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2  Lecture Plan  

PART I (1.5 lectures) : A brief introduction to the problem of SF in cosmology

PART II (0.5 lectures):  1D toy models for astrophysics and cosmology



Caveat: References 

All of Part I is a review for a broad physics audience of “the basic essentials” of 
this field, or at least what I myself consider these to be. It is based on many 
different sources, and only the perspective and emphasis are my own. I have not 
attempted to provide a full bibliography or cite the original references 
exhaustively, and indeed references are given only for specific results which 
are less part of the standard “canon” of the field.  Although written now over 
30 years ago, Peebles “The Large Scale Structure of the Universe” (Princeton 
1980) remains a basic reference the analytical theory described; fairly up to date 
reviews of N body numerical simulations are easy to find; for halo models the 
review of Cooray and Sheth (Phys. Rep. 2002) is a good starting point.

In Part II on the other hand I provide more extensive (but not exhaustive) 
references, as the topic is a more circumscribed one where this is easily done. 



PART I
  Intro to cosmological structure formation



Things I would hope an uninitiated listener may 
"take away":    



•  What the “problem of structure formation” (SF) is
 
•  Why the Newtonian limit of purely self-gravitating matter is a good approx.

•  What the problem of SF then reduces to formally (equations!)

•  How initial conditions are described and derived

•  Some basic analytical results about SF
- - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

•  What numerical methods for simulation of SF are

•  What main qualitative results are for non-linear SF

•  A few major open issues, some connections to other LR systems

Things I would hope an uninitiated listener may 
"take away":    



The problem of 
cosmological structure formation 



Homogeneous and isotropic universe in GR à FRW solutions of gravity

“Real universe”:  
      perturbed FRW metric coupled to perturbed matter/energy content

à “The standard cosmological model” 

+  4 parameters specifying FRW model
           (radiation, baryons, dark matter, dark energy)
+  2 parameters specifying initial initial fluctuations 
(+”standard physics”)

à  Predictions for evolution of universe!!

Linearized version for small perturbations is impressively successful…

Modern cosmology



 Cosmology 

“WMAP” : the universe at ~105 years…

                                  Density fluctuations ~10-4 to 10-5 



 Cosmology 

“PLANCK” : the universe at ~105 years…

                                  Density fluctuations ~10-4 to 10-5 



Cosmology 

“SDSS” : the universe “today” (1010 years)

                    Fluctuations >> 1 at corresponding scales 



How do we get from tiny fluctuations in “primordial universe” to large 
fluctuations today ? 

What is full quantitative theoretical prediction for observations? 
 
 

The problem of structure formation



 Simplification of this very complex non-linear problem

-  Non-linearity becomes important essentially only in “matter dominated 
era”,  dominant matter component is non-relativistic

-  After “decoupling” non-gravitational forces can be neglected except at 
“small”  (< galaxy) scales

-  Perturbed FRW metric remains a good approximation (weak fields) 

à   Treatment  in Newtonian limit of purely self-gravitating system

The problem of structure formation: 
simplifying (valid) approximations



(Very roughly) valid for 
 
Length scales:  from  galaxy scales (~ 0.01 Mpc) to “horizon” scales (~ 104 Mpc)

Time scales: from  ~ 105 years (“matter domination”) to today (~ 1010 years) 

Newtonian approximation:   
time and length scales



Cosmological structure formation in
 the Newtonian limit  



What “Newtonian limit” ?

Newtonian gravity is badly defined in the infinite system limit..!

     

The Newtonian limit of FRW cosmology



Finite system:  N particles in a finite region of (infinite) space 
                               

Infinite system: an infinite number of particles distributed throughout space
                                
 
For latter case the sum is badly defined !                          

Newtonian gravity: Finite and infinite



It is GR which prescribes how to regularize Newtonian gravity

GR has well defined (FRW cosmologies) for an infinite matter distribution

 
à  Regularize Newtonian sum to obtain these !

     

The Newtonian limit of FRW cosmology



Self-gravitating particles distributed uniformly in infinite space
Calculate force summing in spheres about a chosen centre  

Uniform mass density: à force proportional to distance from centre 
                                      à homologous expanding/contracting solutions: 

 a(t) obeys the Friedmann equation for scale factor as in GR
Note: relative motion of particles is independent of choice of centre!

FRW cosmology in the Newtonian limit



Same equations as above, but now not exact FRW initial conditions

i.e. infinite distribution of mass which is 
        close to uniform and close to Hubble flow above some finite scale

Convenient to change to “comoving coordinates” 

                            is “peculiar velocity”, i.e. velocity relative Hubble flow

Perturbed FRW cosmology in the Newtonian limit



In these comoving coordinates equations of motions become

                ****               ****

where 

This “regulated force” is zero for the case of an infinite uniform density
[“Jeans regulated force”]

The motion in comoving coordinates is due only to inhomogeneities

Perturbed FRW cosmology in the Newtonian limit



The regulated force can be written formally in different ways 
1) As the limit of a symmetrical sum about each point 

 

2) As the limit of a screened gravitational force (cf. Kiessling 1999):
 

3) In terms of a “Jeans regulated”  potential

                  

Regulated Newtonian force in an infinite system 



Redefining the time variable as                       equations can be rewritten as 
   

where  

à Dynamics of inhomogeneities in comoving coordinates is equivalent to that 
of self-gravitating particles in a static universe subject to a fluid damping..

Remark: Expansion and fluid damping



Suppose S a finite subsystem of the infinite uniform mass distribution

The force on a particle in S can be written as

Force relative to CM due to mass in S +  Force on CM (due to mass outside S)
                                                             +    (tidal) forces due to mass outside S

If the substructure is “sufficiently dense and far from other mass” so that the 
tidal forces can be neglected it follows that 

Equation of motion for the particles in S relative to its centre of mass are, 
in physical coordinates, those in an isolated self-gravitating system 

Thus  e.g. stars in a galaxy, or planets in the solar system are “decoupled” from  
the Hubble flow. In comoving coordinates they “shrink”.

 

                  

An important remark on  “physical coordinates”



Dynamics of self-gravitating matter in an 
expanding universe



In cosmology use a continuum description of matter: particles are microscopic 
Just want to determine e.g. phase space density 
àVlasov-Poisson equations 

In physical coordinates:  “usual” VP equations + infinite system regularisation
In comoving coordinates this gives

                                                                                                     (                  )

Remark: different writings of this equation abound à different conventions for f
Here f defined by 

Dynamics of self-gravitating matter in an 
expanding universe: continuum limit



  “Linear theory”:
Evolution of small perturbations about FRW

 Zeroth moment of VP:  continuity equation 

 First moment of VP :     Euler equation 

-     Neglect “velocity dispersion” term (àcold matter)

-  Linearize in 

                                                    mass density fluctuation 

and 

                                                        bulk velocity



  Pressureless linearized fluid equations 

 

à  Matter density fluctuations have  a growing mode 



  “Linear theory”:
Evolution of small perturbations about FRW

“Linear amplification”,  just gravitational instability!

                                                 

                                                                                                (Fourier Transform)

NOTE: The amplification is scale-independent (property of Newtonian gravity)

 

 Irrotational component of physical “peculiar velocity field” is amplified

[BUT gravitational potential Φ is not amplified, it is constant and weak!] 



 Lagrangian formulation: “Zeldovich approximation”

Fluid equations can be cast in Lagrangian formalism 

where q Lagrangian coordinate = initial position of the fluid element

At linear order, the displacement field in the growing mode obeys

     

                                                        where 

i.e. just motion parallel to gravitational field (thus irrotational)



Initial conditions 
for cosmological structure formation



Some physical process in “primordial” universe
 
à Initial low amplitude metric/matter/energy fluctuations to FRW 
     (e.g. amplification of quantum fluctuations during “inflation”)

Fluctuation fields are realizations of a (statistically translation and rotation 
invariant) stochastic process, which is (usually) assumed gaussian

Evolve with linearized but fully relativistic theory (of all fields and 
interactions..) until the matter dominated era

(Note: Linear evolution propagates gaussianity trivially)

Cosmological initial conditions:  
origin and description



“Cold dark matter fluid”,  in “growing mode”

Density field :                        realization of a correlated gaussian process

Fully characterized by power spectrum P(k) 

e.g.  “CDM” or “LambdaCDM” spectrum or variants

Velocity field derived assuming growing mode of linear theory.

Initial conditions for structure formation in 
matter dominated era



Standard cosmological model assumes (and e.g. inflation produces) a so-called   
“scale invariant spectrum”:  
                variance of  potential fluctuations is (almost) independent of scale

 When “processed” through cosmological evolution, it gives, at  matter 
domination a power spectrum for matter fluctuations:  

where T(k) is “transfer function”, and A a constant.

T(k)=1 corresponds to “primordial spectrum” :  P(k)=Ak

 Note: Measurements of CMB fluctuations  fix (in particular) the amplitude

Initial conditions for structure formation: 
power spectrum 



Initial conditions for structure formation: 
“transfer function” for standard CDM 

 Numerical fit to the “transfer function” of “standard CDM”

                                                              (see e.g. )
Γ is constant determined by the ratio of matter/radiation, fixes “turnover scale”

 Schematically:



Initial conditions for structure formation: 
power spectra for different models 

  



Define volume averaged relative  mass fluctuation

 

Its variance is related to power spectrum by

where      is      is  FT of window function for volume V 

Fluctuations in real space



V = sphere of radius R, and                             (and n < 1)

For all standard type cosmological models  -3 <  d(ln P)/d(ln k)  < 1  
à 
density fluctuations are a monotonically decreasing function of scale 

[Note: also true for n>1, some subtleties in relation of real and k space]

Cosmological initial conditions:  
averaged density fluctuation in a sphere 



From the linear to the non-linear regime: 
some analytical approaches



The most impressive observational successes of the standard cosmological 
model are in the linear regime, i.e., where linear perturbation theory applies

Notably
 
à  Fluctuations in CMB (WMAP, Planck and many others..)

à  very large scale structure in galaxies   (“baryon acoustic oscillations” )

Latter described to a very good approx. by linear theory applied up to today..

Linear theory (LT)



Assumption of LT:   “small density fluctuations”, “small velocity dispersion” 

Criterion for its validity? In general depends on full spectrum of fluctuations

à
LT valid for density/velocity field smoothed on some scale R if density/velocity 
fluctuations on this scale, and larger scales, are small 
 .…."provided not too much fluctuations below scale R” 
 
Taking                       expect on simple grounds that it is sufficient to have n<4           

(Zeldovich/Peebles) 
 

Linear evolution at a given scale is then negligibly affected by 
non-linear fluctuations  at smaller scales

Breakdown of linear theory?



For cosmological spectra, smoothed density/velocity field is a monotonically 
decreasing function of scale

à  LT itself then prescribes scale at which LT  break downs as function of time
           e.g. for power law spectra                      obtain  

Cold matter with cosmological spectra à "hierarchical structure formation" :  

•  monotonically growing non-linearity scale driven by linear amplification, 

•   time of non-linearity for each scale essentially independent of all others

What happens to a given scale when it "goes non-linear"? 

Evolution of non-linearity in cold matter: 
“hierarchical structure formation” 



Cold matter with cosmological spectra à "hierarchical structure formation" :
  

•  monotonically growing “non-linearity scale” driven by linear amplification, 

•   time of non-linearity for each scale essentially independent of all others

What happens to a given scale when it "goes non-linear"? 

Evolution of non-linearity in cold matter: 
“hierarchical structure formation” 



   A guide for non-linear evolution:
The “spherical collapse model”

“Spherical collapse model”: 

       spherical “top-hat” over-density in an otherwise uniform expanding universe 

Exact analytical solution, for comoving radius R(a) (in parametric form):

           is linearly extrapolated amplitude at a,     is initial amplitude (aà0, RàR0)



The “spherical collapse model”:
linear density fluctuation at singularity

           is linearly extrapolated amplitude at a,     is initial amplitude (aà0, RàR0)

à Linear evolution at low amplitude

à Singularity in a finite time depending only on initial fluctuation amplitude 
     [R(a)=0 when θ=2π, i.e.                                            ]                                  

Thus non-linear collapse is “more efficient” than linear amplification



   Spherical collapse model: 
evolution of density fluctuation

  Exact density fluctuation as a function of linear evolved density fluctuation:



   Spherical collapse model: 
extrapolation beyond collapse

With additional assumptions SC model can give further predictions

Model defines a time of “turnaround” (at θ=π) when physical velocity is zero

à from this time evolution of a  “cold” isolated uniform sphere (in these coords)

Real system: collapse not singular because of fluctuations 

Instead obtain a finite stationary (and virialized) system 

                        



Evolution of a cold quasi uniform sphere



Evolution of a finite (initially) uniform system



Collapse and virialization  
of a cold quasi-uniform sphere



Collapse and virialization  
of a cold quasi-uniform sphere



 Extending the SC model:
mean density/size at virialization  

Assuming 

•  virialization at time of theoretical singularity

•  energy conservation (?)

à  Simple estimate of characteristic mean density of systems at virialization 

Thus virialized structure about 1/6 of initial (comoving) size of collapsed mass

                                      



 Extending the SC model:
“Press-Schecter” formalism 

Using 

+ SC model’s “linear threshold for virialization” (δ ≈ 1.68) [a region will give 
rise to a virialized structure when its extrapolated linear amplitude is 1.68]

 + initial power spectrum of fluctuations [statistics of regions with given initial δ]

 à 
prediction for number density of virialized systems of given mass at any time,
                                                   or so-called “mass function”

                 

+ many refinements/modifications..

[Dark matter clumps virializing  “today” à  large galaxy clusters]                                            



  Beyond collapse and virialization: 
the stable clustering approximation

Assume that these virialized clumps then evolve like isolated systems

They “decouple from Hubble flow” and are “stable”

à  just “shrink” as 1/a in comoving coordinates

à  Fluctuations at a given scale is then a calculable function of initial fluctuations 

at a larger scale in linear regime..

In practice expect non-linear structures of different sizes to interact,  and 

even merge…only numerical simulation can tell us how much!



  Scale free models and “self-similarity”

Initial power spectrum                               (+UV cut-off)

+ a(t) which is power law 

à  No characteristic scale other that non-linear scale

à  If structure formation is UV insensitive, clustering must be “self-similar” e.g. 

2 point correlation function 

                                                       where                                   (from linear theory)



Non-linear clustering in scale-free models 

 
If non-linear clustering is also assumed stable, it must then be scale-free e.g.

The exponent  γsc  can be determined analytically 

                                                                           (Davis and Peebles 1977)

à Testable analytical predictions for such models 



Numerical simulations of cosmological 
structure formation



Numerical simulation of structure formation: 
equations 

The equations one would like to solve are the VP equations

 In practice use “N-body method”: solve the N body particle problem!  

where regularisation of sum in infinite periodic system is left implicit here

Wε  : regularisation of interaction when |xi- xj| → 0

N body particles are “softened macro-particles”

[Direct solution of VP?  

  See Yoshikawa K. et al., MNRAS (2013), Colombi et al., MNRAS (2015)]



Initial conditions of NBS 

Particles displaced off a lattice (or “glass”) to produce desired density field

[+velocities as prescribed by LT growing mode (“Zeldovich Approx”) ] 



 
 
 
 
(From V. Springel et al., Nature 2005)
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Initial power spectrum                 [   +velocities as prescribed by “Zeldovich Approx” 
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Millenium simulations:

Structure formation in the standard 
cosmological model: millenium



NPAC Cosmological Structure 
Formation



Evolution of 2 point correlations: schematic 

       

ξ ( r, t)  > 1 strong correlation 

ξ ( r, t)  < 1 weak corrélation 

Defines Scale 

      ξ ( λ (t) , t )  = 1  

 

λ (t):  scale of non-linearity 

which increases with time 



Evolution of power spectrum
(e.g. “LambdaCDM”, V. Springel et al., Nature 2005)



Clustering in cold dark matter simulations: 
“Hierarchical structure formation”

•   Linear theory describes evolution well at sufficiently large scales (small k)

•   Non-linearity scale grows monotonically at a rate predicted by linear theory

•   In non-linear regime “flow of power”  from large to small scales   
                      (via collapse dynamics exemplified by “spherical collapse model”)
 

       This is  “HIERARCHICAL STRUCTURE FORMATION” 



Clustering in cold dark matter simulations:
non-linear regime

Distribution of masses of largest  “non-linear clumps”  (“mass function”) is
roughly as predicted by spherical collapse model + “improved” Press Schecter



NPAC Cosmological Structure 
Formation



Clustering in non-linear regime: halos

Distribution of masses of largest  “non-linear clumps”  (“mass function”) is
roughly as predicted by spherical collapse model + “improved” Press Schecter

These halos have some substructure but are smooth to good approximation   
[“Stable clustering” breaks down  (see e.g. Smith et al., MNRAS 2006)]

Halos are (putatively) approximately virialized finite systems
 i.e. quasi-stationary states, stationary solution of Vlasov-Newton Eqs. 

Halos have apparently “universal” properties (i.e. independent of cosmology and 
initial conditions), notably

-  Density profiles (e.g. “NFW”)
- “Phase space density” profiles



   The non-linear regime 
as now seen (understood?)  by cosmologists

Huge (N > 1010 !) studies focussed on “realistic” cosmological IC

Increasing N à increasing range of scale resolved in non-linear regime

                      à increasing resolution of interior of largest clumps

                      àreveals “nested substructure” but most of mass smoothly distributed

                       

à phenomenological descriptions of non-linear regime in terms of these clumps

 These are so called  “halo models”

 In last few years  “halo models” have become the tool of choice



“Halo models” of non-linear clustering   

Matter density field ≈ 
        collection  of (non-overlapping) spherical smooth virialized structures



NPAC Cosmological Structure 
Formation



NPAC Cosmological Structure 
Formation



NPAC Cosmological Structure 
Formation



NPAC Cosmological Structure 
Formation



“Halo profiles” :  
 (see e.g. Cooray and Sheth, Phys. Rep. 2002) 

- Density profiles of these “halos” fitted by “universal” form, e.g.,  

         “NFW profile”                                                 (or e.g. “Einasto profile”)
 

2 parameters fitted from simulation: usually, halo mass m and “concentration” 
defined by 

where rv is halo radius or  “virial radius”, where density is 200 x mean density

Physical origin? Extensive literature, no definitive answer..



“Halo models” : ingredients  
 (see e.g. Cooray and Sheth, Phys. Rep. 2002) 

Ingredients:

- Density profiles of these “halos” fitted by “universal” form, e.g.,  

         “NFW profile”                                                 (or e.g. “Einasto profile”)
 
2 parameters fitted from simulation: usually, halo mass m and “concentration” 
defined by 

where rv is halo radius or  “virial radius”, where density is 200 x mean density



“Halo models” : ingredients  
 (see e.g. Cooray and Sheth, Phys. Rep. 2002) 

Ingredients:

- Density profiles of these “halos” fitted by “universal” form, e.g.,  

         “NFW profile”                                                 (or e.g. “Einasto profile”)
 
2 parameters fitted from simulation: usually, halo mass m and “concentration” 
defined by 

where rv is halo radius or  “virial radius”, where density is 200 x mean density

+   “Mass function”  n(m) for halos 



“Halo models” : ingredients  
 (see e.g. Cooray and Sheth, Phys. Rep. 2002) 

Ingredients:

- Density profiles of these “halos” fitted by “universal” form, e.g.,  

         “NFW profile”                                                 (or e.g. “Einasto profile”)
 
2 parameters fitted from simulation: usually, halo mass m and “concentration” 
defined by 

where rv is halo radius or  “virial radius”, where density is 200 x mean density

+   “Mass function”  n(m) for halos 
+   “Mass- concentration relation”



“Halo models” : ingredients  
 (see e.g. Cooray and Sheth, Phys. Rep. 2002) 

Ingredients:

- Density profiles of these “halos” fitted by “universal” form, e.g.,  

         “NFW profile”                                                 (or e.g. “Einasto profile”)
 
2 parameters fitted from simulation: usually, halo mass m and “concentration” 
defined by 

where rv is halo radius or  “virial radius”, where density is 200 x mean density

+   “Mass function”  n(m) for halos 
+   “Mass- concentration relation”
+   Correlation properties of halo centres  (~ linear theory at large distances)



Halo model example: 2 point correlations 
 (see e.g. Cooray and Sheth, Phys. Rep. 2002) 

- Measured (deterministic) mass concentration relation
- Density profiles                                       where 
          

+  statistics of halo (centre) distribution: mass function n(m),  correlation fns.

We have 

Two point correlation function of mass density

divides into “one-halo term” (i=j) and “two halo term” (i ≠ j) 



2 point correlations in halo model: 
 two contributions 

One halo term depends only on average mass function and density profiles:

This describes the strongly non-linear regime

Two halo term depends also on spatial correlation properties of halos:

To a reasonable approximation this can be just be approximated by linear regime 



Halo models : exploitation 
  

These models give analytical forms for n-point correlation properties (real 
and k space) in terms of a finite number of parameters measured in simulations..

 These are then used in making observational predictions   (e.g. lensing)
                 
Galaxy distributions are constructed positing Prob(galaxy|m)
 (with numerous free parameters then adjusted to observations..)

Halos models can be “refined”  to model e.g.  fraction of “substructure”, more 
complex mass-concentration relations, at price of additional fit parameters..

“Halo bias”: relation between correlation of halos and those of all matter 



Cosmological structure formation:
Some open issues 



   General questions about the “non-linear regime”

 -     How is non-linear clustering best characterized ?

                     (mathematical  tools..) 

-  How does non-linear clustering depend on initial conditions and cosmology?

                (and can we understand and precisely characterize this..) 

         Both questions are also of fundamental importance observationally

 



   Halo models: open problems…

Problems with “halo model” approach

•  “Halos” are poorly defined objects..

•  The approximation of smoothness is problematic; increased resolution has 

revealed layer after layer of “substructure”..

•  Unclear what “universality” means, what is its origin if it exists..

(Huge literature on these issues..)



Resolution of N body simulations

How accurately does discrete NBS reproduce  clustering of 
underlying  continuum physical model (VP limit)?

i.e. What are finite N effects?

Practically: 
                  what is “resolution scale” R(a) ? 

i.e. above which a given clustering stat is measured with desired 
precision? 
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The resolution/discreteness problem

N Body method  introduces several non-physical parameters

•  Λ:  mean interparticle distance (“mass resolution”)

•  ε:   force softening length (“force resolution”)

[+ others:  Box size L, starting red-shift, choice  “pre-initial” configuration (grid/glass…)         ]

 How does R(a) depend on  Λ, ε, a ? On model simulated  ?

94



Why is there a ‘?’ ? 

Numerical convergence studies do not in practice resolve the question..

+ Prima facie problem:       

Naively might expect condition:  

                                      R  >>  max{Λ, ε}

However N-body simulations typically use   Λ >> ε   

                                 R(final)  ~  ε

i.e.  resolution is given by the smoothing length, even when ε <<  Λ   
95



Example:  “Millenium”  simulation 

N=20583 ,  L=500 h-1 Mpc 

THUS

Λ ≈ 0,25 h-1 Mpc 

ε   ≈ 5 h-1 kpc  

 

i.e.   ε/Λ ≈  0.02

N.B: a large part of the non-linear 

regime is in the range of scales 

              ε < r < Λ 
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Resolution at starting time

 

Initial (small) fluctuations of model accurately reproduced for scales  >   Λ 
Large fluctuations due to discreteness for  scales  <  Λ
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Evolution of resolution in linear regime
MJ,  B. Marcos, A. Gabrielli, T. Baertschiger, F. Sylos Labini
Gravitational evolution of a perturbed lattice and its fluid limit, 
Phys. Rev. Lett. 95:011334 (2005)]:

Small displacements from an infinite periodic lattice: 
Evolution can be calculated exactly ! It’s just an eigenmode problem
à  “Particle Linear Theory”

98



Linear evolution of power on a lattice
              
             M. Joyce and B. Marcos, 
               Quantification of discreteness effects in cosmological N body simulations. II: Early time evolution
               Phys. Rev. D76:103505 (2007)

•  Simulation begins at a=1 
•  Deviation from unity is the discreteness effect

 k/kN=kΛ/π
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Resolution in the non-linear regime

Modes now couple.....

Role of “missing power”? Role of added (discrete) power ?

Claim:  R(a) decreases strongly and “follows” non-linear clustering

Justification:  Non-linear gravitational clustering

  “efficiently  transfers power from large scale to small scale”

cf. spherical collapse model

à  At sufficiently long times all memory of initial conditions at 

“missing” scales is lost

100



Despite “convergence studies” basic questions 
remain.. 

How efficient is transfer power from large scale to small scale?

How much does it really “wipe out” dependence on discreteness in IC? 

à 

Can we quantify R(a) ? Is it model dependent ? 
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Initial conditions a=1
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Evolved to a=23 
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Evolved to a=25
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Evolved to a=27 
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END PART I !



PART II:
1D toy models for cosmology 

(and astrophysics)



 

Newtonian Gravity  in 1D   
 
 

Poisson equation in 1D
à
Attractive pair force independent of separation

Equations of  motion:

à Forces are constant except at crossing
à “Exact”  numerical integration using an event driven algorithm



 

Newtonian Gravity  in 1D   
 
 

Many studies in literature going back to 50s at least, for references see e.g.
M. Joyce and T. Worrakitpoonpon,  J. Stat. Mech., P10012 (2010)

Also now a relevant model of a real laboratory system:

Phys. Rev. A (2013)



The statistical equilibrium is well defined (without any cut-offs)
Derived by Rybicki (1971) for any N 
In N -> infty limit:

                                                                                                    (Rybicki, 1971) 

This makes problem of long-time evolution simpler to pose.

Previous literature: 

• As in 3D system “violent relaxation” to a virial equilibrium (QSS)

 

1D gravity: thermal equilibrium



A simple diagnostic of macroscopic evolution 
M. Joyce and T. Worrakitpoonpon

Relaxation to thermal equilibrium in the self-gravitating sheet model, J. Stat. Mech., P10012 (2010)

To monitor macroscopic evolution useful to consider e.g.  

à  Measure of “phase space entanglement”:

It  is

• zero in thermal equilibrium

• non-zero and constant  in QSS



Cold collapse and virialization in 1D



Cold collapse and virialization in 1D



Evolution of a 1D self- gravitating system 

                                       
                                           

    



Evolution of density profiles  

Green curve: Thermal equilibrium (Rybicki 1971)



Evolution of 1D gravitating systems : different IC 

                                       
                                                   Τrel  ~  (102-103) N  Tmf  

                                                                



1D models of cosmological structure formation



 

1D gravity: infinite system limit ?   
 
 

Just as in 3D the sum

is not defined for an infinite uniform distribution..

à Proceed as in 3D??



 

Gravitational dynamics in  
a 1D “expanding”  universe 

 
 1D gravity does not have expanding universe solutions analagous to 3D!

-> Work directly with comoving coordinates,
Just replace by hand 3D forces with 1D forces

by  

where a(t) is the 3D expansion (but particle motion in 1D!)



 

Regulated 1D gravitational force 
 

The expression 

can be calculated exactly in an infinite periodic system

In 1D position of a particle i at any time can be written as its displacement ui 
from a nearby lattice site (without overlapping).
The force is 

where  <u> is average value of ui



 

1D gravity in an expanding universe: 
 damped inverted oscillators 

 
Like in 3D one can change to time variable to obtain equations as 

where «damping » is 

à  Dynamics of an infinite set of damped inverted harmonic oscillators 
displaced off a regular lattice (and which bounce elastically when they 
collide)

Motion is exactly integrable between crossings à similar exact event driven 
methods as for finite system



 

1D gravity in an expanding universe: 
a family of models 

 
It is natural to consider 

where «damping » is a free parameter.

This corresponds to taking a 3D expansion law derived from

i.e. « speeding up » expansion by a factor of  



 

Cosmology in a 1D universe: an “historical note” 
 

In cosmological literature: studies of model              by Melott (1982) PRL 
                                                       Yano & Gouda (1998) Astrophys. J. Supp. 

In Stat. Phys. literature 

-  “RF” Model, corresponding to                  introduced by Rouet et al. (1990) ,            
    studied extensively by Miller et al. (e.g. PRE 2002, 2007)

     These authors also studied “static” model with 

-  “Quintic” Model corresponding to             introduced by  
                                                          Aurell &  Fanelli (2002) Astron. Astrophys. 

Exhaustive study of family of models (range of     ) by 
                     Sicard & Joyce,  MNRAS (2010), Benhaeim et al, MNRAS (2012)

Recent work: VP simulations of RF and Q model by Manfredi et al. 2015((PRE)



 

Linear theory in 1D models 
 
 

Results for linear theory in 3D carry over to 1D model
Prior to crossing, growing mode of particle motion is exactly that of fluid 
element in Zeldovich approximation:

à Scale independent amplification of density fluctuations



 

“Spherical collapse” model in 1D 
 
 

Results analagous to 3D:

 Collapse to singularity in finite time, independent of size 

In presence of initial fluctuations singularity is regularized, system virializes
(albeit somewhat less efficiently than in 3D)



Cold collapse and virialization in 1D



Cold collapse and virialization in 1D



Results: clustering in a 1D universe 



Evolution of correlation function (1D) 
(n=0, κ=1)  



 

Evolution of power spectrum (n=0, κ=1) 



 1D clustering from cold initial conditions: 

Quantitative analyse reveals behaviour completely analagous to 3D

à Hierarchical clustering (linear amplification + collapse)

 Growth of non-linearity scale driven by linear amplification



 

Prediction for scale-free 1D models 
 
 

For PS P(k)=Akn self-similarity  (same assumptions as in 3D)



Evolution of correlation function (1D) 



Self-similarity (1D): 
correlation function 



Self-similarity (1D) 



Non-linear clustering in 1D 

 Whole system (N=10^5 particles) 



Non-linear clustering in 1D 

 1/10 th of system



Non-linear clustering in 1D 

 1/10^2 of system



Non-linear clustering in 1D 

 1/10^3 of system



Non-linear clustering in 1D 

 1/10^4 of system



Non-linear clustering in 1D 

1/10^5 of system



Results: scale-invariance in 1D? 
(MJ,  F. Sicard MNRAS 2011) 

 
 Power law behaviour in spatial correlations, over 3-4 orders of magnitudes in 

expanding models

Appears to extend over an arbitrarily large range of scale,  asymptotically 
apparently without limit..

Is it associated with an underlying scale invariance?

Study (multi-)fractal exponents using standard box-counting technique

Confirm findings of [Miller et al., Phy. Rev. E. (2007) and refs therein] 

strong evidence for fractal structure/scale-invariance



Determination of correlation dimension (1D) 



Origin of the exponents? 
  

(MJ, F. Sicard MNRAS 2012) 

(
Measured exponents clearly depend both on IC (n) and “cosmology”(κ)
 
 “Stable clustering hypothesis”  (Peebles 1974 for 3D) 

But what does this hypothesis mean in the 1D model?
What is “stability”?



 

“Physical coordinates” in 1D 
 
 Unlike 3D we do not derive equations from physical coordinates…nevertheless 

there are (almost) equivalent coordinates:

For particles in a  finite subsystem S the eom can be written

 
where yi= position relative to CM of S  (Note: no tidal forces!)
Taking

gives

Second term on right becomes negligible at long timesàri “physical coordinate“ 



Correlation dimension in the 
“stable clustering” hypothesis 

MJ, F. Sicard MNRAS 2011 

 
 Assume strongly non-linear structures behave as isolated virialized objects
 
à Clustering frozen in “physical coordinates” 
à Temporal evolution of lower cut-off to power-law

Using “self-similarity” to determine behaviour of upper cut-off, 
Predict  

where 



Exponents  of non-linear clustering in 1D models: 
measurement from simulations 

D. Benhaiem and MJ  (2012) 

 



Exponents  in 1D models: from stable clustering to 
universality 

                D. Benhaiem and MJ  (2013) 

 Excellent agreement with stable clustering when   

Otherwise exponent which is ~ independent of both expansion and IC
       à “universal” non-linear clustering 

Why a critical value for validity of stable clustering?
Can show that 

where             is ratio of size of two structures when the larger one virializes,  

while             is the ratio of their initial sizes

Thus large exponent à expect substructure to persist (because highly bound)
 



   Open questions about the “non-linear regime”

- How is non-linear clustering properly characterized ? 

- How does it depend on initial conditions and cosmology?

 

1D suggests the space of cold IC and cosmologies breaks into two regions:

•  fractal “virialized hierarchy”, non-universal 

•  fractal “virialized hierarchy” (or smooth, not so clear..), universal



  Back to cosmology in 3D…



Observations:

Power law behaviours do characterize galaxy correlations in some range 

Power-law scaling in galaxy clustering



Standard model: power law correlations are an accident…. 
(cf. Masjedi et al, Astrophy. J. 2008)



Observations:

Power law behaviours characterize galaxy correlations in some range 

Is such power law clustering in galaxies indicative of scale-invariant 
phenomena?

If yes, is the purely gravitational dynamics giving rise to it?

Current standard model answer:  no,  these power-laws are an “accidental”

Or perhaps resolution of 3D simulations too poor to resolve it? 
 

Power-law scaling in galaxy clustering



                                             (V. Springel et al., Nature 2005)



Stable clustering/resolution in 3D revisited 
(D. Benhaiem, MJ and B. Marcos, 2013 +work in progress) 

 
Study of “Gamma cosmology” in 3D.. 

à 
Generalisation of stable clustering prediction of Peebles:



Stable clustering/resolution in 3D revisited 
(D. Benhaiem, MJ and B. Marcos, 2013 +work in progress) 

 
Results:  stable clustering prediction works very well in range of scale we can 
resolve..

Recent work (D. Benhaiem & MJ, 2016), larger simulations:

Breakdown of stable clustering correlated to breakdown of self-similarity

à
Non-linear regime dominated by interaction and merging of structures is strongly 
affected by UV (i.e. discreteness) effects! 

Suggests that a large part of N-body simulation 3D results may be incorrect…

Perhaps VP simulations may help to resolve the issue definitively..?
[See Yoshikawa K. et al., MNRAS (2013), Colombi et al., MNRAS (2015)]
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