static’’ model with x = (

- “Quintic” Model corresponding to Kk = 1 introduced by
Aurell & Fanelli (2002) Astron. Astrophys.

Exhaustive study of family of models (range of g ) by
Sicard & Joyce, MNRAS (2010), Benhaeim et al, MNRAS (2012)

Recent work: VP simulations of RF and Q model by Manfredi et al. 2015((PRE)



Linear theory in 1D models

Results for linear theory in 3D carry over to 1D model
Prior to crossing, growing mode of particle motion is exactly that of fluid
element in Zeldovich approximation:

24

2al'T fa
=

Ui X € =a where o = %[—1 - \1 -

—> Scale independent amplification of density fluctuations



“Spherical collapse” model in 1D

Results analagous to 3D:
Collapse to singularity in finite time, independent of size

In presence of initial fluctuations singularity is regularized, system virializes
(albeit somewhat less efficiently than in 3D)
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Results: clustering in a 1D universe
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Evolution of correlation function (1D)

(n=0, k=1)
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Evolution of power spectrum (n=0, k=1)
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1D clustering from cold initial conditions:

Quantitative analyse reveals behaviour completely analagous to 3D
—> Hierarchical clustering (linear amplification + collapse)

Growth of non-linearity scale driven by linear amplification



Prediction for scale-free 1D models

For PS P(k)=Ak" self-similarity (same assumptions as in 3D)

T 4o '+ 2o
£(@,0) =bo(57~)  Rs=eTin' =qTin

Rs(a)
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Results: scale-invariance in 1D?
(MJ, F. Sicard MNRAS 2011)

Power law behaviour in spatial correlations, over 3-4 orders of magnitudes in
expanding models

Appears to extend over an arbitrarily large range of scale, asymptotically
apparently without limit..

Is it associated with an underlying scale invariance?
Study (multi-)fractal exponents using standard box-counting technique
Confirm findings of [Miller et al., Phy. Rev. E. (2007) and refs therein]

strong evidence for fractal structure/scale-invariance



Determination of correlation dimension (1D)
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Origin of the exponents?

(MJ, F. Sicard MNRAS 2012)

(

Measured exponents clearly depend both on IC (n) and *“‘cosmology’’(»)
“Stable clustering hypothesis” (Peebles 1974 for 3D)

But what does this hypothesis mean in the 1D model?
What is “‘stability’’?



“Physical coordinates” in 1D

Unlike 3D we do not derive equations from physical coordinates...nevertheless
there are (almost) equivalent coordinates:

For particles in a finite subsystem S the eom can be written

dyi | . dy;
70 -+ T d,r" —g Y sgn(y: —y;) + 2gnoy:
J#i,JES

where y.= position relative to CM of S (Note: no tidal forces!)

Taking

-~ 3
F— FT/3 — GQPT/S'

F b L Yi
gives 2,
2 9gno
dtQ - —QJ#ZJ:E sgn(r; — ;) + % =[1+ T |7

Second term on right becomes negligible at long times—>r, “physical coordinate*



Correlation dimension 1n the

“stable clustering” hypothesis
MJ, F. Sicard MNRAS 2011

Assume strongly non-linear structures behave as isolated virialized objects

—> Clustering frozen in “physical coordinates”
—> Temporal evolution of lower cut-off to power-law

Using “self-similarity” to determine behaviour of upper cut-off,

Predict
2k (n+ 1)

’ ’ Yac o n,n —
{(z) @ tec (1, %) k(2n —1) 4+ 3v/K2 + 24




Exponents of non-linear clustering in 1D models:

measurement from simulations
D. Benhaiem and MJ (2012)
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Exponents 1n 1D models: from stable clustering to
universality
D. Benhaiem and MJ (2013)

Excellent agreement with stable clustering when %;(n, k) 2 0.2

Otherwise exponent which is ~ independent of both expansion and IC
—> “universal” non-linear clustering

Why a critical value for validity of stable clustering?

Can show that e
L) \ LY LY
Lo

where (L_) 1s ratio of size of two structures when the larger one virializes,
1

while (é_%) 1s the ratio of their initial sizes
1

Thus large exponent = expect substructure to persist (because highly bound)



Open questions about the “non-linear regime”

- How is non-linear clustering properly characterized ?

- How does it depend on initial conditions and cosmology?
1D suggests the space of cold IC and cosmologies breaks into two regions:

* fractal “virialized hierarchy”, non-universal

* fractal “virialized hierarchy” (or smooth, not so clear..), universal



Back to cosmology 1n 3D...



Power-law scaling in galaxy clustering

Observations:

Power law behaviours do characterize galaxy correlations in some range



Standard model: power law correlations are an accident....
(cf. Masjedi et al, Astrophy. J. 2008)

‘DI ET AL. Vol. 644
108 o Masjedi et al. -
A Zehavi et al.
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Power-law scaling in galaxy clustering

Observations:

Power law behaviours characterize galaxy correlations in some range

Is such power law clustering in galaxies indicative of scale-invariant
phenomena?

If yes, is the purely gravitational dynamics giving rise to it?

Current standard model answer: no, these power-laws are an ‘“‘accidental”

Or perhaps resolution of 3D simulations too poor to resolve it?
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Figure 4: Galaxy 2-point correlation function at the present epoch. Red symbols (with vanishingly
small Poisson error-bars) show measurements for model galaxies brighter than Mg = —23. Data for the
large spectroscopic redshift survey 2dFGRS?® are shown as blue diamonds. The SDSS** and APM>!
surveys give similar results. Both, for the observational data and for the simulated galaxies, the corre-
lation function is very close to a power-law for » < 20h~'Mpc. By contrast the correlation function for
the dark matter (dashed line) deviates strongly from a power-law.

(V. Springel et al., Nature 2005)



Stable clustering/resolution 1in 3D revisited
(D. Benhaiem, MJ and B. Marcos, 2013 +work in progress)

Study of “Gamma cosmology” in 3D..

2
d Xi . F% — FREG [ = k\/27Gpo/3
dr? dr

9

Generalisation of stable clustering prediction of Peebles:

6(3+n)

750(77'9'{'): 5
54+4/14+ 2 +2n




Stable clustering/resolution in 3D revisited
(D. Benhaiem, MJ and B. Marcos, 2013 +work 1n progress)

Results: stable clustering prediction works very well in range of scale we can
resolve..

Recent work (D. Benhaiem & MJ, 2016), larger simulations:

Breakdown of stable clustering correlated to breakdown of self-similarity

9
Non-linear regime dominated by interaction and merging of structures is strongly

affected by UV (i.e. discreteness) effects!

Suggests that a large part of N-body simulation 3D results may be incorrect...

Perhaps VP simulations may help to resolve the issue definitively..?
[See Yoshikawa K. et al., MNRAS (2013), Colombi et al., MNRAS (2015)]
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